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Abstract—Support Vector Machine (SVM) is a classification 
technique based on Structural Risk Minimization (SRM), 
which can run on MATLAB. For classification of 
nonseparable samples, conventional SVM needs to select a 
tradeoff between maximization the margin and 
misclassification rate. In order to guarantee generalized 
performance and low misclassification rate of SVM, this 
paper puts forward an improved SVM through a risk 
decision rule for the nonseparable samples running on 
MATLAB. The improved SVM transforms the outputs of 
the SVM to posterior probabilities belonging to different 
classes and samples between the support hyper-planes are 
classified by using risk decision rule of Empirical Risk 
Minimization (ERM). Computational results show that the 
proposed approach is better than conventional SVM 
remarkably when the two classes are easy to separate, and 
in other condition, its performance is comparable to 
conventional SVM. 
 
Index Terms—Support Vector Machine; Structural Risk 
Minimization; Risk decision rule; MATLAB 

I. INTRODUCTION 

Developed by Vapnik [1], Support Vector Machine 
(SVM) is a machine learning technique for classification 
based on statistical learning theory. In a classification 
problem with two classes, SVM constructs an optimal 
separating hyper-plane that maximizes the margin 
between two classes. SVM embodies Structural Risk 
Minimization (SRM) principle, which has been shown to 
be superior to conventional Empirical Risk Minimization 
(ERM) employed by conventional neural networks. SRM 
minimizes an upper bound of generalization error as 
opposed to ERM that minimizes the misclassification rate 
on training data, which can run on MATLAB.  

SVM is gaining popularity due to many attractive 
features and excellent generalization performance on a 
wide range of problems. Min et al. [2] and Avci [3] study 
SVM on the optimal parameters selection aspect. Hsu et 
al. [4] and Navia-Vazquez [5] expand the binary 

classification to multi-class classification. Wang et al. [6] 
and Lu et al. [7] introduce Least-Square-SVM (LS-SVM) 
by changing inequality constraints to equality constraints. 
For fuzzy problems, Liu et al. [8] put forward a Fuzzy 
SVM based on density clustering. Hua et al. [9] proposed 
an asymmetric support vector machine for the 
classification problem with asymmetric cost of 
misclassification. 

For nonseparable samples, the optimization model of 
SVM incorporates a kernel function and a regularization 
parameter to minimize the SRM. When the regularization 
parameter is small, SVM has good generalization ability. 
Meanwhile, the number of samples lying between 
support hyper-planes increases, which would result in a 
higher misclassification rate. Therefore, a better 
classification rule for these samples is required. 

In this paper, we propose a novel SVM through a risk 
decision rule (RD-SVM) for classifying nonseparable 
samples running on MATLAB. RD-SVM transforms the 
outputs of samples lying between support hyper-planes 
into posterior probabilities and computes an optimal 
probability threshold based on ERM. The optimal 
probability threshold and optimal separating hyper-plane 
(OSH) are used to partition the domain between the 
support hyper-planes into four intervals, and different 
classification rules are established based on the number 
of samples belonging to different classes in each interval. 
Computational results show that the proposed approach is 
efficient in improving classification performance 
compared to conventional SVM. 

The rest of this paper is organized as follows. In 
Section 2, a brief review of conventional SVM for binary 
classification is presented. Section 3 describes the 
proposed RD-SVM approach, and in Section 4, the 
experimental results on several benchmark data sets 
running on MATLAB are reported. The final section ends 
the paper with some conclusion remarks. 

II. A BRIEF REVIEW OF CONVENTIONAL SVM 
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In this section, we provide a brief review of 
conventional SVM for binary classification. More details 
about SVM can be found in Vapnik [1]. 

