
Test Case Generation and Reusing Test Cases for
GUI Designed with HTML

Datchayani M

Department of Information Technology, Valliammai Engineering College, SRM Nagar, Kattankulathur, Chennai, India
m.dhaksh@gmail.com

Arockia Xavier Annie R 1, and Yogesh P 2

1 Department of Computer Science and Engineering, 2 Department of Information Science and Technology
College of Engineering, Anna University, Chennai, India

{annie, yogesh}@annauniv.edu

Benet Zacharias
Senior Consultant, Process Excellence, Wipro Consulting Services, Sholinganallur, Chennai - 600 119, India

benetzacharias@yahoo.co.uk

Abstract—Graphical User Interface (GUI) is pervasive to
the extent that half of the code of the software systems
written today is to produce the required GUIs. Test case
generation for GUI based software systems is complex as it
is necessary to include all possible sequences of events that
may be exercised by the widget or end-user. The major issue
with GUI based systems is that even a single change in the
GUI may make the entire suite of existing test cases
unusable. Hence a solution to analyze the existing test cases
(i.e. the test cases that were already generated before
modification of GUI) and identify the test cases that have
become unusable and that are reusable in the context of the
modified GUI is provided here. Test cases that are reusable
are retained and the test cases that have become unusable
are subjected to transformations. These transformations
make the unusable test cases reusable through the
construction of Event Flow Graph (EFG) generated and
parsing EFG using Depth First Search (DFS) to identify
reusable and unusable test cases.

Index Terms—Graphical User Interface, Test Case
Generation, Event Flow Graph, Depth First Search,
Unusable Test Cases, Reusable Test Cases.

I. INTRODUCTION

GUIs are pervasive in today’s software systems and
constitute as much as half of software code. The
correctness of a software system’s GUI is paramount in
ensuring the correctness of the overall software system.
The common way to ensure the GUI’s correctness of the
software systems is the comprehensive testing.
Comprehensive testing includes all possible sequence of
events that may be exercised by the widgets or the end
users through the GUI of the software system. This
testing requires both the generation and the execution of
the above test cases. Techniques that are available at
present for obtaining GUI test cases are resource
intensive and require significant human intervention.
Even though few automated GUI test case generation

schemes like GUITAR (GUI Testing Framework) and
DART (Daily Automated Regression Tester) [3] have
been proposed, predominantly test cases are still being
generated manually using capture/replay tools like QTP
(Quick Test Professional) and WinRunner [5], [9].

Test case generation becomes complex when the
software system undergoes a change. The software
system may undergo a change either with respect to the
GUI or with respect to the functionality Changes that
occur in the GUI of the software system have more
drastic effect on usability of a test case than the changes
that occur in the functionality of the software system.
Even a small change in the software system may make
most of the existing test cases unusable for the modified
software system [5].

The conventional capture/replay tools [1], show the
interaction of the human tester with the application under
test in a file and replays this file whenever required. From
experiments, it is observed that generating a typical test
case with 10 events for different widgets takes 20-30
minutes using capture-replay tools. It is very difficult for
the human tester to generate the test cases for software
systems that are designed using rapid prototyping that
involves continuous modification and testing.

A. Objective of the System
An important goal of this work is to make the available

test cases reusable for the modified version which would
become unusable otherwise. Another major goal of this
work is the test case generation for the acceptance testing
of the GUI based software systems. To generate the test
cases for the acceptance testing, it is necessary to capture
all the sequences of GUI events that will be exercised by
the end users / widgets. This is so because only by
exploring the events in the GUI, the user of the system
could accept or opt for changes. As an example, for a
calculator application, the GUI could have been designed
in such a way that the results of both the scientific

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2269

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.10.2269-2277

operations and arithmetic operations are displayed in the
same screen, but the customer might want the scientific
operation in a separate window and the arithmetic
operation in a separate one. Regression testing is an
important software maintenance activity for traditional
software, accounting for as much as one-third of the total
cost of software production. However for GUI based
software systems, regression testing still remains as an
unexplored area. Regression testing research has focused
on the development of regression test selection
techniques that choose a set of test cases that represent
correct input and are deemed necessary to validate the
modified software from the existing test units. Regression
testing in the area of GUI based software systems has
proved that many test cases of the existing test suites in
the GUI based software systems that undergoes frequent
modifications are recognized as obsolete test cases (test
cases that cannot be rerun).

In this work we propose a system that facilitates that
automated test case generation which reduces the cost of
rewriting the modified test cases. The system has three
phases namely generation of test cases for the
new/original system, construction of the Event Flow
Graph that represents the existing test suite and the
generation of test cases for the modified GUI system
using the Depth First Search method.

