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Abstract—Multiple parallel transactions in new-type 
distributed software environment result in that the events 
produced by every transaction are randomly ranked. If the 
tokens of these events are incomplete or unavailable, it is 
difficult for software system to distinguish these events to 
actually belong to which transaction, corresponding 
transaction analysis and prediction can’t be executed. In 
this paper, the problem of stripping events with incomplete 
tokens is transferred into maximum-weight perfect 
matching of bigraph system. If the transition time among 
these events is independently and identically distributed, all 
possible states (events) are separated into multiple cutsets, 
every cutset composes a bigraph system. The maximum-
weight perfect matching is used to finish respective 
matching, and then the results of independent matching of 
multiple bigraph systems are spliced to gain the most 
possible footprint sequences produced by multiple 
transactions, which is convenient for subsequent analysis 
and prediction. For implementing quick stripping for 
transaction footprints, the paper presents rank-maximal 
matching algorithm to improve matching efficiency. 
Simulation experiment confirms that the method presented 
in this paper can effectively implement transaction footprint 
stripping with incomplete tokens. Compared to other 
methods, the rank-maximal matching algorithm has higher 
matching efficiency and lower time cost. 
 
Index Terms—incomplete token, transaction footprint, 
bigraph matching, maximum-likelihood rule, rank-maximal 
matching 

I.  INTRODUCTION 

In new-type distributed software, a solution to end-to-
end transaction monitoring and analyzing comprises of 
four pieces: (a) discovery of IT artifacts, such as servers 
and applications on which the transaction depends, (b) 
modeling of relationships among these IT artifacts in the 
context of the transaction, (c) monitoring of IT artifacts to 
draw conclusions regarding the status of a transaction, 
and (d) creditability analysis for transaction footprints [1]. 
Each of these pieces will pose different challenges 
depending on the degree of information and 
instrumentation available in the system. In general 
condition, we may use industry standards such as the 
open-group ARM instrumentation [2] to generate 

transaction correlators or tokens that may be used to track 
the flow of transactions. In the process of software 
interaction, the event tokens that some software entities 
produce are incomplete or unavailable. Unfortunately, 
only a small number of footprints may contain tokens, an 
instance is illustrated in Fig.1. Other than the footprints at 
state 0S , none of the other footprints contain tokens. In 
such cases, it may not be possible to identify the unique 
source of each footprint with certainty. Except for simple 
cases such as a strictly ordered process scheduling like 
first-in-first-out (FIFO) or last-in-first-out (LIFO), the 
system may splice these events to compose a complete 
footprint sequence. In distributed multi-thread 
environment, multiple parallel transactions result in that 
the events produced by every of them are randomly 
ranked. If these event tokens are incomplete or 
unavailable, they can’t be distinguished to belong to 
which transaction, which results in that the system can’t 
analyze and predict transaction. Thus, an efficient method 
should be found to strip randomly ranked events, namely, 
mark these events, and then splice them to compose 
complete transaction footprints. For simple (without 
repeated sub-footprints) transaction footprints with 
incomplete tokens, it is a key that finds a kind of efficient 
and accurate stripping technology. 

Figure 1.   The transition model instance with incomplete tokens. 
The model has Markovian when the time taken for a 

transaction to execute an application (represented as a 
state in the model) is only dependent on its outcome 
(represented as another state) and not on the past history 
of the transaction, the paper implements efficient and 
accurate stripping in special condition. The main idea is 
as follow: (a) construct corresponding relationships 
between external behavior and internal change of 
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transaction footprints when monitoring them, (b) for 
multiple transaction footprint samples, analyze their 
correlation and construct transfer matrix, (c) by tracking a 
set of transaction instances, find the most likely sequence 
of states visited by each of these transaction instances and 
estimate the times spent in these states by every instance. 
We take a probabilistic approach by incorporating the 
available (statistical) information about transition time 
between different states. In our approach, optimal 
tracking refers to using the maximum-likelihood rule 
(MLR) that maximizes the probability that all the 
footprints are correctly matched to the transactions that 
generated them. For a two-state system, under 
Independent and Identically Distributed (I.I.D.) transition 
time, optimal MLR is reduced to a maximum-weight 
perfect matching of bipartite graph (or bigraph). 

For maximum-weight perfect matching of bigraph, 
many researchers have studied according algorithm. The 
fastest algorithms have running time ( ( log ))O n m n n+ [3] 
and ( log )O nm nC [4] where C is the maximum weight 
in an instance. The first is strongly- while the second 
weakly-polynomial. Simply applying the aforementioned 
algorithms to the rank-maximal matching problem does 
not result in efficient effects, either in time or in space 
requirements. The problem is that the edge weights are as 
large as rn , which is non-polynomial in the input size. 
Both algorithms assume that arithmetic operations 
between numbers which are in ( )O C  can be performed in 
constant time. This is not true in this case, where 
arithmetic on numbers in ( )rO n  takes time ( )rΩ . Hence, 
the running times are ( ( log ))O rn m n n+  and 

2( log )O r nm n  respectively, both using ( )O rn  space. It 
is known, however, that the scaling algorithm for the 
weighted matching problem can be implemented such 
that all algorithms are performed on numbers 
with (log )O n bits, independent of the edge weights. In this 
case the running time improves to ( log )O r nm n . In [5] 
the authors present a combinatorial algorithm which 
solves the rank-maximal matching problem in 

