
An Improved Method for Transaction Footprints
Stripping with Bigraph System

Changyun Li1,2

Email: lcy469@163.com
1School of Computer Science, National University of Defense Technology, Changsha 410073, China
2School of Computer and Communication, Hunan University of Technology, Zhuzhou 412008, China

Junfeng Man, Zhibing Wang

School of Computer and Communication, Hunan University of Technology, Zhuzhou 412008, China

Abstract—Multiple parallel transactions in new-type
distributed software environment result in that the events
produced by every transaction are randomly ranked. If the
tokens of these events are incomplete or unavailable, it is
difficult for software system to distinguish these events to
actually belong to which transaction, corresponding
transaction analysis and prediction can’t be executed. In
this paper, the problem of stripping events with incomplete
tokens is transferred into maximum-weight perfect
matching of bigraph system. If the transition time among
these events is independently and identically distributed, all
possible states (events) are separated into multiple cutsets,
every cutset composes a bigraph system. The maximum-
weight perfect matching is used to finish respective
matching, and then the results of independent matching of
multiple bigraph systems are spliced to gain the most
possible footprint sequences produced by multiple
transactions, which is convenient for subsequent analysis
and prediction. For implementing quick stripping for
transaction footprints, the paper presents rank-maximal
matching algorithm to improve matching efficiency.
Simulation experiment confirms that the method presented
in this paper can effectively implement transaction footprint
stripping with incomplete tokens. Compared to other
methods, the rank-maximal matching algorithm has higher
matching efficiency and lower time cost.

Index Terms—incomplete token, transaction footprint,
bigraph matching, maximum-likelihood rule, rank-maximal
matching

I. INTRODUCTION

In new-type distributed software, a solution to end-to-
end transaction monitoring and analyzing comprises of
four pieces: (a) discovery of IT artifacts, such as servers
and applications on which the transaction depends, (b)
modeling of relationships among these IT artifacts in the
context of the transaction, (c) monitoring of IT artifacts to
draw conclusions regarding the status of a transaction,
and (d) creditability analysis for transaction footprints [1].
Each of these pieces will pose different challenges
depending on the degree of information and
instrumentation available in the system. In general
condition, we may use industry standards such as the
open-group ARM instrumentation [2] to generate

transaction correlators or tokens that may be used to track
the flow of transactions. In the process of software
interaction, the event tokens that some software entities
produce are incomplete or unavailable. Unfortunately,
only a small number of footprints may contain tokens, an
instance is illustrated in Fig.1. Other than the footprints at
state 0S , none of the other footprints contain tokens. In
such cases, it may not be possible to identify the unique
source of each footprint with certainty. Except for simple
cases such as a strictly ordered process scheduling like
first-in-first-out (FIFO) or last-in-first-out (LIFO), the
system may splice these events to compose a complete
footprint sequence. In distributed multi-thread
environment, multiple parallel transactions result in that
the events produced by every of them are randomly
ranked. If these event tokens are incomplete or
unavailable, they can’t be distinguished to belong to
which transaction, which results in that the system can’t
analyze and predict transaction. Thus, an efficient method
should be found to strip randomly ranked events, namely,
mark these events, and then splice them to compose
complete transaction footprints. For simple (without
repeated sub-footprints) transaction footprints with
incomplete tokens, it is a key that finds a kind of efficient
and accurate stripping technology.

Figure 1. The transition model instance with incomplete tokens.
The model has Markovian when the time taken for a

transaction to execute an application (represented as a
state in the model) is only dependent on its outcome
(represented as another state) and not on the past history
of the transaction, the paper implements efficient and
accurate stripping in special condition. The main idea is
as follow: (a) construct corresponding relationships
between external behavior and internal change of