II. LITERATURE SURVEY

A. Test Tools
There are various tools available to perform testing.

QTP (Quick Test Professional) is especially designed for
testing the web based applications. WinRunner, Test-
Complete facilitates regression, load and stress testing,
but these tools work on the basis of capture and replay
technique [11]. Most available test tools works on the
basis of record and replay techniques [3]. These tools
record the normal execution of the software and runs
software for various test cases and generates reports for
each test run as passed or failed indicating the execution
as success or not. Only a few of them present the actual
output which can be compared with the expected output.
Testing is performed by setting the checkpoints [11]. To
set the checkpoints and set the test cases for a field, a
sequence of actions has to be performed in the GUI to
reach the desired point or field. There are possibilities
that a tester would leave an action unexplored which
could be considered for a checkpoint. And therefore
locating a component in a complex GUI would become a
time consuming task [7].

B. Related Research Work of the System
A few automated GUI test case generation techniques

have been proposed [2]. However, they all require
creating a model of the GUI, a significant resource
intensive step that intimidates many practitioners and
prevents the application of the techniques. The GUI
Ripping technique [8], [4] and [6] is to reverse engineer
the GUI’s model directly from the executing GUI. Once
verified by the test designer, this model is then used to

automatically generate test cases. GUI ripping has
numerous other applications such as reverse engineering
of GUI products to test them within the context of their
use, porting and controlling legacy applications to new
platforms, and developing model checking tools for GUIs
[13]. The testing process in GUI ripping is a dynamic
process that is applied to executing software’s GUI.
Starting from the software’s first window (or set of
windows), the GUI is “traversed” by opening all child
windows. All the window’s widgets (building blocks of
the GUI, e.g., buttons, text-boxes), their properties (e.g.,
background-color, font), and values (e.g., red, Times New
Roman, 18pt) are extracted. Developing this process has
several challenges that are required to develop the
solutions. For example, some windows may be available
only after a valid password has been provided [8]. Since
the GUI Ripper may not have access to the password, it
may not be able to extract information from such
windows. Another process and tool support is required to
visually add parts to the extracted GUI model. GUI
Ripper is used as a central part of two large software
systems called GUITAR1 (GUI Testing Framework) and
DART (Daily Automated Regression Tester) to generate,
execute, verify GUI test cases, and perform regression
testing [2]. The paper has provided details of two
instances of the GUI Ripper, one for Microsoft Windows
and the other for Java Swing applications. But, one main
challenge is to provide rapid feedback to the developers
about parts that may have been inadvertently broken
during maintenance which cannot be captured using this
technique.

Smoke tests have become widespread as many
software developers/maintainers found them useful.
Popular software that use daily/nightly builds includes
WINE, Mozilla, AceDB, and open webmail. During
nightly builds, a development version of the software is
checked out from the source code repository tree,
compiled, linked and smoke tested. Typically unit tests
and sometimes acceptance tests are executed during
smoke testing. Such tests are run to (re)validate the basic
functionality of the system. The smoke tests exercise the
system completely, such a way that they don't have to be
an exhaustive test suite but they should be capable of
detecting major problems. A build that passes the smoke
test is considered to be a good build. Bugs are reported,
usually in the form of emails to the developers. Frequent
building and re-testing is also required because new
software development processes advocate a tight
development/testing cycle. A number of tools support
daily builds, some of the popular tools include Cruise
Control, IncrediBuild, Daily Build, and Visual Build.

A limitation of the currently available nightly builds is
inadequate testing and re-testing of software that has a
GUI. Frequent and efficient re-testing of conventional
software requires automated regression testing [10],
which is a software maintenance activity, done to ensure
that modifications have not adversely affected the
software's quality. Although there has been considerable
success in developing techniques for regression testing of
conventional software, regression testing of GUIs has

2270 JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

been neglected. Consequently, there are no automated
tools and efficient techniques for GUI regression testing.
Not being able to adequately test GUIs has a negative
impact on overall software quality moreover GUIs today
constitute as much as 45-60% of the total software code
[4]. Currently, three popular approaches are used to
handle GUI software. First and most popular, is to
perform no GUI smoke testing at all, which either leads
to expensive or time consuming GUI testing later.
Secondly, to use test harnesses that call methods of the
underlying business logic as if initiated by a GUI. This
approach not only requires major changes to the software
architecture, it also does not perform testing of the end-
user software. Thirdly to use existing tools to do limited
number of GUI testing. Examples of some tools used for
GUI testing include extensions of JUnit such as JFCUnit,
Abbot, Pounder, and Jemmy Module2 and capture/replay
tools such as WinRunner3 that provide very little
automation, especially for creating smoke tests.
Developers/maintainers who employ these tools typically
come up with a small number of smoke tests.

In reusing the test case, the reusability of the test case
has to be verified and a technique is required to make
unusable test cases as reusable for the modified version of
GUI. Techniques to check the reusability of the test cases
and to make unusable test case reusable for the modified
version, the technique used by Memon [5] is used. Those
techniques are used for GUI developed with java, in the
proposed paper we have utilized this technique to work
for GUI designed with HTML.