(min( , ) )O n r r n m+  time using linear space. The 
algorithm identifies edges which cannot be part of a rank-
maximal matching and deletes them. This approach, 
however, does not seem to generalize to the maximum 
cardinality rank-maximal or the fair matching problem. In 
an attempt to close the gap between the rank-maximal 
matching and its variants, we present an algorithm which 
solves the rank-maximal matching problem in the same 
running time and space as [6]. The main difference is that 
our algorithm is based on weight matching reduction. We 
believe that our algorithm is simpler and more intuitive 

II.TOKENS MODELING FOR TRANSACTION FOOTPRINTS 

A. The Concept and Definition 
Let ( )Xf x  be the probability density function (PDF) of 

a continuous random variable X and ( ) : [ ]XF x P X x= >  
its complementary cumulative distribution function 
(CCDF). For a matrix A, let ( , )A i j denote the element in 

its thi row and thj column. Let π denote a permutation 
vector over {1,..., }n , log x , the natural logarithm of x 
and, | |A , the cardinality of a set A. For sets A and B, 
let \ { , , }A B i i A i B= ∈ ∉ . 

For an undirected graph ( , )G V E , let ( , )i j denote the 
edge between i and j and deg( )i be the degree of node i. 
For a bigraph 0 1,G V V E=< ∪ > , the edges are 
represented by a 0-1 biadjacency matrix [ ( , )]A A i j= , 
here ( , ) 1A i j =  indicates an edge between 0 ( )V i and 1( )V i . 
A matching M E⊂ is a set of pairwise non-adjacent 
edges, i.e., no two edges share a common vertex. A 
maximum cardinality matching is a matching that 
contains the largest possible number of edges. A perfect 
matching is a matching where there is no unmatched 
vertex and a maximum-weight perfect matching 
maximizes the sum of the matched edge weights. For a 
directed graph (digraph), when there is an edge from i to j, 
j is an immediate successor of i, and i an immediate 
predecessor of j. The set of all immediate successors of i 
is denoted by ( )N i , and the set of all immediate 
predecessors by ( )P j . 

We now define a semi-Markov process (SMP). 
Let ,   0,...,i sS i N= denote the ith state of the process and 
let ,i jT  denote the (random) time to transition from state 

iS  to state jS . A process is said to be semi-Markov if the 
sequence of states visited is a Markov chain, with 
transition probability matrix [ ( , )]P P i j= , and each 
transition time ,i jT  is a random variable that depends only 
on the states iS  and jS  involved in the transition. We 
assume that each transaction progresses through the 
system according to a general SMP with each transition 
time ,i jT  drawn from a known PDF

,i jTf having a 
continuous interval. We make a simplifying assumption 
that the state transition digraph is directed acyclic graph 
(DAG). This ensures that all transactions are processed in 
one direction, and that no transaction can leave more than 
one footprint at a state. Furthermore, we assume that 
transition time is independent of system load. 

B. Maximum-Likelihood Rule 
A footprint is defined as a time-tamped entry created in 

the application log when a transaction enters a state in the 
model. In addition to the timestamp, a footprint may 
optionally contain a unique identifier or a token that ties 
it to the transaction instance. By convention, the 
footprints at the (unique) start state 0S are each assigned a 
token. We assume that no footprint is missing from the 
log records. We consider the general case where at the 
time of observation, transaction instances are still 
residing at different states of the system, and hence, all 
the footprints that these transactions will eventually 
generate are not yet available. Tracking transactions in 
such cases is affected by the assumption that the records 
appear in logs as soon as they are written by the 
applications, i.e., the writing is not buffered. 

Any valid match can be represented by the set of 
permutation vectors kπ , for each state kS in the model. 
Let kY  be the vector of the timestamps of the footprints at 
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state kS . When the monitoring engine receives the 
footprints in the correct temporal order, kY  is in 
ascending order with the most recent footprint being the 
last entry. Let k

kY π  be the permutation of kY , according to 
the permutation vector kπ . By convention, we assign 
tokens to footprints 0Y at the start state 0S , and hence, the 
permutation vector at the start states 0S is set to identity 
( 0 Iπ = ). In other words, we find the correspondence of 
all other footprints in the system with respect to the 
footprints at 0S . When the joint PDF of the transaction 
transition times Tf  is known, we can quantify the 
tracking performance as the probability that all the 
transaction instances are matched correctly to their 
footprints and this is maximized by MLR. Hence, 
for 1sN +  number of states, the optimal MLR of 
transactions reduces to finding a set of sN number of 
permutation vectors,   

1

1

1 1 0
,...,

ˆ ˆ[ ,  ...,  ] : ( ,  ...,  | )arg max Ns

s s

Ns

ML ML
N NP Y Y Yππ

π π

π π =    (1)         

In general, solving (1) is NP-hard. The rest of the 
paper primarily deals with the special cases, starting with 
the two state system, where (1) can be solved efficiently. 

III. TWO-STATE SYSTEM 

We consider a two-state model, which will serve as a 
foundation for more elaborate models. For this model, we 
will show how optimal MLR reduces to a perfect 
matching of bigraph under I.I.D. transition time. 