Start Hotel
Booking

Flight
Booking

Ticket Delievery
With FedEx

Online
Pay

Train
Booking

A B

C

D
E

Tourism Service

F

End

Ticket Delievery
With UPS

G

H

1 1514

13

12

11109876

5

4

32 16

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2141

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.2141-2148

transaction footprints when monitoring them, (b) for
multiple transaction footprint samples, analyze their
correlation and construct transfer matrix, (c) by tracking a
set of transaction instances, find the most likely sequence
of states visited by each of these transaction instances and
estimate the times spent in these states by every instance.
We take a probabilistic approach by incorporating the
available (statistical) information about transition time
between different states. In our approach, optimal
tracking refers to using the maximum-likelihood rule
(MLR) that maximizes the probability that all the
footprints are correctly matched to the transactions that
generated them. For a two-state system, under
Independent and Identically Distributed (I.I.D.) transition
time, optimal MLR is reduced to a maximum-weight
perfect matching of bipartite graph (or bigraph).

For maximum-weight perfect matching of bigraph,
many researchers have studied according algorithm. The
fastest algorithms have running time ((log))O n m n n+ [3]
and (log)O nm nC [4] where C is the maximum weight
in an instance. The first is strongly- while the second
weakly-polynomial. Simply applying the aforementioned
algorithms to the rank-maximal matching problem does
not result in efficient effects, either in time or in space
requirements. The problem is that the edge weights are as
large as rn , which is non-polynomial in the input size.
Both algorithms assume that arithmetic operations
between numbers which are in ()O C can be performed in
constant time. This is not true in this case, where
arithmetic on numbers in ()rO n takes time ()rΩ . Hence,
the running times are ((log))O rn m n n+ and

2(log)O r nm n respectively, both using ()O rn space. It
is known, however, that the scaling algorithm for the
weighted matching problem can be implemented such
that all algorithms are performed on numbers
with (log)O n bits, independent of the edge weights. In this
case the running time improves to (log)O r nm n . In [5]
the authors present a combinatorial algorithm which
solves the rank-maximal matching problem in

(min(,))O n r r n m+ time using linear space. The
algorithm identifies edges which cannot be part of a rank-
maximal matching and deletes them. This approach,
however, does not seem to generalize to the maximum
cardinality rank-maximal or the fair matching problem. In
an attempt to close the gap between the rank-maximal
matching and its variants, we present an algorithm which
solves the rank-maximal matching problem in the same
running time and space as [6]. The main difference is that
our algorithm is based on weight matching reduction. We
believe that our algorithm is simpler and more intuitive

II.TOKENS MODELING FOR TRANSACTION FOOTPRINTS

A. The Concept and Definition
Let ()Xf x be the probability density function (PDF) of

a continuous random variable X and () : []XF x P X x= >
its complementary cumulative distribution function
(CCDF). For a matrix A, let (,)A i j denote the element in

its thi row and thj column. Let π denote a permutation
vector over {1,..., }n , log x , the natural logarithm of x
and, | |A , the cardinality of a set A. For sets A and B,
let \ { , , }A B i i A i B= ∈ ∉ .

For an undirected graph (,)G V E , let (,)i j denote the
edge between i and j and deg()i be the degree of node i.
For a bigraph 0 1,G V V E=< ∪ > , the edges are
represented by a 0-1 biadjacency matrix [(,)]A A i j= ,
here (,) 1A i j = indicates an edge between 0 ()V i and 1()V i .
A matching M E⊂ is a set of pairwise non-adjacent
edges, i.e., no two edges share a common vertex. A
maximum cardinality matching is a matching that
contains the largest possible number of edges. A perfect
matching is a matching where there is no unmatched
vertex and a maximum-weight perfect matching
maximizes the sum of the matched edge weights. For a
directed graph (digraph), when there is an edge from i to j,
j is an immediate successor of i, and i an immediate
predecessor of j. The set of all immediate successors of i
is denoted by ()N i , and the set of all immediate
predecessors by ()P j .