III. MODELING OF THE SYSTEM
Approach for checking test cases; the test-case

checker’s primary function is to identify unusable test
cases and of those, which can be repaired. If the initial
state ‘S0’ of a test case is not one of the valid initial states
‘SI’ for the modified software, then it cannot be repaired
because the valid initial state is required to identify
repairing action to be taken. If ‘S0’ belongs to ‘SI’, then
the test-case checker determines whether the event
sequence in the test case is reusable by first identifying
the modifications made to the GUI by comparing the
EFGs of the original and modified GUIs. The
comparisons of the two EFG’s is as follows: If EFGo and
EFGm are the EFGs of an original and modified GUI
respectively, then the following sets of modifications are
obtained by performing set subtraction. The functions
Vertices and Edges return the sets ‘V’ (the set of vertices)
and ‘E’ (the set of edges) for the EFG in consideration.
 (1) The set of all vertices deleted from the original EFG:

Vertices deleted ← Vertices (EFGo)-Vertices (EFGm);
 (2) The set of edges deleted from the original EFG:

Edges deleted ← Edges (EFGo)-Edges (EFGm);
GUI modifications are recorded in two bit vectors,

EDGES-MODIFIED and EVENTS-MODIFIED; each
test case is associated with two bit vectors, EVENTS-
USED and EDGES-USED. Determining whether a test
case is usable/unusable is done by using very fast bitwise
AND operations. Using this information, the test-case
checker identifies test cases that were made unusable by

each modification. For example, if an event ‘e’ is deleted
from the GUI, then all test cases that use event ‘e’ are
unusable. One GUI modification may be reflected in
more than one set of modifications, and a test case may
be marked as unusable several times because of a single
modification on an event here, ‘e’. Being marked as
unusable several times has no effect on the reparability of
the test case. Once the unusable test cases have been
identified, they are repaired by the test case repairer.

Approach for repairing test cases; the test-case
repairing approach is based on user-defined
transformations that deletes or inserts events into the test
case at appropriate points. These transformations leverage
the fact that an illegal event sequence uses at least one
deleted event or edge. To develop the transformations
that will make a GUI event sequence legal, we borrow an
error-recovery technique from compiler technology; we
skip events or try to insert a single new event until a legal
event sequence is obtained. This sequence can be found
by skipping over events or by including events from the
modified GUI. If an event e (i), at position ‘i’ in an event
sequence is deleted from the GUI, then a transformation
must remove e (i) from the event sequence. However, to
obtain a legal resulting event sequence, (1) the
transformation scans the event sequence from left to right,
starting at position i + 1, until it finds an event e (j) such
that either: < e (i−1); e (j) > is a legal event sequence for
the modified GUI, or (2) there is another event e (x), from
the set of all the events in the modified GUI [5]. A variant
of this technique is used in our work to reuse the test case.

A. Modeling of GUI
Model of GUIs that was developed for a GUI testing

framework is presented in this section. A GUI is modeled
as: a set of objects O = {o1, o2, …, om} (e.g., hyperlinks,
forms, buttons) and a set of properties P = {p1, p2, …, pl}
of those objects. Each GUI uses certain types of objects
with associated properties, at any specific point in time.
The state of the GUI is described in terms of all the
objects that it contains, and the values of all their
properties. Formally, the needed definitions for GUI are
as follows:
1. Definition of state:

State of a GUI is the set ‘P’ of all the properties of all
the objects ‘O’ that the GUI contains. A distinguished set
of states, called its valid initial state set is associated with
each GUI.

A set of states ‘SI’ is called the valid initial state set for
a particular GUI if the GUI may be in any state Si SI ∈
when it is first invoked. The state of a GUI is not static;
events performed on the GUI change its state and these
states are called reachable states. The events are modeled
as state transducers.
2. Definition of event:

 The events E = {e1, e2, . . . , en} associated with a
GUI are functions from one state to another state of the
GUI. The function notation Sj = e (Si) is used to denote
that ‘Sj’ is the state resulting from the execution of event
‘e’ in state ‘Si’. Events occur as part of a sequence of
events. Of importance to testers are sequences that are
permitted by the structure of the GUI. Test case

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2271

© 2012 ACADEMY PUBLISHER

generation is restricted to such legal event sequences,
defined as follows:

A legal event sequence of a GUI is e1; e2; e3; . . . ; en;
where ei+1 can be performed immediately after ‘ei’. An
event sequence that is not legal is called an illegal event
sequence. For example, in MS Word, Cut (in the Edit
menu) cannot be performed immediately after Open (in
the File menu), and thus the event sequence <Open, Cut>
is illegal (ignoring keyboard shortcuts), whereas <Open,
Select, Cut> is legal.

B. Modeling of Test Cases
1. Definition of GUI test case:

GUI test case ‘T’ is a pair (S0, e1; e2; . . .; en),
consisting of a state S0 SI∈ , called the initial state for
‘T’, and a legal event sequence “e1; e2; . . . ; en”. If the
initial state specified in the test case is not reachable in
the GUI and/or its event sequence is illegal, then the test
case is not executable.

GUI test case (S0, e1; e2; . . . ; en) is unusable if a
modification of a GUI causes the state ‘S0’ to not be
reachable in the GUI or if the sequence “e1; e2; . . . ; en”
cannot execute to completion. Unusable test cases cannot
be executed on the GUI and are usually discarded.