Given a training set { , }i iG x y= ( 1, 2, ,i l= L ) with 
input vector s

ix R∈  and corresponding binary class 
labels { 1, 1}iy ∈ + − , for nonlinearly nonseparable data set, 
the classifier can be constructed by solving the following 
quadratic programming problem: 
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where ( )ϕ ⋅  is a nonlinear function which maps the input 
space into a higher dimensional space. For model (1), by 
introducing Lagrange multipliers 0iα ≥ and 

0iβ ≥ ( 1, 2, ,i l= K ) associated with the constraints, the 
above problem can be transformed into its dual problem. 
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The kernel function ( , ) ( ) ( )T
i j i jK x x x xϕ ϕ= ⋅  must 

satisfy Mercer’s theorem [10]. Some kernel functions in 
common use are Polynomial and Radial Basis Function. 

To solve the model (2), Lemke complementary pivot 
algorithm [11-13] is employed. The decision function is 
as follows. 

1
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( 1)x∗ +  and ( 1)x∗ −  are positive support vector and 
negative support vectors, respectively. 

The distance from one sample to OSH is calculated as 
following: 
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For the standardization SVM, the relative distance 
from one sample to OSH is calculated as following: 
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III. AN IMPROVED SVM THROUGH A RISK DECISION 
RULE 

Conventional SVM classifies samples into two classes 
by the OSH and is sensitive to samples lying near the 
OSH, especially between the support hyper-planes. We 

define the domain between the support hyper-planes as 
nonseparable domain, in which samples are inclined to be 
misclassified. For the nonseparable domain, this paper 
puts forward an improved SVM based on the risk 
decision rule (RD-SVM) that tries to guarantee the 
generalization ability of SVM and decrease the 
misclassification rate simultaneously. The RD-SVM 
technique partitions the nonseparable domain into four 
intervals by optimal probability threshold and OSH. In 
each interval, the number of samples belonging to 
different classes is used to revise the classification rule. 

A. The Classification Rule of RD-SVM 
The main idea of RD-SVM is to modify classification 

rule which is obtained by conventional SVM only for 
samples in nonseparable domain. Given a test sample 0x , 
we can calculate its relative distance 0( )f x  to OSH by 
Eq. (5), and then apply the following modified rule for 
classification. 
(1) If 0( ) 1f x ≥ , then the sample 0x  is classified to 
positive class;  
(2) If 0( ) 1f x ≤ − , then the sample 0x  is classified to 
negative class;  
(3) If 01 ( ) 1f x− < < , then the sample 0x  is classified to 
positive class by probability 1λ  and negative class by 
probability 2λ , with 1 2 1λ λ+ =  ( 1 20 , 1λ λ≤ < ) [14,15].  

1 2,λ λ  are defined as follows. 
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In the following, we will apply the above classification 
rule to samples in different intervals of nonseparable 
domain as Hua et al. [16]. These intervals are: 1 0:[ ,1)I λ ∗ , 

2 0: [0, )I λ ∗ , 3 0: [ ,0)I λ ∗− , 4 0: ( 1, )I λ ∗− − , where 0λ
∗  is an 

optimal probability threshold based on the risk decision 
rule of ERM, which will be represented in the next 
subsection. We calculate the number of positive samples 
and negative samples in different intervals, respectively. 
These numbers are denoted by ijn , where 1i =  represents 
positive class, 2i =  represents negative class 
and 1, 2,3, 4j =  represent the four intervals. 

For samples in the nonseparable domain, we use the 
following rule for classification: 

0 1 2

0 1 2

1          ( ( ) ) & ( )
1       ( ( ) ) & ( )

j j j

j j j

if f x I n n
y

if f x I n n
∈ ≥⎧⎪= ⎨− ∈ ≥⎪⎩

, 1, 2,3, 4j = .(7) 

B. The Optimization Probability Threshold 
Optimization probability threshold 0λ

∗  is a critical 
parameter in the decision rule. For any given 
optimization probability threshold 0λ

∗ , there exist two 
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types of errors. Similar to statistical process control, we 
call them type I error and type II error. Type I error 
means the negative sample is wrongly classified to 
positive class, while type II error means the positive 
sample is wrongly classified to negative class. As 
presented in [17],  
The probability of type I error is: 1 1 0Pr( )λ λ λ⋅ < ,  
The probability of type II error is: 1 1 0(1 ) Pr( )λ λ λ− ⋅ ≥ .  