We now define a semi-Markov process (SMP).
Let , 0,...,i sS i N= denote the ith state of the process and
let ,i jT denote the (random) time to transition from state

iS to state jS . A process is said to be semi-Markov if the
sequence of states visited is a Markov chain, with
transition probability matrix [(,)]P P i j= , and each
transition time ,i jT is a random variable that depends only
on the states iS and jS involved in the transition. We
assume that each transaction progresses through the
system according to a general SMP with each transition
time ,i jT drawn from a known PDF

,i jTf having a
continuous interval. We make a simplifying assumption
that the state transition digraph is directed acyclic graph
(DAG). This ensures that all transactions are processed in
one direction, and that no transaction can leave more than
one footprint at a state. Furthermore, we assume that
transition time is independent of system load.

B. Maximum-Likelihood Rule
A footprint is defined as a time-tamped entry created in

the application log when a transaction enters a state in the
model. In addition to the timestamp, a footprint may
optionally contain a unique identifier or a token that ties
it to the transaction instance. By convention, the
footprints at the (unique) start state 0S are each assigned a
token. We assume that no footprint is missing from the
log records. We consider the general case where at the
time of observation, transaction instances are still
residing at different states of the system, and hence, all
the footprints that these transactions will eventually
generate are not yet available. Tracking transactions in
such cases is affected by the assumption that the records
appear in logs as soon as they are written by the
applications, i.e., the writing is not buffered.

Any valid match can be represented by the set of
permutation vectors kπ , for each state kS in the model.
Let kY be the vector of the timestamps of the footprints at

2142 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

state kS . When the monitoring engine receives the
footprints in the correct temporal order, kY is in
ascending order with the most recent footprint being the
last entry. Let k

kY π be the permutation of kY , according to
the permutation vector kπ . By convention, we assign
tokens to footprints 0Y at the start state 0S , and hence, the
permutation vector at the start states 0S is set to identity
(0 Iπ =). In other words, we find the correspondence of
all other footprints in the system with respect to the
footprints at 0S . When the joint PDF of the transaction
transition times Tf is known, we can quantify the
tracking performance as the probability that all the
transaction instances are matched correctly to their
footprints and this is maximized by MLR. Hence,
for 1sN + number of states, the optimal MLR of
transactions reduces to finding a set of sN number of
permutation vectors,

1

1

1 1 0
,...,

ˆ ˆ[, ...,] : (, ..., |)arg max Ns

s s

Ns

ML ML
N NP Y Y Yππ

π π

π π = (1)

In general, solving (1) is NP-hard. The rest of the
paper primarily deals with the special cases, starting with
the two state system, where (1) can be solved efficiently.

III. TWO-STATE SYSTEM

We consider a two-state model, which will serve as a
foundation for more elaborate models. For this model, we
will show how optimal MLR reduces to a perfect
matching of bigraph under I.I.D. transition time.

A. Preliminaries
A two-state model is showed in Fig.2, we will calculate

permutation vectorπ given 0Y and 1Y . Here, the footprints
0Y and 1Y at states 0S and 1S are related through an

unknown permutation vectorπ ,
0 1 1() (()) (), 1 | |Y j Y j T j j Yπ= − ≤ ≤ (2)

where ()T j is the transition time of 0 ()Y j ,
the thj footprint at 0S , 1(())Y jπ is the thj element of the
permuted 1Y , according to π . The footprints 0 ()Y j and

1(())Y jπ are generated by the same transaction. We have
0 1| | | |Y Y≥ , since some transactions may still be resident

at 0S . The number of instances in state 0S at the time of
observation is

0 0 1() | | | |Cnt S Y Y= − (3)

+ T0Y 1π − 1Y

1f o o t p r i n t a t S

1Y π

tran sitio n
0f o o tp r in t a t S

Figure 2. A two-state transactions model

Given the biadjacency matrix A, the number of unique
valid matches in a batch, denoted by 0 1(| |,| |,)BN Y Y A ,
provides an idea of the precision of tracking individual
instances. For a complete batch with 0 1| | | |Y Y n= = ,

(, ,)BN n n A is given by the permanent of the biadjacency
matrix,

1

(, ,) () : (, ())
n

B
i

N n n A perm A A i i
π

π
=

= = ∑∏ (4)

where the sum is over all the permutation vectors π over
{1,..., }n . Hence, the timestamps in the footprints reduce
the number of valid matches. Since there is at least one
perfect match, corresponding to the true transition pattern,
we have 1 () !perm A n≤ ≤ . The upper bound is achieved
for a complete bigraph, i.e., when all the instance
departures from 0S occur after all the arrivals in the batch.