A. Preliminaries 
A two-state model is showed in Fig.2, we will calculate 

permutation vectorπ given 0Y and 1Y . Here, the footprints 
0Y  and 1Y at states 0S and 1S are related through an 

unknown permutation vectorπ , 
0 1 1( ) ( ( )) ( ),   1 | |Y j Y j T j j Yπ= − ≤ ≤             (2) 

where ( )T j  is the transition time of 0 ( )Y j , 
the thj footprint at 0S , 1( ( ))Y jπ  is the thj  element of the 
permuted 1Y , according to π . The footprints 0 ( )Y j  and 

1( ( ))Y jπ  are generated by the same transaction. We have 
0 1| | | |Y Y≥ , since some transactions may still be resident 

at 0S . The number of instances in state 0S  at the time of 
observation is 

0 0 1( ) | | | |Cnt S Y Y= −                       (3) 

+ T0Y 1π − 1Y

1f o o t p r i n t  a t  S

1Y π

tran sitio n
0f o o tp r in t  a t  S  

Figure 2.  A two-state transactions model 

Given the biadjacency matrix A, the number of unique 
valid matches in a batch, denoted by 0 1(| |,| |, )BN Y Y A , 
provides an idea of the precision of tracking individual 
instances. For a complete batch with 0 1| | | |Y Y n= = , 

( , , )BN n n A  is given by the permanent of the biadjacency 
matrix, 

1

( , , ) ( ) : ( , ( ))
n

B
i

N n n A perm A A i i
π

π
=

= = ∑∏        (4) 

where the sum is over all the permutation vectors π  over 
{1,..., }n . Hence, the timestamps in the footprints reduce 
the number of valid matches. Since there is at least one 
perfect match, corresponding to the true transition pattern, 
we have 1 ( ) !perm A n≤ ≤ . The upper bound is achieved 
for a complete bigraph, i.e., when all the instance 
departures from 0S  occur after all the arrivals in the batch. 

For a partial batch, some of the footprints at 1S are not 
yet generated, and hence, a perfect bigraph matching is 
not feasible. For the case when the footprints may not 
arrive in the correct temporal order, any maximum 
cardinality bipartite matching is a valid match. However, 
when the footprints arrive in the correct order, we have 
additional information about the transactions which are 
still resident at 0S  and this changes the structure of the 
bigraph. Given that 1 0| | | |Y k Y n= < = , there are n-k 
number of instances that have not yet made the transition 
and their departures occur after time 1( )Y k , the timestamp 
of the most recent footprint at 1S . This information is 
incorporated by adding n-k number of identical copies of 
a dummy node, denoted by 1( )V δ , to the bipartition V1. 
Edges are added between 1( )V δ and any 
node 0 ( )V i if 1 0( ) ( )Y k Y k− < Δ , i.e., the deadline has not 
yet passed. Since all the dummy nodes are identical, some 
of the perfect matching in this bigraph are now equivalent, 
and the number of unique matching in a partial batch is  

( )( , , )
( )!B
perm AN n k A

n k
=

−
                  (5) 

since the permutations among the copies of the added 
node 1( )V δ are equivalent. When n=k, it reduces to (4). It 
is NP-hard to compute perm(A) in (5). Hence, we resort 
to approximations and bounds [7]. 

B. Optimal Tracking  
When the joint PDF Tf of the transaction transition 

times [ ( )]T T j=  is known in a two-state system, the ML 
match in (1) reduces to 0S    

0 1 1 0

1 0

ˆ ( , ; ) : ( | )

                      [ ]

arg max

arg max

ML

T

Y Y f P Y Y

f Y Y

π

π

π

π

π =

= −
         (6) 

The MLR for a general joint PDF Tf of the transition 
times [ ( )]T T j= requires search over all the permutation 
vectorsπ , which could be exponential in the batch size. 
We now make a simplifying assumption that all the 
instance transition times T(1), T(2), . . . are I.I.D. with 
PDF Tf . For a 0 1( , )Y Y  batch, the MLR now reduces to 

0 1 1 0
1 ( )

1 0
( )

ˆ ( , ; ) [ ( ( ) ( )]

                       [ ( ( ) ( )] 

arg maxML
T

i k

T
k i n

Y Y f f Y i Y i

F Y k Y i
ππ

π

π π

π
≤ ≤

< ≤

= −

−

∏

∏
(7) 

where ( ) [ ] F t P T t= > is the CCDF. For the 
bigraph 0 1,G V V E=< ∪ > , defined in the previous section 
with the added node 1( )V δ (henceforth, known as the 
CCDF node), we now assign a weight ( , )W i j , for each 
edge (i, j), 
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1 0

1 0

log [ ( ( ) ( )],           (8a)
( , ) :

log [ ( ( ) ( )],         (8b)
T

T

f Y i Y i j k
W i j

F Y k Y i j

π

π δ

− − ≤⎧⎪= ⎨
− − =⎪⎩

 

  The CCDF node is added to the bigraph on the 
assumption that the footprints arrive in the correct order. 
When instead, the footprints do not arrive in order, the 
CCDF node is not added and the edge weights are solely 
given by (8a). 