Denote by ( )F ⋅  the distribution function and ( )f ⋅  the 
density function of variable 1λ , the expectation of the two 
types of errors is as following: 

0
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Assume that variable 1λ  submits to uniform 
distribution on interval [0,1] . The distribution function 
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The risk decision rule of ERM minimizes the 
expectation of the two types of errors by 
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When 1λ  submits to uniform distribution, the 
optimization model is equivalent to   

0

2
0 0 0min ( ) 3( ) 3 1E

λ
λ λ λ= − + .                  (13) 

Solving problem (12) would result in 0 0.5λ ∗ =  
and 0( ) 0.25E λ∗ ∗ = . 

C. The Applicability of RD-SVM 
RD-SVM mainly focuses on samples in the 

nonseparable domain; therefore, its applicability should 
be investigated. We define percentage of samples 
belonging to each class in different intervals as follows 

4

1
ij ij ik

k
p n n

=

= ∑ ,                         (14) 

where 1, 2i =  represents the two classes, 
1, 2,3, 4j = represent the four intervals, and ijn represents 

the number of class samples belonging to class i  in the 
jth  interval. Define 

1 1( ) max{ }j
j

p j p∗ = ， 1, 2,3, 4j = ;  

2 2( ) max{ }k
k

p k p∗ = ， 1, 2,3, 4k = ,  

where ( )ip j∗  represents the maximal frequency of 
samples belonging to class i  that fall in the j th∗  interval. 
There are three possible situations in classification. 

If samples distribute in four intervals equally, it means 
that two classes are not easy to separate; 
If 1 ( ) 70%p j∗ >= , 2 ( ) 70%p k ∗ >=  and j k∗ ∗≠ , it means 
that two classes are easy to separate; 
If 1 2( ) ( )p j p j>  or 1 2( ) ( )p j p j< , it means that every 
interval contains mostly one class samples. 

In the condition that two classes are easy to separate 
and every interval contains mostly one class, the 
performance of RD-SVM would be better than 
conventional SVM, which is demonstrator in 
computational results presented in the next section. 

IV. EXPERIMENTS 

In order to investigate the validity and applicability of 
RD-SVM proposed in this paper, three benchmark data 
sets [18] are tested on RD-SVM and SVM, respectively. 
We assume that probability 1λ  of a sample belonging to 
different classes submits to uniform distribution on 
interval [0,1] . The optimal probability threshold 0 0.5λ ∗ =  
is computed based on risk decision rule of ERM. In RD-
SVM and SVM, we use Radial Basis Function (RBF) as 
the kernel function with parameter 1γ =  and 0.1C =  for 
good generalized classification ability. The experiments 
are conducted using MATLAB 7.1. The main program of 
RD-SVM in MATLAB 7.1 is following as 

 
 