For a partial batch, some of the footprints at 1S are not
yet generated, and hence, a perfect bigraph matching is
not feasible. For the case when the footprints may not
arrive in the correct temporal order, any maximum
cardinality bipartite matching is a valid match. However,
when the footprints arrive in the correct order, we have
additional information about the transactions which are
still resident at 0S and this changes the structure of the
bigraph. Given that 1 0| | | |Y k Y n= < = , there are n-k
number of instances that have not yet made the transition
and their departures occur after time 1()Y k , the timestamp
of the most recent footprint at 1S . This information is
incorporated by adding n-k number of identical copies of
a dummy node, denoted by 1()V δ , to the bipartition V1.
Edges are added between 1()V δ and any
node 0 ()V i if 1 0() ()Y k Y k− < Δ , i.e., the deadline has not
yet passed. Since all the dummy nodes are identical, some
of the perfect matching in this bigraph are now equivalent,
and the number of unique matching in a partial batch is

()(, ,)
()!B
perm AN n k A

n k
=

−
 (5)

since the permutations among the copies of the added
node 1()V δ are equivalent. When n=k, it reduces to (4). It
is NP-hard to compute perm(A) in (5). Hence, we resort
to approximations and bounds [7].

B. Optimal Tracking
When the joint PDF Tf of the transaction transition

times [()]T T j= is known in a two-state system, the ML
match in (1) reduces to 0S

0 1 1 0

1 0

ˆ (, ;) : (|)

 []

arg max

arg max

ML

T

Y Y f P Y Y

f Y Y

π

π

π

π

π =

= −
 (6)

The MLR for a general joint PDF Tf of the transition
times [()]T T j= requires search over all the permutation
vectorsπ , which could be exponential in the batch size.
We now make a simplifying assumption that all the
instance transition times T(1), T(2), . . . are I.I.D. with
PDF Tf . For a 0 1(,)Y Y batch, the MLR now reduces to

0 1 1 0
1 ()

1 0
()

ˆ (, ;) [(() ()]

 [(() ()]

arg maxML
T

i k

T
k i n

Y Y f f Y i Y i

F Y k Y i
ππ

π

π π

π
≤ ≤

< ≤

= −

−

∏

∏
(7)

where () [] F t P T t= > is the CCDF. For the
bigraph 0 1,G V V E=< ∪ > , defined in the previous section
with the added node 1()V δ (henceforth, known as the
CCDF node), we now assign a weight (,)W i j , for each
edge (i, j),

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2143

© 2012 ACADEMY PUBLISHER

1 0

1 0

log [(() ()], (8a)
(,) :

log [(() ()], (8b)
T

T

f Y i Y i j k
W i j

F Y k Y i j

π

π δ

− − ≤⎧⎪= ⎨
− − =⎪⎩

 The CCDF node is added to the bigraph on the
assumption that the footprints arrive in the correct order.
When instead, the footprints do not arrive in order, the
CCDF node is not added and the edge weights are solely
given by (8a).

*

1
(, ,) : arg max (, ())

n

i

n k W W i i
π

π π
=

= ∑ (9)

An example of maximum weight matching is shown in
Fig.3. MLR is simplified to weight matching, subfigure(a)
is a complete batch and subfigure(b) is a partial batch.
Maximum weight perfect matching can be performed
in ((log))O n m n n+ for a n-batch and m number of edges
via Hungarian algorithm [8]. Hence, we see that the
creation of batches leads to efficient implementation,

since n and m are substantially reduced. In the theorem
below, we provide the MLR MLπ and the matching
probability MLP .