C. Modeling of Event Flow Graph (EFG)
Flow of events in the GUI is modeled as event flow

graph. Components that have actions are identified as
events. An event that triggers a page is denoted by “page-
event” and here there are two pages associated, the
“page1” where the event triggering a page is present and
the “page2” which is the triggered page. All the pages are
events but the converse is not always true. Events
triggering the pages are named as “page1-page2”
otherwise name of the event is extracted from the front
end program. From “Fig. 1”, we see the event “client” in
page “loan.html” triggers the page “loan0.html”,
therefore the event “client” is stored as “loan.html-
loan0.html”. Similarly, the event “Apply for Loan” in
page “loan0.html” triggers the page “loan3.html”,
therefore the event “Apply for Loan” is stored as
“loan0.html- loan3.html”. An event “Reset” is an event in
“loan3.html” page, this event is stored as “loan3.html-
Reset”. Also, the event “Apply” present in page
“loan3.html”. Therefore within a page, when an event
triggers to a different page, both the events and ‘page-e’
of that page are identified and stored as events. Before a
page is processed it is necessary to check the page is
visited earlier or not to avoid processing a page
redundantly.

The events identified are the nodes or vertices of the
EFG. If an event ‘ej’ is accessible after ‘ei’ is explored,
then it means an edge exist between ‘ei’ and ‘ej’, its
direction is from ‘ei’ to ‘ej’, which means ‘ei’ is the
starting node and ‘ej’ is the terminating node. Edges can
exist between ‘ei’ and ‘ej’ though ‘ei’ and ‘ej’ appear in
different pages, in case ‘ei’ triggers the page in which ‘ej’
appears. Edges are represented as, pagei-eventi-
>pagei+1-eventi+1 where, eventi+1 is accessible after
eventi is explored. pagei+1 and pagei represent the pages
in which eventi+1 and eventi appears respectively.

In “Fig. 1”, once the event “Apply for Loan” is
explored i.e. loan.html-loan3.html is explored, the event
“Apply”, “Reset” and “Main Page” i.e. loan3.html-Apply,
loan3.html-Reset, loan3.html-loan0.html are accessible.
Thus the edges are represented as,

loan.html-loan3.html->loan3.html-Apply,
 loan.html-loan3.html->loan3.html-Reset,
 loan.html-loan3.html->loan3.html-loan0.html

respectively.
“Fig. 2” represents other edges that exist for the GUI

represented in “Fig. 1”

Figure 1. Page-events

Figure 2. Edge-events

Edges also exist between the events appearing in the
same page. From “Fig. 1”, event “Reset” in loan3.html is
accessible after event “Apply” in the same page is
explored. This is represented as, loan3.html-Apply-
>loan3.html-Reset. When all the events in the GUI are
identified and all the possible edges between the events
are identified, altogether they become the event flow
graph.
Pseudo code for EFG Construction

Get the file name of the first page of the GUI from the
user
Extract the tags
Identify the components that has actions
Identify the events that triggers display of next page
If (page is visited)
{ Skip the page }
Otherwise Goto step 2
Store the event detail in a file along with the page to
which it belongs to
If (event triggers a new page)
{ For (each of the event in the triggered page) {

2272 JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

stored edge in a file with triggering event as
start node and triggered event as the
terminating node

} Constitute all possible edges into EFG

IV SYSTEM ARCHITECTURE

System Architecture is shown in “Fig. 3”. To reuse the
test cases for the modified version of GUI, the test cases
generated for the original version of GUI, EFG of the
original version of GUI and EFG of the modified version
of GUI are required as input to the process. The final
output from the system is set of test cases for the
modified version of GUI in such a way that all the events
in the modified GUI can be explored. The test suite for
the modified version of GUI, which is actually output of
the system, is not regenerated instead the test case
generated for the GUI before modification is reused at the
most. The final test suite of modified version of GUI is
composed of the following:

 (a) set of test cases directly reused from the test suite
that is generated for the GUI before modification,

 (b) set of modified test cases those which were
actually test case for the GUI before modification and
unusable test cases after modification in the GUI, and
made usable for testing modified version of GUI after
treating the test case with the transformations, and

 (c) set of test cases newly generated for those events
which were not covered by either the directly reused test
case or the modified test cases.

Figure 3. System Architecture

Test suite used to test the GUI before modification is
maintained in repository as original test suite. EFG is
generated from the model for EFG constructor as
explained in Section III-C, EFG constructor parses
through the HTML program, reads the tags and identifies
the components and lists the components with action as
events. Identifies the events that triggers a page, then
parses through that page and identifies the events present
in that page, EFG performs this action recursively until
all the pages and events in the GUI are identified. The
EFG constructor maintains the details about the events to
which page an event belong to and which event triggers a
page. With these information edges are identified and the

complete EFG is maintained in a file. This EFG is used to
identify the difference between the GUI before
modification and after modification. EFG is also used to
identify the solution to treat an unusable test case and to
check the test case adequacy.