{ZERO=0.00001;K=3;gamma=1;r=1;d=2;C=0.1; 
aver_error=0;averageerr=zeros(1,100); 
averagn1_1=zeros(1,100);averagn1_2=zeros(1,100); 
averagn2_1=zeros(1,100);averagn2_2=zeros(1,100); 
averagn3_1=zeros(1,100);averagn3_2=zeros(1,100); 
averagn4_1=zeros(1,100);averagn4_2=zeros(1,100); 
 for n=1:100 
   str1='data/thyroid\thyroid_train_data_'; 
    str1=strcat(str1,num2str(n)); 
    str1=strcat(str1,'.asc'); 
    inFile=str1;TrainData=load(inFile); 
    [xN,xV]=size(TrainData); 
    for i=1:xN 
        xSVM(i,:)=TrainData(i,:); 
    end 
   str2='data/thyroid\thyroid_train_labels_'; 
    str2=strcat(str2,num2str(n)); 
    str2=strcat(str2,'.asc'); 
    inFile=str2;TrainLabels=load(inFile); 
    [yN,yV]=size(TrainLabels); 
    for i=1:yN 
        ySVM(i)=TrainLabels(i,1); 
    end 
   str3='data/thyroid\thyroid_test_data_'; 
    str3=strcat(str3,num2str(n)); 
    str3=strcat(str3,'.asc'); 
    inFile=str3;TestData=load(inFile); 
    [vxN,vxV]=size(TestData); 
    for i=1:vxN 
        vxSVM(i,:)=TestData(i,:); 
    end 
   str4='data/thyroid\thyroid_test_labels_'; 
    str4=strcat(str4,num2str(n)); 
    str4=strcat(str4,'.asc'); 
    inFile=str4;TestLabels=load(inFile); 
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    [vyN,vyV]=size(TestLabels); 
    for i=1:vyN 
        vySVM(i)=TestLabels(i,1); 
    end 
[yesno,Alpha,Epsilon,Omiga,b] = 
CommonSVM(K,xSVM',ySVM,C,gamma,r,d); 
    if (yesno==0) 
        disp('There are no solutions to QP!'); 
        return; 
    end 
[MaxOBJ,SemiMinDist,NormOmiga,HisDist] = 
CalHisDist(K,xSVM',ySVM,C,gamma,r,d,Alpha,Epsilo
n,b); 
ValDis=CalValDis(vxSVM,xSVM,ySVM,NormOmiga,Alpha, 
gamma,b); 
Middle=[]; 
[N,V]=size(HisDist); 
RelativeHisDist=zeros(1,V); 
    for iter=1:V        
RelativeHisDist(iter)=HisDist(iter)*NormOmiga; 
        if 
(RelativeHisDist(iter)<1)&(RelativeHisDist(iter)
>-1) 
Middle=[Middle;[RelativeHisDist(iter) 
ySVM(iter)]]; 
        else 
        end 
    end 
lambda=solvelambda(Middle); 
 [valN,valV]=size(Middle); 
    for j=1:valN 
        if 
(Middle(j,1)>=lambda)&(Middle(j,1)<1)&(Middle(j,
2)==1) 
            averagn1_1(n)=averagn1_1(n)+1; 
        else if 
(Middle(j,1)>=lambda)&(Middle(j,1)<1)&(Middle(j,
2)==-1) 
                averagn1_2(n)=averagn1_2(n)+1; 
            else if 
(Middle(j,1)>=0)&(Middle(j,1)<lambda)&(Middle(j,
2)==1) 
                    
averagn2_1(n)=averagn2_1(n)+1; 
                else if 
(Middle(j,1)>=0)&(Middle(j,1)<lambda)&(Middle(j,
2)==-1)                       
averagn2_2(n)=averagn2_2(n)+1; 
                    else  if 
(Middle(j,1)>=lambda-
1)&(Middle(j,1)<0)&(Middle(j,2)==1) 
                    
averagn3_1(n)=averagn3_1(n)+1; 
                        else if 
(Middle(j,1)>=lambda-
1)&(Middle(j,1)<0)&(Middle(j,2)==-1)                             
averagn3_2(n)=averagn3_2(n)+1; 
                            else if 
(Middle(j,1)>-1)&(Middle(j,1)<lambda-
1)&(Middle(j,2)==1) 
                                    
averagn4_1(n)=averagn4_1(n)+1; 
                                else if 
(Middle(j,1)>-1)&(Middle(j,1)<lambda-
1)&(Middle(j,2)==-1)                                     
averagn4_2(n)=averagn4_2(n)+1; 
                                    else  
                                    end  
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 