*

1
( , , ) : arg max ( , ( ))

n

i

n k W W i i
π

π π
=

= ∑          (9) 

An example of maximum weight matching is shown in 
Fig.3. MLR is simplified to weight matching, subfigure(a) 
is a complete batch and subfigure(b) is a partial batch. 
Maximum weight perfect matching can be performed 
in ( ( log ))O n m n n+ for a n-batch and m number of edges 
via Hungarian algorithm [8]. Hence, we see that the 
creation of batches leads to efficient implementation, 

since n and m are substantially reduced. In the theorem 
below, we provide the MLR MLπ and the matching 
probability MLP .  

Theorem 1: I.I.D. transitions. In a two-state system, 
for I.I.D. transaction transition times according to a given 
PDF Tf , and the footprints arriving in the correct order, 
the MLR is given by the minimum-weight perfect 
matching in (10) and the probability that all footprints in 
an (n,k,W) batch are matched correctly under the MLR is 

*( )!exp( )( , , )
[exp( )]

ML n k WP n k W
perm W
−

=           (10) 

where exp( ) exp( ( , ))W W i j= , W is given by (9), and *W  
is matching value of maximum weight. For the case when 
the footprints do not arrive in the correct order, the MLR 
is a maximum-weight maximum cardinality, based solely 
on the edge weights in (8a). 

0(1)Y 0(3)Y0(2)Y

0(1)Y 0(3)Y0(2)Y

(a)complete batch matching

1 0( , ) [ ( ) ( )]TW i j f Y j Y i= −

Trans1 Trans2

W(1,1)

W(2,1)

0Y

1Y
footprint node CCD node

1 0(1, ) [ (2) (1)]TW F Y Yδ = −

1 0(2, ) [ (2) (2)]TW F Y Yδ = −

(b)partial batch matching including CCDF events
 

Figure 3.  Simplifying MLR to weight matching 

Above maximum-weight matching has exponential 
time complexity. When the values of n and m is very 
large, time taken by maximum-weight matching is very 
long, it is not suitable for footprint analysis with 
incomplete tokens that has very high requirement for time 
effectiveness. In section 4, an optimal maximum-weight 
matching algorithm is presented, this algorithm has 
effective (min( , ) )O n r r n m+ time complexity in the case 
of linear space complexity. Assuming that there are 
10000 nodes and 10000 edges in a bigraph, the partition 
of the edge set is 200. Adopting the method of literature 
[8], the consumption time of maximum weight matching 
is about 91.02*10 , however, according time is about 

81.02*10 with the method presented in the paper, the 
latter is only 1/10 of the former. 

IV.  THE IMPROVED ALGORITHM FOR RANK-MAXIMAL 
MATCHING 

A. Preliminaries 
Let 0V ≥a � be a potential function defined on the 

vertices of G. For an edge ( , )e v w E= ∈ denotes its 
weight by ( )c e and defines its reduced weight with respect 
toπ as ( ) ( ) ( ) ( )c e v w c eπ π= + − . Such an edge is tight if 

( ) 0c e = . We say thatπ is a feasible potential function 
for c if ( ) 0c e ≥ or all edges e E∈ . We say that a feasible 
potential functionπ is optimal if there is a matching M in 
G such that ( ) 0c e =  for each  e E∈ and ( ) 0vπ =  for all 
v V∈  which are free in M. 

The algorithm that we present uses a decomposition 
theorem by Kao et al. [9]. For an integer [1, ]h C∈ , where 

C is the maximum-weight of an edge, divide G into two 
lighter subgraphs hG and '

hG as follows: (a) hG is formed 
by edges ( , )u v G∈ such that ( ) [ 1, ]c e C h C∈ − + . An 
edge he G∈ has weight ( ) ( ) ( )hc e c e C h= − − . b) let hπ be 
an optimal potential function (OPF) for hG . An 
edge ( , )e v w G= ∈ belongs to '

hG  if 
( ) ( ) ( ) 0h hu v c eπ π+ − < . In that case edge e has weight 
( ) ( ) ( ) ( )h h hc e c e u vπ π= − − . 
Theorem 2. Consider G, hG and '

hG as defined above 
and let ( )mwm G  denote the weight of a maximum 
weight matching in G. Then 

'( ) ( ) ( )h hmwm G mwm G mwm G= + . 
If hπ  and '

hπ  are OPFs for hG  and '
hG respectively, 

then '
h hπ π+  is an OPF for G [9]. 

B. The Decomposition of Edge 
Consider an instance of the rank-maximal matching 

problem and the reduced instance of the weight matching 
problem. The edges of G have weights of the form 

2 11, , ,..., rn n n − . Using theorem 2, we decompose the 
problem and solve it recursively. The base case of the 
recursion is a maximum cardinality matching 
computation. 