Test case checker partitions the original test suite into
three parts as (i) usable test cases, (ii) unusable test cases
and (iii) un-modifiable test cases. (i) Usable test cases are
those which can be directly reused by the modified
version of GUI, test case checker parse through the test
cases one at a time and identifies the events a test case
covers, it then checks the existence of those events with
the EFG of modified GUI, if all the events covered by a
test case also exist in the EFG of modified GUI, then that
test case is added to set of usable test cases. Similarly, (ii)
unusable test cases are those which cannot be directly
reused by the modified version of GUI but can be made
usable by treating it, test case checker parse through the
test case one at a time and identifies the events a test case
covers, and checks the existence of those events with the
EFG of modified GUI, if an events covered by a test case
does not exist in the EFG of modified GUI, then that test
case is added to the set of unusable test cases. (iii) Un-
modifiable test cases are those which cannot be reused by
the modified version of GUI, test case checker parse
through the test case one at a time and identifies the
events a test case covers, and checks the existence of
those events with the EFG of modified GUI, if the
starting event of a test case does not exist in the EFG of
modified GUI, then that test case is added to set of un-
modifiable test cases. List of events deleted and list of
edges deleted reused by the Test case checker to perform
the above mentioned task.

Test case transformer transforms the unusable test case
into usable test case for the modified version of the GUI
as per the transformations mentioned in Section VI-C.
Test case transformer identifies the problem point in the
unusable and partitions the test case into two parts as
correction point and resume point. The point in the test
case that made the test case unusable i.e. the location in
the event sequence where a deleted event occurs is the
problem point. The correction point is the test case
fragment from starting point to event before the problem
point of the test case and resume point is the fragment
from an event next to problem point to the end point of
the test case. With the help of EFG constructed for the
modified version GUI, Test case transformer identifies
the bridge between the correction point and the resume
point such that by appending correction point, bridge and
the resume point, the Test case transformer arrive with a
modified test case that is usable for the modified version
of GUI. The bridge between correction point and resume
point is identified few types of transformations. They are
explained in Section VI-C of this paper.

Adequacy evaluator checks the test case adequacy by
verifying the event coverage. Adequacy evaluator takes
reused test cases, modified test cases and EFG as input.
Events covered by all the reused test cases and modified
test cases are extracted and cross checked with the events
in the EFG of the modified version of GUI. Events that

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2273

© 2012 ACADEMY PUBLISHER

are present in the EFG of the modified version of GUI
and absent in the set of events covered by all the reused
test cases and modified test cases are taken as uncovered
events. These uncovered events are fed as input to test
case generator.

Test case generator generates test case for the
uncovered events. Test case generator identifies the event
with in-count 0 as starting events from the EFG. Test case
generator takes starting event as correction point and
uncovered event as resume point and searches for the
bridge between correction point and resume point. By
appending starting event, bridging event sequence and
uncovered event, test case generator arrives with new test
case for uncovered event.

V. TEST CASE GENERATION

In testing GUI, test cases are sequence of events.
Events can be sequenced with two approaches namely;
breadth first approach and depth first approach [12].
Depth first approach is undertaken, as that is found
suitable for traversing the GUI. For each node in the
event flow graph i.e. for each event, the number of edges
leading into a graph: the in-degree and leading out of a
graph: the out-degree is found. Set of initial events and
final events are identified. Events with in-degree=0 are
identified as starting events and events with out-degree=0
are identified as terminating events. Events are sequenced
by traversing the EFG. The representation of the events,
their in-degree followed by out-degree of each of the
event in the GUI are for example, “loan.html-loan0.html,
0, 1”; “loan0.html-loan3.html, 1, 2”; loan3.html-Reset, 1,
0”; “loan3.html-Apply, 1, 0”; etc., Every event sequence
starts from initial event and ends with terminating event
as shown as “loan.html-loan0.html->loan0.html-
loan3.html->loan3.html->loan3.html-Reset”, “loan.html-
loan0.html->loan0.html-loan3.html->loan3.html-
>loan3.html-Apply”, etc, From the event sequence test
cases are generated in such a way that all the events in the
GUI are explored.
 Pseudo code for Test Case Generation

Parse the EFG
For (nodes)
{ Find indegree
 Find outdegree
 Store as an object
} If (indegree==0)
{ Enqueue to starting node }
For (starting nodes)
{ Dequeue node
 For (nodes)
 { If (node is adjacent node of
dequeued node)
 {Indegree[node] - -
 } If
(indegree==0)
 {Enqeue node
 }Do steps for starting nodes.
 }
} Write test cases to a file

VI. REUSING GUI TEST CASES

Reusing GUI test cases prevents tester from
regenerating the test case completely. By reusing the test

cases time consumed to regenerate the test case by
capture replay technique can be reduced. Automated
reusing of test case is beneficial rather than regenerating
the test case in an automated manner, because by reusing
the test case, we could separate those test cases that
actually examine the modified event or edge. Those test
cases that are modified test cases and newly generated
test cases cover modified events and uncovered events
respectively. Thus modified test cases could be given
higher priority than the other test cases so that the
modified events are examined.