RalativeValDis=zeros(1,vxN); 
    for i=1:vxN 
        RelativeValDis(i)=ValDis(i)*NormOmiga; 
        if RelativeValDis(i)>=1 
            xySVM(i)=1; 
        else 
        end 
        if RelativeValDis(i)<=-1 
            xySVM(i)=-1; 
        else 
        end 
        if 
RelativeValDis(i)>=lambda&RelativeValDis(i)<1 
            if averagn1_1(n)>=averagn1_2(n) 
                xySVM(i)=1; 
            else 
                xySVM(i)=-1; 
            end 
        end 
        if 
RelativeValDis(i)>=0&RelativeValDis(i)<lambda 
            if averagn2_1(n)>=averagn2_2(n) 
                xySVM(i)=1; 
            else 
                xySVM(i)=-1; 
            end 
        end 
        if RelativeValDis(i)>=lambda-
1&RelativeValDis(i)<0 
            if averagn3_1(n)>=averagn3_2(n) 
                xySVM(i)=1; 
            else 
                xySVM(i)=-1; 
            end 
        end 
        if ValDis(i)>-1&ValDis(i)<lambda-1 
            if averagn4_1(n)>=averagn4_2(n) 
                xySVM(i)=1; 
            else 
                xySVM(i)=-1; 
            end 
        end 
    end 
    error_no=0; 
    for i=1:vxN 
        if(xySVM(i)~=vySVM(i)) 
            error_no=error_no+1; 
        else 
        end 
    end 
    aver_error=error_no/vxN; 
    averageerr(n)=aver_error; 
end 
sum=0; 
average=0; 
for m=1:n 
    sum=sum+averageerr(m); 
end 
average=sum/n;disp('The average error rate is '); 

average} 
 

Firstly, we compute the average number of positive 
and negative class in different intervals introduced in 
RD-SVM. The results are summarized in Table 1 and 
Table 2. 
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TABLE I.   
DIFFERENT CLASSES FOR TRAINING SAMPLES 

 
11An  21An 12An 22An 13An 23An 14An 24An  

Thyroid 0 0 19.9 0 22.7 28.8 0.2 68.5 
Titanic 5.4 0.1 12.9 3.0 9.2 11.4 19.3 81.0 

Twonorm 116.9 0 8.0 107.1 77.2 8.0 0 82.8 

TABLE II.   
DIFFERENT CLASSES FOR TESTING SAMPLES 

 
11An  21An 12An 22An 13An 23An 14An 24An  

Thyroid 0 0 4.8 0.03 17.4 19.5 0.17 33.1 
Titanic 56.6 2.1 164.7 53.6 132.2 167.5 284.9 1089 

Twonorm 104.5 105.5 1985 1866 1376 1493 35.2 34.8 
 

In Tables 1 and 2, ijAn represents average number of 
samples belonging to class i  in the jth  interval. The 
results show that train and test samples are correlative. 
For Thyroid set and Titanic set, two classes are easy to 
separate, while for Twonorm set, two classes are not easy 
to separate. 

RD-SVM and SVM are tested on the three benchmark 
data sets and the average misclassification rates are 
summarized in Table 3. 

TABLE III.   
THE AVERAGE MISCLASSIFICATION RATE  

 
 
In Table 3, MR  is the misclassification rate and IR is 

the improved rate, and -(%)= 100%SVM RD SVM

SVM

MR MR
IR

MR
−

× . 

The results in Table 3 show that the RD-SVM can 
improve classification performance of conventional SVM 
remarkably when two classes are easy to separate. When 
the two classes are not easy to separate, the performance 
of RD-SVM is comparable to conventional SVM. 

V. CONCLUSION 

Conventional SVM classifies samples using optimal 
separating hyper-plane (OSH) obtained by support hyper-
planes. For the nonseparable domain in risk management, 
SVM is sensitive to samples near the OSH, which would 
result in the increase of misclassification. In this paper, a 
new classification rule is proposed which modifies the 
outputs of SVM aiming at reducing the misclassification 
of samples in nonseparable domain using MATLAB. 
Computational results show that the proposed approach is 
better than conventional SVM remarkably when two 
classes are easy to separate, and in other condition, its 
performance is comparable to conventional SVM. 

 
Our study has the following limitations that need 

further research. First, the parameters selection in the 
SVM for best prediction performance is also needed in 
the new RD-SVM technique. The second issue for future 
research relates to a method of estimating the distribution 
of the probability of samples belonging to different 
classes. 
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