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Abstract—Data Envelopment Analysis (DEA) has becoming 
more and more important in evaluating the performance of 
homogenous Decision Making Units (DMUs). Cross 
efficiency evaluation method, a DEA extension technique, 
can be utilized to identify efficient DMUs and to rank DMUs 
in a peer appraisal mode, instead of a pure self-evaluation of 
traditional DEA models. Traditionally, the ultimate cross 
efficiency is determined based on the average assumption. 
However it cannot ensure this result contains the most 
information of the cross-efficiency matrix (CEM). In the 
current paper, we use principal component analysis (PCA) 
to determine the ultimate cross-efficiency of each DMU and 
then rank them. Compared with the tradition average cross 
efficiency evaluation method, the method proposed in this 
paper can contain the most of the information of CEM. 
Finally, an empirical example is illustrated to examine the 
validity of the proposed method. 
 
Index Terms—DEA; Cross-efficiency; Principal component 
analysis (PCA); Weights 
 

I. INTRODUCTION 

Data envelopment analysis (DEA), as a non-parametric 
programming techniue, can provide a relative efficiency 
measure for peer decision making units (DMUs) with 
multiple inputs and multiple outputs. DEA has become a 
very effective approach in identifying the best practice 
frontiers and evaluating the performance of each DMU. 
DEA has been extensively applied in performance 
evaluation and benchmarking of schools, hospitals, bank 
branches, production plants, and so on (Charnes et al, 
1994; Charnes and Zlobec, 1978; Wang, Parkan and Luo, 
2007; Saen, 2010). However, traditional DEA models are 
not very appropriate for ranking DMUs since they simply 
classify the units into two groups: efficient and inefficient 
as the work of Charnes et al. (1978). Moreover, it is often 
possible in DEA that some inefficient DMUs are in fact 
better overall performers than some efficient ones. This is 
because of the unrestricted weight flexibility problem in 
DEA by being involved in an unreasonable self-rated 
scheme (Dyson and Thannassoulis, 1988; Wong and 
Beasley, 1990). In order to maximize its own DEA 
efficiency, the DMU under evaluation always ignores 

other inputs and outputs, thus it heavily weighs few 
favorable measures from its own view. 

Sexton et al. (1986) first proposed Cross efficiency 
evaluation method which is developed as a DEA 
extension technique, and can be utilized to identify 
efficient DMUs and to completely rank DMUs. The main 
idea of cross evaluation is to use DEA in a peer 
evaluation instead of a pure self-evaluation for providing 
an efficiency ordering among all the DMUs. Cross 
efficiency evaluation has been used in various 
applications, e.g., efficiency evaluations of nursing 
homes (Sexton et al. 1986), R&D project selection (Oral 
et al., 1991), preference voting (Green et al., 1996), and 
others.  

In the traditional cross efficiency evaluation method, 
average cross efficiency has been widely used, however, 
there are still several disadvantages for utilizing the 
ultimate average cross efficiency to evaluate and rank 
DMUs (Jahanshahloo, Lotfi, Jafari and Maddahi, 2011), 
like the losing association with the weights by averaging 
among the cross efficiencies (Despotis, 2002), which 
means that this method can not clearly provide the 
weights to help decision maker improve his performance. 
Especially, the average cross efficiency measure is not 
good enough since it is not a Pareto solution. Considering 
the shortcomings above, Wu et al. (2009) eliminate the 
average assumption for determining the ultimate cross 
efficiency scores, and DMUs are considered as the 
players in a cooperative game, in which the characteristic 
function values of coalitions are defined to compute the 
Shapley value of each DMU, and the common weights 
associated with the imputation of the Shapley values are 
used to determine the ultimate cross efficiency scores. 
But all these methods cannot ensure its results contain the 
most information of the cross-efficiency matrix. 

Principal Component Analysis (PCA) is widely used in 
multivariate statistics such as factor analysis. Azadeh and 
Ebrahimipour (2002, 2004) pointed out it had been used 
to reduce the number of variables under study and 
consequently by ranking and analysis of decision-making 
units, such as industries, universities, hospitals, cities, and 
so on. PCA is performed by identifying Eigen structure of 
the covariance or singular value decomposition of the 
original data. It has been studied with data envelopment 
analysis in many studies, but it was only used to validate Corresponding author ’s. E-mail: qqf@ustc.edu.cn. 

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2177

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.10.2177-2181



 

 

the results of DEA or decrease the number of indicators 
under study. For example, Zhao et al. (2005) applied 
PCA to identify the input and output indicators of 
distibutors in, Azadeh and Ghaderi (2006, 2008) applied 
it to validate the results of DEA, and Liang, et al. (2009) 
applied PCA to deal with undesirable outputs and 
simultaneously reduce the dimensionality of data set, 
consequently increasing the discriminatory power of 
DEA. In the current paper, we use principal component 
analysis to determine the ultimate cross efficiency scores 
instead of average cross efficiency scores, which has 
some theoretical and practical advantages, for example, 
the proposed approach can contain most of the 
information of cross efficiency matrix (CEM) in cross 
evaluation. The rest of the paper unfolds as follows: 
Section 2 briefly reviews the original cross efficiency 
concept in DEA. Section 3 revisits the method of 
principal component analysis and introduces its 
application in determining the ultimate cross-efficiency. 
In Section 4, a numerical example is used to illustrate the 
proposed method. Finally, conclusions are made in 
Section 5. 