Theorem 1: I.I.D. transitions. In a two-state system,
for I.I.D. transaction transition times according to a given
PDF Tf , and the footprints arriving in the correct order,
the MLR is given by the minimum-weight perfect
matching in (10) and the probability that all footprints in
an (n,k,W) batch are matched correctly under the MLR is

*()!exp()(, ,)
[exp()]

ML n k WP n k W
perm W
−

= (10)

where exp() exp((,))W W i j= , W is given by (9), and *W
is matching value of maximum weight. For the case when
the footprints do not arrive in the correct order, the MLR
is a maximum-weight maximum cardinality, based solely
on the edge weights in (8a).

0(1)Y 0(3)Y0(2)Y

0(1)Y 0(3)Y0(2)Y

(a)complete batch matching

1 0(,) [() ()]TW i j f Y j Y i= −

Trans1 Trans2

W(1,1)

W(2,1)

0Y

1Y
footprint node CCD node

1 0(1,) [(2) (1)]TW F Y Yδ = −

1 0(2,) [(2) (2)]TW F Y Yδ = −

(b)partial batch matching including CCDF events

Figure 3. Simplifying MLR to weight matching

Above maximum-weight matching has exponential
time complexity. When the values of n and m is very
large, time taken by maximum-weight matching is very
long, it is not suitable for footprint analysis with
incomplete tokens that has very high requirement for time
effectiveness. In section 4, an optimal maximum-weight
matching algorithm is presented, this algorithm has
effective (min(,))O n r r n m+ time complexity in the case
of linear space complexity. Assuming that there are
10000 nodes and 10000 edges in a bigraph, the partition
of the edge set is 200. Adopting the method of literature
[8], the consumption time of maximum weight matching
is about 91.02*10 , however, according time is about

81.02*10 with the method presented in the paper, the
latter is only 1/10 of the former.

IV. THE IMPROVED ALGORITHM FOR RANK-MAXIMAL
MATCHING

A. Preliminaries
Let 0V ≥a � be a potential function defined on the

vertices of G. For an edge (,)e v w E= ∈ denotes its
weight by ()c e and defines its reduced weight with respect
toπ as () () () ()c e v w c eπ π= + − . Such an edge is tight if

() 0c e = . We say thatπ is a feasible potential function
for c if () 0c e ≥ or all edges e E∈ . We say that a feasible
potential functionπ is optimal if there is a matching M in
G such that () 0c e = for each e E∈ and () 0vπ = for all
v V∈ which are free in M.

The algorithm that we present uses a decomposition
theorem by Kao et al. [9]. For an integer [1,]h C∈ , where

C is the maximum-weight of an edge, divide G into two
lighter subgraphs hG and '

hG as follows: (a) hG is formed
by edges (,)u v G∈ such that () [1,]c e C h C∈ − + . An
edge he G∈ has weight () () ()hc e c e C h= − − . b) let hπ be
an optimal potential function (OPF) for hG . An
edge (,)e v w G= ∈ belongs to '

hG if
() () () 0h hu v c eπ π+ − < . In that case edge e has weight
() () () ()h h hc e c e u vπ π= − − .
Theorem 2. Consider G, hG and '

hG as defined above
and let ()mwm G denote the weight of a maximum
weight matching in G. Then

'() () ()h hmwm G mwm G mwm G= + .
If hπ and '

hπ are OPFs for hG and '
hG respectively,

then '
h hπ π+ is an OPF for G [9].

B. The Decomposition of Edge
Consider an instance of the rank-maximal matching

problem and the reduced instance of the weight matching
problem. The edges of G have weights of the form

2 11, , ,..., rn n n − . Using theorem 2, we decompose the
problem and solve it recursively. The base case of the
recursion is a maximum cardinality matching
computation.