Choose 1 1rh n −= − , then hG contains the edges of G 
with weight in the range 1[2, ]rn − . Each edge in hG  has 
weight ( ) ( ) 1hc e c e= − . Thus, graph hG  contains all 
edges of G with rank at most r-1 and these edges have 
weights 2 11, 1,..., 1rn n n −− − − . Assuming that hπ is an 
OPF for hG , '

hG  contains only the edges of G with 
negative reduced weight hπ . Such edges fall into two 
categories: (a) Edges ( , )e v w G= ∈  where ( ) 1c e =  and 

( ) ( ) 0h hu wπ π+ = . Such edges have cost 1 in '
hG . (b) 
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Edges ( , )e v w G= ∈  where 
( ) 1c e > and ( ) ( ) ( ) 0h hu w c eπ π+ − < . Due to the 

feasibility of hπ  in hG  , ( ) ( ) ( ) 0h h hu w c eπ π+ − ≥ , where 
( ) ( ) 1hc e c e= − . We conclude that 
( ) ( ) ( ) 1h hu w c eπ π+ − ≥ −  and therefore all such edges 

also have cost 1 in '
hG . These edges are exactly the ones 

in hG which are tight hπ . 
The decomposition results in two subproblems (an 

example in Fig. 4). The subproblem in '
hG is a maximum 

cardinality matching, since all edges have weight 1. On 
the other hand graph hG  has edges with weights of the 
form 2 11, 1,..., 1rn n n −− − − . We will show that an 
optimally potential function for these weights is also 
optimal for the weights 2 21, , ,..., rn n n − . Thus, the 
subproblem in hG is a rank-maximal matching 
computation with r-1 ranks, which is recursively solved 
in time ( 1)T r − . 

0 n
1

n

n+1

0 nn

0 n1

2 1n n− −
2n

n

1

( , )G V E

0 n-1n-1

n

0

0 0

2 1n n− −
2 1n −

( , )h hG V E

n-1

n-1 n-1

0 1

0

0

10

1

1

1

1

1

1

' '( , )h hG V E  
Figure 4.  The edge decomposition example of Bigraph.  

The cost of the algorithm should be considered, since 
the potential function hπ can take values up to ( )rO n . In 
this respect, we consider the following representation for 
an OPF π : (a) a set of nodes 0V containing all nodes 
v V∈  s.t ( ) 0vπ = . (b) a set of edges 0E containing all 
edges ( , )e v w E= ∈  which are tight π , i.e., 

( ) ( ) ( ) ( ) 0c e u w c eπ π= + − = . 
The above two sets can guide the construction of a 

matching M in ( )O nm  time such that any matched edge 
is tight and every free vertex has zero potential. The 
above implies that such a matching has the same cost as 
our OPF and, therefore, is itself optimal. In the algorithm 
we will manipulate these two sets and maintain the 
invariant that all such tuples will correspond to the 
representation of some OPF. 

C. The Problem of Ranks 
Let G be a graph with edge weights 2 21, , ,..., rn n n −  and 

let 0V  and 0E  be two sets representing an OPF. In this 
section we show that the same sets are a solution for the 
edge weights 2 11, 1,..., 1rn n n −− − − . More precisely, 
there exists an OPF such that these two sets are its 
representation. 

Assume that we have solved the subproblem with edge 
costs 2 21, , ,..., rn n n −  in time ( 1)T r − and we have an 
OPFπ represented by 0V  and 0E . In order to obtain an 
OPF for the edge costs 2 11, 1,..., 1rn n n −− − − , the first 
step is to obtain an OPF for the edge costs 2 1, ,..., rn n n − . 
The following theorem illustrates it. 

Theorem 3. Consider a graph G with edge costs 
2 21, , ,..., rn n n − . Let M be a maximum-weight matching of 

G and 0:Vπ ≥a �  be a potential function proving its 
optimality. Then the potential function nπ  proves the 
optimality of M for G with edge costs 2 1, ,..., rn n n − . 

Let  'π  be the potential function obtained by 
multiplyingπ with n in theorem 3. From the feasibility 
of π , the definition of 'π and the integrality of the 
potential functions, we also get the following theorem. 

Theorem 4.  For any node  v V∈ either ' ( ) 0vπ =  or 
' ( )v nπ ≥ . Moreover, for any edge e E∈  either 

' '( ) ( ) ( ) ( ) 0c e u w c eπ π= + − =  or ( )c e n≥ . 
The same sets 0V  and 0E  are a representation of the 

new OPF 'π  for the new weights. The next step is the 
construction of a potential function ''π which will be 
optimal for the weight 2 11, 1,..., 1rn n n −− − − . The OPF 
algorithm [10] constructs such a potential function. 

Definition 1: Equality Subgraph. For a graph ( , )G V E  
with edge costs c: 0E >a �  and a potential function 
π : 0V ≥a � , let the equality subgraph ( , )G V E= = be the 
graph with edge set 

{ ( , ) :  ( ) ( ) ( ) ( ) 0}E e u v E c e u v c eπ π= = = ∈ = + − = . 

D. The Problem of Combination 
Now, We are left with the following two subproblems: 

(a) graph '
hG  and an OPF '

hπ  which was obtained by a 
maximum cardinality matching computation, and (b) 
graph hG  and sets 0V , 0E  representing an OPF hπ . 