II. CROSS-EFFICIENCY EVALUATION 

Using the traditional denotations in DEA, we assume 
that there are a set of n DMUs, and each 

1, 2, , )jDMU j n= L（  produces s different outputs 
using m different inputs which are denoted as 

( 1,2, , )ijx i m= L  and ( 1,2, , )rjy r s= L , 
respectively. For any evaluated 

( 1,2, , )dDMU d n= L , the efficiency score ddE  can 
be calculated by using the following CCR model [3]. 
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Cross efficiency is often calculated as a two-phase 
process. The first phase is calculated by using the DEA 
model (1). For each DMU under evaluation by model (1), 
we can obtain a set of optimal 
weights * * * * * *

1 2 1 2, ,..., , , ,...,d d md d d sdw w w μ μ μ . Then the 

cross-efficiency of each jDMU  using the weights of 

dDMU , namely djE , can be calculated as follows. 
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where miid ,...,1,* =ω  represent the optimal weights of 

the ith input and srrd ,...,1,* =μ  represent the 

optimal weights of the rth  output for dDMU . 

As shown in Table 1, djE  is the efficiency score of 

jDMU  using the weights that 

( 1, 2, , )dDMU j n= L  has chosen. We can see that 

the efficiency scores of ddE  are calculated by the CCR 
model (1), so they can be seen as self-evaluation. Each of 
the columns of the cross efficiency matrix (CEM) in 
Table 1 is then averaged to get a mean cross efficiency 
measure for each DMU.  

TABLEⅠ 
A GENERALIZED CROSS EFFICIENCY MATRIX 

Rating jDMU Rated dDMU  

1 2 3 … n 

1 11E  12E  13E  … 1nE
3 21E  22E  23E  … 2nE
… … … … … … 
… … … … … … 

n 1nE  2nE  3nE  … nnE
Mean 1E  2E  3E  … nE

In Table 1, for each ( 1, 2,..., )jDMU j n= , the 

average of all ( 1, 2,..., )djE d n= , namely 

1

1 n

j dj
d

E E
n =

= ∑ , can be used as a new efficiency 

measure for jDMU , and will be referred to as the cross 

efficiency score for jDMU . 

III. DETERMINATION OF ULTIMATE CROSS 
EFFICIENCY USING PCA 

A. Principal Component Analysis  
Principal Component Analysis (PCA) is widely used in 

multivariate statistics such as factor analysis. The 
objective of PCA is to identify a new set of variables such 
that each new variable, called a principal component, is a 
linear combination of original variables and also the first 
new variable, accounts for the maximum variance in the 
sample data and so on, and The new variables (principal 
components) are uncorrelated. 

Assume there are n samples, each sample has p 
indicators (variables)  1 2, , , pX X XL , and the original 
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data matrix is 
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The linear combination (i.e., composite indicator 
vector) of p vectors 1,..., pX X  in data matrix X can 
be written as follows: 

1 11 1 21 2 1

2 12 1 22 2 2

1 1 2 2
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which can also abbreviated as 
.,...,1,...2211 piXaXaXaF ppiiii =+++=  

The above equations requires 
2 2 2
1 2 1, 1, ,i i pia a a i p+ + + = =L L , and other two 

constraints are as follows: 
(i) iF  and jF ( , , 1, , )i j i j p≠ = L are not 

relevant. 
(ii) 1F  is a linear combination of all 1, , pX XL  , 

which has the largest variance. 2F  is a linear 
combination that has largest variance of all of 

1, , pX XL  which are not related to 1F . Analogy, pF  
is a linear combination that has largest variance of all of 

1, , pX XL , which is not related to 1 2 1, , , pF F F −L . 

B. The Proposed Method 
In this section, we will introduce our proposed method, 

its main objective is to identify a few principal 
components that can cover most of information in CEM 
and to obtain their feature vectors and contribution rates. 
Then, the weight of each indicator can be obtained by 
multiplying the corresponding contribution rates with 
their own feature vectors. Finally, we can get the ultimate 
cross efficiency scores of each DMU using the weights 
obtained.  

Firstly, we transform the traditonal cross efficiency 
matrix into its transpose matrix, and denoted as follows: 
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Next, we introduce the seven steps for determining the 
weights of each indicator based on principal component 
analysis technique.  

 Step 1. Standardization 

We denote 

1
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 to get the standardized 

matrix [ ]1 2, ,..., nT T T T= . 
 Step 2. Establishing the correlation coefficient 

matrix between variables 
( )   ij n nR r ×= R T T′=  

 Step3. Solving the Eigen 
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 Step 4.  Writing down the principal 
component 

1 1 2 2       i 1, ,ni i i ni nF a T a T a T= + + + =L L              
If the cumulative contribution rate of the first k 

principal components reaches 85%, it shows that the k 
principal components contain the most of the indicators’ 
information for measuring. In this way, we choose the 
first k principal components to determine the indicators’ 
weights in Step 5.  