The test case reuse technique used in this paper takes
into account the changes made in navigation among the
pages but do not consider the structural changes. As
structural changes do not affect the event sequence and
the test cases remain unaffected for structural changes.
Thus the technique is limited to changes in navigation
among the GUI pages.

To reduce the number of test cases it is necessary to
identify the changes made to the original GUI. EFG of
GUI generated listing the generation of test cases is
maintained for later use while reusing the test case. For
the modified GUI, EFG is generated in the same way as
generated for the original GUI.

A. Identify Usable and Unusable Test Cases
From the EFGs of original and modified GUI, all the

events (nodes) and edges are retrieved and existence of
each event in the original GUI are cross checked with the
events in the modified GUI. If an event in original GUI
is absent in the modified GUI, that event is added to the
list of deleted events. In the same way, existence of each
event in the modified GUI is cross checked with the
events in the original GUI. If an event in modified GUI
is absent in the original GUI, that event is added to the
list of events added. Similarly existence of each edge in
the original GUI is cross checked with the edges in the
modified GUI. If an edge from the original GUI is absent
in the modified GUI, that edge is added to the list of
deleted edges. In the same way existence of each edge in
the modified GUI is cross checked with the edges in the
original GUI. If an edge in modified GUI is absent in the
original GUI, that edge is added to the list of added edges.

Reusability of the test cases is performed to identify
those test cases that are directly usable and those test
cases that has to be repaired to make them reusable for
the modified version of GUI. The test cases, that have at
least one event that is deleted from original GUI becomes
unusable for modified GUI. To check the reusability of
the test cases, each is retrieved one at a time and the
events it covers are taken as a list and the existence of
event in that list is verified with the list of events deleted.
If a test case has an event that has been deleted, then that
test case is added to unusable test case list. Each of the
test cases generated for the original GUI is verified in the
same way as explained above.

B. Modifying Unusable Test Cases
Once the reusability of the test case is determined and

is arrived with a list of usable and unusable test cases, the
unusable test case has to be repaired or modified to make

2274 JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

them usable for the modified version of GUI. Unusable
test cases are retrieved one at a time and the repairing
technique explained in Section V of this paper has to be
performed. Each unusable test case will have a problem
point. Problem point is the point in the test case, that
made the test case unusable that is the location in the
event sequence where a deleted event occurs. Then the
test cases are segmented into two parts, as correction
point and resume point. The test case fragment from
starting point to event before problem point is taken as
the correction point and the fragment from an event next
to problem point to end point is taken as the resume point

Now a bridge has to be identified between connection
points and resume point. Bridge could be an event or
event sequence that acts as the path to reach resume point
from the connection point. Thus by appending bridge to
connection point and then by appending the resume we
could arrive with a modified/repaired rest case whose
event sequence is valid in the modified GUI.

 At this point it should be noted that a test case may not
have only one problem, a test case could have more than
one puncher or problem point. Our technique as
explained above segments test case into two fragments as
correction point and resume point. This segmentation is
done based on location of problem point that appears first,
but it is true that the test case could have other problem
points also. So, the modified test case has to be rechecked
to determine its reusability. If the modified test case is
usable i.e., it does not have any problem point then it is
added to modified reusable test case list. Otherwise, the
test case has to be modified to repair the other problem
points. By performing this process recursively, we could
arrive with a final modified test case that has no problem
point at all.

C. Types of Transformations
Transformation is the process of converting an

unusable test case into reusable / modified test case. As
explained before, to make unusable test case reusable for
modified version of GUI, a bridge has to be identified
between correction point and resume point. To say
exactly connecting event or event sequence is required to
bridge between end node of correction point fragment
and starting node of resume point fragment.

SNORP is the starting node of resume point. ENOCP
is the end node of correction point. ENE is the event of
end node which is derived from ENOCP. ENP is the page
of end node which is derived from ENOCP. SNP is the
page of starting node that is derived from SNORP. And
the various types of transformations that are used in
different scenarios are explained as follows:

Case (i) ENOCP and SNORP occur in the same page.
Case (i) has the following two possibilities
 (i)a. ENE does not triggers a page
 (i)b. ENE triggers a page
For case (i)a. Transformation-1 is used. When SNP

and ENP are same and ENE does not trigger a page, it
means that, once the event ENOCP is explored, the state
remains in the same page where SNORP exists, thus the
SNORP can be explored immediately after ENOCP. Thus
the repairing / transformation task is to check the

existence of edge from ENOCP to SNORP. This edge
will be the bridge to reconstruct the unusable test case so
that it becomes reusable after modification made to it.
The modified test case is derived by appending correction
point, bridge and resume point as represented below,

 (“->” is the bridge in this transformation)
 correction point + “->” + resume point
 --Transformation-1
For case (i)b. Transformation-2 is used. When SNP

and ENP are same and ENE triggers a page, it means that,
once the event ENOCP is explored, the state of current
page displayed will be changed, that is the user will be
taken to some other page. Thus a bridging event has to be
identified with page name same as ENE and event name
same as SNP. When bridging event does not exists, and
then an event sequence that could be used as a bridge
between ENOCP and SNORP has to be identified. While
identifying the vent sequence, it should be noted that the
event sequence are examined with depth first search
algorithm. The bridging event sequence must have first
node with page name same as ENE and end node event
same as SNP. The modified test case is derived by
appending correction point, bridge and resume point as
represented below,

correction point + “->” + bridging event + “->” +
resume point

correction point + “->” + bridging event sequence + “-
>” + resume point --Transformation-2

Here bridging event or event sequence acts as the
bridge to repair the test case.