Combining the two solutions requires to add up the two 
potential functions, hπ  and '

hπ . The addition will be 
performed implicitly by changing 0V  and 0E  based on 
the potential function '

hπ . Updating 0V  requires 
checking for each v V∈  whether '( ) ( ) 0h hv vπ π= = which 
can be done by checking whether ' ( ) 0h vπ =  and 0v V∈ . 
The process of updating 0E  is as follow: 

(a) For an edge ( , )e v u=  with ( ) 1c e =  in G, i.e. re E∈ , 
we have to check whether 

' '( ) ( ) ( ) ( ) 1h h h hv v u uπ π π π+ + + = . Recall from Section 
4.3 that if a vertex v V∈  has ( ) 0h vπ >  then 

( ) 2h v nπ > −  and therefore it is enough to check: a) that 
' '( ) ( ) 1h hv uπ π+ =  (an operation which takes constant 

time since '
hπ is polynomially bounded) and b) that 

( ) ( ) 0h hv uπ π= =  which can be done by checking 
whether 0{ , }v u V∈ . 

(b) For the rest of the edges, we have to check whether 
' '( ) ( ) ( ) ( ) ( )h h h hv v u u c eπ π π π+ + + = . By the feasibility 

of hπ we know that ( ) ( ) ( ) 1h hv u c eπ π+ ≥ − . Moreover, 
for an edge, ( ) ( ) ( ) 1h hv u c eπ π+ ≠ − , we know that 

( ) 1 ( ) 1 ( ( ) 1) 1h hv u c e nπ π− + − − − ≥ −  (in the worst case 
where both endpoints got their potential decreased by 1, 
when transforming to a new potential function for edge 
weights which are reduced by 1), and hence any such 
edge cannot be tight. 

We conclude that if an edge has 
( ) ( ) ( ) 1h hv u c eπ π+ = −  and therefore belongs already to 

0E , then it will remain tight if ' '( ) ( ) 1h hv uπ π+ = . The 
final output of the algorithm is sets 0V  and 0E  which 
represent an OPF. 

From these sets a rank-maximal matching can be 
constructed by performing one maximum cardinality 
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matching computation. This is done in the following way. 
Let 0( , )G V E=  be the final equality subgraph. Create a 
new graph Gαβ , containing two copies of G= , ( , )G V Eα α  
and ( , )G V Eβ β . For a vertex v V∈ , let vα  and vβ  be 
the two copies in the new graph. Then, if  0v V∈  include 
the edge ( , )v vα β . Finally find a maximum cardinality 
matching M in Gαβ . The matching M Eα∩  is then a 
maximum weight matching in the original graph. 

Algorithm 1. The rank-maximal matching algorithm 
Input: graph G with edge partition 1 2, ,..., rE E E  
Output: sets 0V , 0E  
Begin 
If  r = 1 

Compute maximum matching M of G and optimalπ ; 
based on π , Compute 0V  and 0E and return them; 

Else 
Solve recursively instance for ( , \ )rG V E E and 1 2 1, ,..., rE E E − ; 
Let 0V and 0E  be the solution 
Let 0{ ( , ) : ( , ) }rE e v u E v u V+ = = ∈ ∈  
Form unweighted ' 0( , )hG V E E+ ∪  and find OPF '

hπ  in '
hG ; 

Set 0 0 ' '{ ( , ) : ( ) ( ) 1}h hE e v u E E v uπ π+= = ∈ ∪ + = ; 
Set 0 0 '{ : ( ) 0}hV v V vπ= ∈ =  
Return 0V and 0E ; 

Endif 
End. 

V.  SEMI-MARKOV PROCESS MODEL 

The two-state model studied in the previous section 
represents a high-level model where the only observable 
points are the system entry and exit points. When more 
system points are observable, e.g., the entry and exit 
points of sub-processes such as flight booking, train 
booking, hotel booking, online pay, ticket delievery with 
fedEx etc., the two-state model can be expanded to a 
multi-state model. Assuming that the transition times of 
each transaction form a multi-state semi-Markov process 
(SMP) and the transitions of different transactions are 
independent of one another, we consider ML matching of 
all the available footprints to the transactions. 

We find the most-likely match between all the 
available footprints and recall that it is given by the ML-
sequence of permutation vectors in (1), 

1

1

1 1 0
,...,

ˆ ˆ[ ,..., ] : ( ,..., | )arg max Ns

s s

Ns

ML ML
N NP Y Y Yππ

π π

π π =    (11) 

By convention, 0 Iπ = . A brute-force search for the 
ML-sequence of permutation vectors is over all possible 
footprints paths from the start state 0S to all the 
terminating states. It is unclear if this problem has a 
reduction to bigraph matching, as in the two-state system. 
However, the search can be simplified through semi-
Markov property which states that the transition time 
only depends on current state and next state, and hence, 

1
1 0

1 ( )

( ,..., | ) ( | )
s

N js m

s

N

N m j
m j P m

P Y Y Y P Y Yπ πππ

= ∈

=∏ U   (12) 

Each term in the product has a structure similar to the 
two-state system. However, the set of states occurring in 
any two terms of (12) may not be disjoint, since the sets 
of immediate predecessors ( )P k and ( )P l of any two 
states kS and lS may not be disjoint. This implies that in 
general, we cannot independently match the footprints in 
each term in (12). Hence, we need to and construct high-
level states, comprising of many model states that 
“localize” the movement of footprints, thereby enabling 
us to perform matching independently within these high-
level states. To this end, define a partition of 
states 0( )m mB ≥ such that states in any two sets in the 
partition do not share a common immediate predecessor, 