Choose 1 1rh n −= − , then hG contains the edges of G
with weight in the range 1[2,]rn − . Each edge in hG has
weight () () 1hc e c e= − . Thus, graph hG contains all
edges of G with rank at most r-1 and these edges have
weights 2 11, 1,..., 1rn n n −− − − . Assuming that hπ is an
OPF for hG , '

hG contains only the edges of G with
negative reduced weight hπ . Such edges fall into two
categories: (a) Edges (,)e v w G= ∈ where () 1c e = and

() () 0h hu wπ π+ = . Such edges have cost 1 in '
hG . (b)

2144 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Edges (,)e v w G= ∈ where
() 1c e > and () () () 0h hu w c eπ π+ − < . Due to the

feasibility of hπ in hG , () () () 0h h hu w c eπ π+ − ≥ , where
() () 1hc e c e= − . We conclude that
() () () 1h hu w c eπ π+ − ≥ − and therefore all such edges

also have cost 1 in '
hG . These edges are exactly the ones

in hG which are tight hπ .
The decomposition results in two subproblems (an

example in Fig. 4). The subproblem in '
hG is a maximum

cardinality matching, since all edges have weight 1. On
the other hand graph hG has edges with weights of the
form 2 11, 1,..., 1rn n n −− − − . We will show that an
optimally potential function for these weights is also
optimal for the weights 2 21, , ,..., rn n n − . Thus, the
subproblem in hG is a rank-maximal matching
computation with r-1 ranks, which is recursively solved
in time (1)T r − .

0 n
1

n

n+1

0 nn

0 n1

2 1n n− −
2n

n

1

(,)G V E

0 n-1n-1

n

0

0 0

2 1n n− −
2 1n −

(,)h hG V E

n-1

n-1 n-1

0 1

0

0

10

1

1

1

1

1

1

' '(,)h hG V E
Figure 4. The edge decomposition example of Bigraph.

The cost of the algorithm should be considered, since
the potential function hπ can take values up to ()rO n . In
this respect, we consider the following representation for
an OPF π : (a) a set of nodes 0V containing all nodes
v V∈ s.t () 0vπ = . (b) a set of edges 0E containing all
edges (,)e v w E= ∈ which are tight π , i.e.,

() () () () 0c e u w c eπ π= + − = .
The above two sets can guide the construction of a

matching M in ()O nm time such that any matched edge
is tight and every free vertex has zero potential. The
above implies that such a matching has the same cost as
our OPF and, therefore, is itself optimal. In the algorithm
we will manipulate these two sets and maintain the
invariant that all such tuples will correspond to the
representation of some OPF.

C. The Problem of Ranks
Let G be a graph with edge weights 2 21, , ,..., rn n n − and

let 0V and 0E be two sets representing an OPF. In this
section we show that the same sets are a solution for the
edge weights 2 11, 1,..., 1rn n n −− − − . More precisely,
there exists an OPF such that these two sets are its
representation.

Assume that we have solved the subproblem with edge
costs 2 21, , ,..., rn n n − in time (1)T r − and we have an
OPFπ represented by 0V and 0E . In order to obtain an
OPF for the edge costs 2 11, 1,..., 1rn n n −− − − , the first
step is to obtain an OPF for the edge costs 2 1, ,..., rn n n − .
The following theorem illustrates it.

Theorem 3. Consider a graph G with edge costs
2 21, , ,..., rn n n − . Let M be a maximum-weight matching of

G and 0:Vπ ≥a � be a potential function proving its
optimality. Then the potential function nπ proves the
optimality of M for G with edge costs 2 1, ,..., rn n n − .

Let 'π be the potential function obtained by
multiplyingπ with n in theorem 3. From the feasibility
of π , the definition of 'π and the integrality of the
potential functions, we also get the following theorem.

Theorem 4. For any node v V∈ either ' () 0vπ = or
' ()v nπ ≥ . Moreover, for any edge e E∈ either

' '() () () () 0c e u w c eπ π= + − = or ()c e n≥ .
The same sets 0V and 0E are a representation of the

new OPF 'π for the new weights. The next step is the
construction of a potential function ''π which will be
optimal for the weight 2 11, 1,..., 1rn n n −− − − . The OPF
algorithm [10] constructs such a potential function.

Definition 1: Equality Subgraph. For a graph (,)G V E
with edge costs c: 0E >a � and a potential function
π : 0V ≥a � , let the equality subgraph (,)G V E= = be the
graph with edge set

{ (,) : () () () () 0}E e u v E c e u v c eπ π= = = ∈ = + − = .