Case (ii)ENOCP and SNORP occur in different pages.
ENOCP and SNORP occur in the different page, i.e.

ENP is different as SNP. For the above said condition,
there are two possibilities as follows,

 (ii)a. ENE triggers SNP
 (ii)b. ENE does not triggers SNP
For the case (ii)a. the Transformation-3 is used. When

SNP and ENP are different and ENE triggers a page, it
means that, once the event ENOCP is explored, the state
will be taken to a page where SNORP exists, thus the
SNORP can be explored immediately after ENOCP. Thus
the repairing / transformation task is to check the
existence of edge from ENOCP to SNORP. This edge
will be the bridge to reconstruct the unusable test case so
that it becomes reusable after modification made to it.
The modified test case is derived by appending correction
point, bridge and resume point as represented below,

 (“->” is the bridge in this transformation)
Correction point + “->” + resume point
 --Transformation-3
For the case (ii)b. Transformation-4 is used. When

SNP and ENP are different and ENE does not triggers
SNP, it means that, once the event ENOCP is explored,
the state of current page displayed will be changed, that is
the user will be taken to some other page. Thus a bridging
event has to be identified with page name same as ENE
and event name same as SNP. When bridging event does
not exists, and then an event sequence that could be used
as a bridge between ENOCP and SNORP has to be
identified. While identifying the vent sequence, it should

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2275

© 2012 ACADEMY PUBLISHER

be noted that the event sequence are examined with depth
first search algorithm. The bridging event sequence must
have first node with page name same as ENE and end
node event same as SNP. The modified test case is
derived by appending correction point, bridge and resume
point as represented below,

correction point + “->” + bridging event + “->” +
resume point

correction point + “->” + bridging event sequence + “-
>” + resume point

 --Transformation-4
Here bridging event or event sequence acts as the

bridge to repair the test case.
Case (iii) Correction Point is null
In this case “correction point is null” implies that an

initial event or initial sequence of events are deleted.
Procedure for the transformation is as follows. Set of
starting nodes of the GUI are identified by examining the
in-count of each of the events/ nodes in the EFG. Events
/nodes with in-count 0 are identified as starting nodes.
Then the event or event sequence has to be identified in
such a way that, the event or event sequence could act as
a bridge between the starting node and the SNORP.
 --Transformation-5

Case (iv) Resume Point is null
In this case “resume point is null” implies that

terminating event or terminating sequence of events are
deleted, the transformation is done by eliminating the
resume point and take correction point as the test case.

--Transformation-6

VII. PERFORMANCE EVALUATION

Performance of the system is evaluated with
applications whose GUI are designed with HTML code
that are downloaded from the open source sites. Test
cases are generated for those applications manually and
the time taken is observed. The system developed is
executed with the same applications as input to generate
test case for them automatically. Interesting
measures/attributes identified to measure the performance
of test case generation in our work are: number of events,
number of edges, number of pages, number of test cases
generated, time taken to generate test cases automatically,
time taken to generate test cases using capture/replay tool.

All these attributes are measured and recorded.
Number of events is always less than the number of
components, as those components that do not have action
(example-labels) are not considered as events. It is
noticed from the observation that test cases are generated
in seconds, when generated automatically with the system,
whereas, if test cases are generated manually it takes
minutes for small applications and hours for large
applications. Thus with system been developed test cases
are generated in seconds for GUI designed with HTML
and thus reduces the time spent in generating the test case
and the effort spent for the same.

Attributes affecting reusing test cases identified in our
work are: number of original events, number of modified
events, number of original edges, number of modified
edges, number of original test cases, number of test cases

usable, number of test cases unusable, number of test
cases usable after modified, percentage of GUI
modification and percentage of test cases reused.

All these attributes are measured and recorded. It is
observed that for a small structural change in the GUI
most of the test cases become unusable. Percentage of
test cases that became unusable differs for each
application depending on the number of events or edges
modified and in which page they are present. Those test
cases that became unusable are treated with this system to
make them usable for the modified version of GUI. The
usability of the test case after treating the test case that
has actually become unusable for modified version of
GUI are presented as a graph in Fig 4.

Figure 4. Graph Plot showing usable and unusable test cases after
modification.