( ) ( ) ,   ,  ,  , 0k l k m l jP S P S S B S B m j∩ =∅ ∀ ∈ ∈ ≠     (13) 
let 0 0B S= , the start state. Since we have assumed that 
the state-transition digraph is acyclic (DAG), the partition 
in (13) is well defined. Therefore, we can rewrite (12) as 

1
1 0

0 ( )

( ,..., | ) ( | )Ns k l

s

k m l m

N k l
m S B S P B

P Y Y Y P Y Yπ π ππ

> ∈ ∈

=∏ U U    (14) 

where each term in the product corresponds to a bigraph 
system ( ( ), )m mP B B , with the start state ( )mP B and the 
terminating state mB . These bigraph systems are disjoint; 
a state cannot occur in two systems in the same role, 
since by definition, mB are all disjoint sets (partition), and 
in (14), we also require the sets ( )mP B to be disjoint. 
Hence, we can conduct decentralizing matching in these 
bigraph systems. This also implies that knowledge of the 
footprints and the model parameters (such as the 
transition-time PDF) is only required “locally” within 
each bigraph system. After undertaking matching in all 
the bigraph systems, the most likely sequence of 
footprints produced by each transaction are constructed 
by splicing together the results of matching in bigraph 
systems to obtain the set of permutation vectors ML

iπ in (1). 
In the Theorem 5 below, some properties of the partition 

mB  are described. 
Theorem 5. Properties of partition 0( )m mB ≥ . For a 

semi-Markov process with acyclic transition digraph and 
a partition of states 0( )m mB ≥ , the following properties 
hold for any finite number of recursions iff (13) is true: 

( ...( ( ( )))) ,   0m mN P N P B B m⊂ >              (15) 
...( ( ( ))) ( ),   0m mP N P B P B m⊂ >              (16) 

The paper adopts bigraph states partition algorithm 
presented in literature [9]. 

We now specify the nodes and the edge weights for 
each bigraph system ( ( ), )m mP B B . Along the formula (3), 
we define ( ( ))mCnt P B as the number of instances residing 
at ( )mP B at the time of observation, given by 

( )( ( )) | | | |
m mm P B BCnt P B Y Y= −                 (17) 

A batch of footprints is defined between the successive 
zero-crossings of ( ( ))mCnt P B . Along the formula  (8), 
given the transition probability matrix P of the SMP, for 
any states k mS B∈ , ( )l mS P B∈ and I.I.D. transition times 
drawn from PDF

,k lTf , the edge weight between 
the thi footprint at kS and the thj footprint at lS of a batch is 
given by 
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,
( , ; , ) : ( ( ) ( )),  

( ),  1 , | |,  1 | |
k lk l T l k

k l k l

W i j S S f Y j Y i

S P S i j Y j Y

= −

∀ ∈ ≤ ≤ ≤ ≤
    (18) 

For a partial batch, we have ( ( )) 0mCnt P B > and some 
instances are still residing at ( )mP B . When the footprints 
arrive in the correct temporal order, we define the CCDF 
events for each state ( )k mS P B∈ , whenever there are 
more footprints at kS than the total at all its immediate 
successors, i.e.,

( )
( ) | | | | 0k k ll N k

Cnt S Y Y
∈

= − >∑ . The 
probability that transaction corresponding to 
the thi footprint at kS is still resident at kS is given by 

,
( )

( , ) : [ (| |) ( )]
k lccdf k T l l k

l N k
P i S F Y Y Y i

∈

= −∑         (19) 

where (| |)l lY Y  is the most recent footprint at state lS . In 
this case, the CCDF edge-weights corresponding to 
state kS are 

( , ; ) : ( , ),   1 | |k k ccdf k kW i S P i S i Yδ = ∀ ≤ ≤        (20) 
( )kCnt S number of identical copies of the CCDF 

node kδ are added to the bigraph. 
Theorem 6: MLR in SMP. Given a SMP with an 

acyclic state transition digraph and I.I.D. transitions, the 
MLR is given by the decentralized minimum-weight 
matching in the bigraph systems ( ( ), )m mP B B , where 
partition ( )mB is given by the algorithm in literature [9] 
and the edge weights for each bipartite system are given 
by (18) and (20). 

The instance of MLR matching between transaction 
footprints and according instances producing them is 

showed in Fig.5. The probability that all the transactions 
are correctly tracked correctly is the product of the ML-
probabilities of all the bigraph systems. 

The algorithm in literature [9] is used to get 0 { }B A= , 
1 { , , }B B C D= , 2 { }B E=  and 3 { , , }B F G H=  partition, 

and ({A, C, D}, {B, C, D}), ({B}, {E}) and ({E, G, H}, 
{F, G, H}) compose three bigraph system. 

Start Hotel
Booking

Flight
Booking

Ticket Delievery 
With FedEx

Online
Pay

Train
Booking

A B

C

D
E

Tourism Service

F

End

Ticket Delievery 
With UPS

G

H
 

Figure 5.  The MLR matching example of transaction footprints and 
instances that produce them. 

VI  THE SIMULATION EXPERIMENT 

A. The Accuracy Test of Footprint Stripping 
In order to validate the accuracy of footprint stripping 

method presented in this paper, practically monitored 
footprints with tokens are used as test data, we will 
compare computing results of footprints stripping with 
practical situation. Here, we only consider state transition 
time and ignore residence time in each states. Being 
convenient for illustration, we label every state(Fig. 1). 
The timestamp that footprints are in each state is showed 
in table 1. 