 Step 5.  Determination of PCA-based weights 
The weight of the ith indicator is 
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    (5)                
 Step 6.  Determination of efficiency value 

The efficiency value using the weights in Step 5 is 
shown as follows: 
                

1 1 2 2    i 1, ,ni i i n niE w E w E w E= + + + =L L    (6) 
 Step 7.  Determination of the ultimate cross 

efficiency 
In order to limit the efficiency iE  into the range of [0, 

1], we use the following formula 
*

1/ max{ ,..., }i i nE E E E=                    (7) 

IV. ILLUSTRATION 

In order to illustrate the method which has been 
proposed above, we consider a simple numerical example 
shown in Table 2. There are five DMUs, each DMU has 
three inputs 1X , 2X , 3X  and two outputs 1Y , 2Y . 
After solving the CCR model，we can obtain the cross 
efficiency matrix listed in Table 3. 

TABLEⅡ 
DATA OF THE EMPIRICAL EXAMPLE 

 
1X  2X  3X  1Y  2Y  

1DMU  7 7 7 4 4 

2DMU  5 9 7 7 7 

3DMU  4 6 5 5 7 

4DMU  5 9 8 6 2 

5DMU  6 8 5 3 6 

TABLEⅢ 
CROSS EFFICIENCY MATRIX 

 
1DMU

 
2DMU

 
3DMU

 
4DMU

 
5DMU

 

1DMU
 

0.6578 0.9333 1.0000 0.8 0.4500 

2DMU
 

0.4478 1.000 0.9965 0.7323 0.4643 

3DMU
 

0.3710 0.7489 1.0000 0.2092 0.6402 

4DMU
 

0.4587 1.0000 0.9313 0.8571 0.3817 

5DMU
 

0.4082 0.7143 1.000 0.1786 0.8571 

 
 
Then we transform the cross efficiency matrix of Table 

3 into its transpose matrix shown in Table 4. All data in 
Table 4 are during 0 and 1, so we should not standardize 
them. Then using the PCA technique, we can get the 
several principal components that can cover most of the 
information of the matrix. Total variance explained from 
SPSS is shown in Table 5. 

TABLEⅣ 
THE TRANSPOSE OF CROSS EFFICIENCY MATRIX 

 
1DMU

 
2DMU

 
3DMU

 
4DMU

 
5DMU

 

1DMU
 

0.6578 0.4478 0.371 0.4587 0.4082 

2DMU
 

0.9333 1.0000 0.7489 1.0000 0.7143 

3DMU
 

1.0000 0.9965 1.0000 0.9313 1.0000 

4DMU
 

0.8000 0.7323 0.2092 0.8571 0.1786 

5DMU
 

0.4500 0.4643 0.6402 0.3817 0.8571 

 

TABLEⅤ 
TOTAL VARIANCE EXPLAINED 

 
 
 
 
 
 
 
 
 
 
 

Com 
ponent 

Initial Eigen values 
Extraction Sums of Squared 

Loadings 

Total 
% of 

Variance Cumulative % Total
% of 

Variance Cumulative % 

1 3.342 66.848 66.848 3.342 66.848 66.848 

2 1.578 31.563 98.411 1.578 31.563 98.411 

3 0.078 1.57 99.981    

4 0.001 0.019 100    

5 -2.30E-016 -4.60E-015 100    
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From Table 5, we can see that the first two principal 
components cover the 98.411% information of the cross 
efficiency matrix, so we choose them. The first two 
principal components and their corresponding weights in 
every indicator are shown in Table 6. 

TABLE Ⅵ 
COMPONENT MATRIX 

 

Component Matrix 

1 2 

a 0.899 -0.379 

b 0.975 -0.192 

c 0.742 0.668 

d 0.877 -0.464 

e 0.511 0.859 
 

Then we get the weights of all indicators by formula (5) 
as follows 

1 5[ ,..., ] [0.2373,0.3133,0.4463,0.2074,0.4092]w w w= =
 

and the corresponding efficiency values of all DMUs by 
formula (6) are 

1 5[ ,..., ] [0.7259,1.3666,1.5989,0.7642,0.9672]E E E= =
 

Finally, by formula (7), we can obtain the ultimate 
cross efficiency as follows 

* *
1 5* [ ,..., ] [0.454,0.8547,1,0.478,0.6049]E E E= =

 

V. CONCLUSIONS 

Aiming at the flaws when the ultimate average cross 
efficiency scores are used to evaluate and to rank DMUs, 
we eliminate the assumption of average and utilize the 
PCA technique to determine the ultimate cross efficiency 
scores for each DMU. Finally, a numerical example is 
illustrated to prove the effectiveness of the proposed 
approach. We should point out that the numerical 
example in this paper is chosen only for illustrative 
purposes and for better understanding of the main 
principles of the proposed approach, so how the proposed 
approach can be used in the real-world application case is 
obvious an interesting research in the future. 
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