The blue portion of the graph represents those test
cases that were actually unusable for the modified version
of GUI and m ade usable after treating it. The red portion
of the above graph represents those test cases that are
unusable for the modified version of GUI even after
treating it.
Percentage of Test Case Reused = (number of test cases
unusable / number of test cases usable after modified)
*100 (1)

On an average, almost 80% of unusable test cases are
made usable after treating them with the system been
developed. For uncovered events test cases are generated
automatically without any human intervention, which
actually reduces time spent.

VIII . CONCLUSION AND FUTURE WORK

In this work, we developed a system that focuses on
test case generation and reusing testing cases in the event
of GUI modification. In our system we assume that GUI
is designed with HTML. EFG is constructed for GUI by
traversing the pages in depth first search technique and
then the test cases are generated as sequence of events by
traversing through the EFG. The test cases are generated
automatically in seconds without any human intervention.

The system also addresses reusing test cases for GUI.
EFGs are constructed by parsing the html program of the
original and modified GUIs. EFG is constructed by
identifying the components that has action and by
identifying links between the events in the GUI.
Constructed event flow graph is a directed graph

2276 JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

indicating triggering event in the start terminal and
triggered event as the end terminal of an edge in the
graph. It is also un-weighted graph. EFG is stored as a set
of edges in a file.

Test cases of original GUI are validated with the
Modified EFG and distinguished as usable test case and
unusable test case. For a small change in GUI most test
cases becomes unusable. Those unusable test cases are
transformed in such a way that with few changes in
unusable test case they become usable for the modified
GUI. Had we gone for Regenerating test cases for
slightly modified GUI it would have become very
expensive.

The technique used to reuse the test case has high
chance of making few test cases redundant. A test case
would have been modified to make them usable but the
events explored by that particular event might be
included in one test case or the other, in that case the test
case becomes redundant. Research can be continued in
this area to eliminate redundant test cases and reduce
number of test cases with the criterion to cover all the
events in the modified GUI.

REFERENCES

[1] E. O. Ariss , Dianxiang Xu, S. Dandey, B. Vender, P.
McClean, B. Slator, editors. A systematic capture and
replay strategy for testing complex GUI based Java
applications. TNG '10 Proceedings of the Seventh
International Conference on Information Technology: New
Generations; 2010; Washington, DC, USA: IEEE
Computer Society; 2010. 1038–1043.

[2] Paul Gerrard. Testing GUI Applications [internet].
Edinburgh, UK: Eurostar Conference; Nov 1997 [updated
2010; cited 2010 Dec 11]. Available from: http:
//gerrardconsulting.com/?q=node/514.

[3] Rick Hower. Software QA and Testing [Internet]. [place
unknown]: 1996 Nov 22 [updated 2011 Jan 3; cited 2011
Jan 9]. Available from: http:
//www.softwareqatest.com/qatfaq1.html

[4] A. M. Memon, GUI testing: pitfalls and process, IEEE J
Computer. 2002 Aug; vol.35 (8): 87-88.

[5] A. M. Memon. Automatically repairing event sequence-
based GUI test suites for regression testing. ACM
Transactions on Software Engineering and Methodology
(TOSEM). 2008 Nov; 18 (2).

[6] A. M. Memon, A. Nagarajan, Qing Xie. Automating
regression testing for evolving GUI software. Journal of
Software Maintenance: Research and Practice – Special
issue: 2003 International conference on software
maintenance: The architectural evolution of systems. Jan;
17 (1); 27–64.

[7] A. M. Memon, M. E. Pollack, M. L. Soffa. Hierarchical
GUI test case generation using automated planning. IEEE
Transactions on Software Engineering. 2001 Feb; 27 (2):
144– 155.

[8] A. M. Memon, Qing Xie. Studying the fault-detection
effectiveness of GUI test cases for rapidly evolving
software. IEEE Transactions on Software Engineering.
2005; 31 (10): 884–896.

[9] A. Murgia, R. Wolff, W. Steptoe, P. Sharkey, D. Roberts,
E. Guimaraes, A. Steed, J. Rae, editors. A tool for replay
and analysis of gaze-enhanced multiparty sessions captured
in immersive collaborative environments. 12th IEEE/ACM
International Symposium Distributed Simulation and Real-
Time Applications; 2008; Washington, DC. USA: IEEE
Computer Society; 2008. 252–258p.

[10] R. M. Poston. Automating specification-based software
testing. 1st. ed. IEEE Computer Society, CA, USA: IEEE
Computer Society Press; 1997. 272 p.

[11] Vyom Network [Internet]. [place unknown]: 2003 [cited
2010 Aug 23]. Available from: http:
//www.onestoptesting.com/.

[12] M. A. Weiss. Data structures and algorithm analysis in C.
2nd. ed. Boston, USA: Addison-Wesley Longman
Publishing Co., Inc; 1997. 511 p.

[13] Qing Xie, Memon A M, editors. Model-Based testing of
community-driven open-source GUI Applications.
Proceeding ICSM '06 Proceedings of the 22nd IEEE
International Conference on Software Maintenance; 2006;
Washington DC, USA; c2006. 145 p.

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2277

© 2012 ACADEMY PUBLISHER