D. The Problem of Combination
Now, We are left with the following two subproblems:

(a) graph '
hG and an OPF '

hπ which was obtained by a
maximum cardinality matching computation, and (b)
graph hG and sets 0V , 0E representing an OPF hπ .

Combining the two solutions requires to add up the two
potential functions, hπ and '

hπ . The addition will be
performed implicitly by changing 0V and 0E based on
the potential function '

hπ . Updating 0V requires
checking for each v V∈ whether '() () 0h hv vπ π= = which
can be done by checking whether ' () 0h vπ = and 0v V∈ .
The process of updating 0E is as follow:

(a) For an edge (,)e v u= with () 1c e = in G, i.e. re E∈ ,
we have to check whether

' '() () () () 1h h h hv v u uπ π π π+ + + = . Recall from Section
4.3 that if a vertex v V∈ has () 0h vπ > then

() 2h v nπ > − and therefore it is enough to check: a) that
' '() () 1h hv uπ π+ = (an operation which takes constant

time since '
hπ is polynomially bounded) and b) that

() () 0h hv uπ π= = which can be done by checking
whether 0{ , }v u V∈ .

(b) For the rest of the edges, we have to check whether
' '() () () () ()h h h hv v u u c eπ π π π+ + + = . By the feasibility

of hπ we know that () () () 1h hv u c eπ π+ ≥ − . Moreover,
for an edge, () () () 1h hv u c eπ π+ ≠ − , we know that

() 1 () 1 (() 1) 1h hv u c e nπ π− + − − − ≥ − (in the worst case
where both endpoints got their potential decreased by 1,
when transforming to a new potential function for edge
weights which are reduced by 1), and hence any such
edge cannot be tight.

We conclude that if an edge has
() () () 1h hv u c eπ π+ = − and therefore belongs already to

0E , then it will remain tight if ' '() () 1h hv uπ π+ = . The
final output of the algorithm is sets 0V and 0E which
represent an OPF.

From these sets a rank-maximal matching can be
constructed by performing one maximum cardinality

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2145

© 2012 ACADEMY PUBLISHER

matching computation. This is done in the following way.
Let 0(,)G V E= be the final equality subgraph. Create a
new graph Gαβ , containing two copies of G= , (,)G V Eα α
and (,)G V Eβ β . For a vertex v V∈ , let vα and vβ be
the two copies in the new graph. Then, if 0v V∈ include
the edge (,)v vα β . Finally find a maximum cardinality
matching M in Gαβ . The matching M Eα∩ is then a
maximum weight matching in the original graph.

Algorithm 1. The rank-maximal matching algorithm
Input: graph G with edge partition 1 2, ,..., rE E E
Output: sets 0V , 0E
Begin
If r = 1

Compute maximum matching M of G and optimalπ ;
based on π , Compute 0V and 0E and return them;

Else
Solve recursively instance for (, \)rG V E E and 1 2 1, ,..., rE E E − ;
Let 0V and 0E be the solution
Let 0{ (,) : (,) }rE e v u E v u V+ = = ∈ ∈
Form unweighted ' 0(,)hG V E E+ ∪ and find OPF '

hπ in '
hG ;

Set 0 0 ' '{ (,) : () () 1}h hE e v u E E v uπ π+= = ∈ ∪ + = ;
Set 0 0 '{ : () 0}hV v V vπ= ∈ =
Return 0V and 0E ;

Endif
End.

V. SEMI-MARKOV PROCESS MODEL

The two-state model studied in the previous section
represents a high-level model where the only observable
points are the system entry and exit points. When more
system points are observable, e.g., the entry and exit
points of sub-processes such as flight booking, train
booking, hotel booking, online pay, ticket delievery with
fedEx etc., the two-state model can be expanded to a
multi-state model. Assuming that the transition times of
each transaction form a multi-state semi-Markov process
(SMP) and the transitions of different transactions are
independent of one another, we consider ML matching of
all the available footprints to the transactions.