TABLE 1.   
THE FOOTPRINTS AND CORRESPONDENCE TIMESTAMPS IN FIG.5 

 
 
 

 

 
 

All possible footprints and according weight sum about 
bigraph ({A, C, D}, {B, C, D}) are showed in table 2. In 
table 2, there are 18 kinds of footprint sequences in this 
bigraph, only 4 of them have weight sum, the reason is 
that the difference of timestamp of other footprint 
sequence is negative, such case can’t occur in actual 
environment. The second footprint has the maximum-
weight sum in 4 kinds of footprint sequences, which is in 
correspondence with actual sequence in Fig 5. All 
possible footprints and according weight sum about 
bigraph ({B}, {E}) are showed in table 3. In table 3, there 
are 6 kinds of footprint sequences in this bigraph, only 2 
of them have weight sum, and the second footprint has 
the maximum-weight sum, which is in correspondence 
with actual sequence in Fig 5. Above test results shows 
that our method may effectively strip transaction 
footprints with incomplete tokens. 

For the accuracy test of footprints stripping(including 
partial batch), the stripping results is also in 
correspondence with actual sequence in Fig.5. Table 4 
shows all possible footprints and according weight sum 
about bigraph ({A, C, D}, {B, C, D}). Here, footprint 6, 9, 
12 and 16 have not been produced still, their weights are 
calculated with formula (8b). The second footprint has 

the maximum-weight sum in 4 kinds of footprint 
sequences, which is in correspondence with actual 
sequence in Fig 5. 

At the aspect of pressure test of algorithm accuracy, we 
select 500 sets of actual data, and according testing 
results is illustrated in Fig. 6, the accuracy of stripping 
algorithm reaches 89% and misdiagnosis rate is about 
11%. Compared to traditional methods, the improved 
algorithm has higher matching efficiency. 

TABLE 2.   
ALL POSSIBLE FOOTPRINTS AND WEIGHT SUM IN BIGRAPH 1. 

TABLE 3.   
ALL POSSIBLE FOOTPRINTS AND WEIGHT SUM IN BIGRAPH 2. 

 

No 1 2 3 4 5 6 7 8 
timestamp 0.000 0.105 0.396 0.210 3.485 1.192 0.899 5.116 

No 9 10 11 12 13 14 15 16 
timestamp 2.095 5.898 1.608 4.096 2.066 6.586 3.215 6.118 

No footprint sequence weight sum 
1 1－4－6, 2－7, 3－5－8 10.8677 
2 1－4－7, 2－6, 3－5－8 11.5921 
3 2－4－6, 1－7, 3－5－8 10.7532 
4 2－4－6, 3－7, 1－5－8 11.4001 
5 …… —— 

No footprint sequence weight sum 
1 6—9, 7—11, 8—10 3.9788 
2 6—11, 7—9, 8—10 3.8297 
3 …… —— 

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2147

© 2012 ACADEMY PUBLISHER



     

 

TABLE 4.   
ALL POSSIBLE FOOTPRINTS AND WEIGHT SUM IN BIGRAPH 1   

(INCLUDING PARTIAL BATCH). 

TABLE 5.  
ALL POSSIBLE FOOTPRINTS AND WEIGHT SUM IN BIGRAPH 2   

(INCLUDING PARTIAL BATCH). 

 

 
Figure 6.  The misdiagnosis rate of transaction footprints stripping 

B. The Comprasion Test of Algorithm Performance 
Assuming that the emergence of each state of 

footprints obeys normal distribution, we will compare 
performance between traditional maximum-weight 
matching algorithm and improved one presented in the 
paper (Fig. 7). In the process of algorithm performance 
test, we increase bigraph vertex to 100 and make statistics 
time spending. We see that the temporal performance of 
improved algorithm is superior to traditional one more 
than tenfold in the same experiment environment, which 
is suitable for footprint stripping. 

 
Figure 7.  The contrast test of algorithm performance 

VI.  CONCLUSION 

The paper discusses transaction footprint stripping with 
incomplete tokens that researchers pay little attention to. 
The main idea is as follow: if transaction states are 
independent each other and their transition time 
composes a multimode SMP, all possible states are 
separated into multi-cutsets, each of them composes a 
bigraph system, the respective matching is executed in 
each bigraph system, and then the results of independent 
matching of many bigraph systems are spliced to gain the 

most possible footprint sequences, which is post-stripping 
and labeled. For satisfying the requirements of analysis 
efficiency in open environment, the paper improves 
traditional maximum-weight matching algorithm. 
Simulation experiment confirms that the method 
presented in this paper can effectively implement 
transaction footprint stripping with incomplete tokens. 
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No footprint sequence weight sum 
1 1－4－6, 2－7, 3－5－8 10.9853 
2 1－4－7, 2－6, 3－5－8 11.2876 
3 2－4－6, 1－7, 3－5－8 11.1052 
4 2－4－6, 3－7, 1－5－8 10.8574 

… …… —— 

No footprint sequence weight sum 
1 6—9, 7—11, 8—10 3.3656 

… …… —— 
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