We find the most-likely match between all the
available footprints and recall that it is given by the ML-
sequence of permutation vectors in (1),

1

1

1 1 0
,...,

ˆ ˆ[,...,] : (,..., |)arg max Ns

s s

Ns

ML ML
N NP Y Y Yππ

π π

π π = (11)

By convention, 0 Iπ = . A brute-force search for the
ML-sequence of permutation vectors is over all possible
footprints paths from the start state 0S to all the
terminating states. It is unclear if this problem has a
reduction to bigraph matching, as in the two-state system.
However, the search can be simplified through semi-
Markov property which states that the transition time
only depends on current state and next state, and hence,

1
1 0

1 ()

(,..., |) (|)
s

N js m

s

N

N m j
m j P m

P Y Y Y P Y Yπ πππ

= ∈

=∏ U (12)

Each term in the product has a structure similar to the
two-state system. However, the set of states occurring in
any two terms of (12) may not be disjoint, since the sets
of immediate predecessors ()P k and ()P l of any two
states kS and lS may not be disjoint. This implies that in
general, we cannot independently match the footprints in
each term in (12). Hence, we need to and construct high-
level states, comprising of many model states that
“localize” the movement of footprints, thereby enabling
us to perform matching independently within these high-
level states. To this end, define a partition of
states 0()m mB ≥ such that states in any two sets in the
partition do not share a common immediate predecessor,

() () , , , , 0k l k m l jP S P S S B S B m j∩ =∅ ∀ ∈ ∈ ≠ (13)
let 0 0B S= , the start state. Since we have assumed that
the state-transition digraph is acyclic (DAG), the partition
in (13) is well defined. Therefore, we can rewrite (12) as

1
1 0

0 ()

(,..., |) (|)Ns k l

s

k m l m

N k l
m S B S P B

P Y Y Y P Y Yπ π ππ

> ∈ ∈

=∏ U U (14)

where each term in the product corresponds to a bigraph
system ((),)m mP B B , with the start state ()mP B and the
terminating state mB . These bigraph systems are disjoint;
a state cannot occur in two systems in the same role,
since by definition, mB are all disjoint sets (partition), and
in (14), we also require the sets ()mP B to be disjoint.
Hence, we can conduct decentralizing matching in these
bigraph systems. This also implies that knowledge of the
footprints and the model parameters (such as the
transition-time PDF) is only required “locally” within
each bigraph system. After undertaking matching in all
the bigraph systems, the most likely sequence of
footprints produced by each transaction are constructed
by splicing together the results of matching in bigraph
systems to obtain the set of permutation vectors ML

iπ in (1).
In the Theorem 5 below, some properties of the partition

mB are described.
Theorem 5. Properties of partition 0()m mB ≥ . For a

semi-Markov process with acyclic transition digraph and
a partition of states 0()m mB ≥ , the following properties
hold for any finite number of recursions iff (13) is true:

(...((()))) , 0m mN P N P B B m⊂ > (15)
...((())) (), 0m mP N P B P B m⊂ > (16)

The paper adopts bigraph states partition algorithm
presented in literature [9].

We now specify the nodes and the edge weights for
each bigraph system ((),)m mP B B . Along the formula (3),
we define (())mCnt P B as the number of instances residing
at ()mP B at the time of observation, given by

()(()) | | | |
m mm P B BCnt P B Y Y= − (17)

A batch of footprints is defined between the successive
zero-crossings of (())mCnt P B . Along the formula (8),
given the transition probability matrix P of the SMP, for
any states k mS B∈ , ()l mS P B∈ and I.I.D. transition times
drawn from PDF

,k lTf , the edge weight between
the thi footprint at kS and the thj footprint at lS of a batch is
given by

2146 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

,
(, ; ,) : (() ()),

(), 1 , | |, 1 | |
k lk l T l k

k l k l

W i j S S f Y j Y i

S P S i j Y j Y

= −

∀ ∈ ≤ ≤ ≤ ≤
 (18)

For a partial batch, we have (()) 0mCnt P B > and some
instances are still residing at ()mP B . When the footprints
arrive in the correct temporal order, we define the CCDF
events for each state ()k mS P B∈ , whenever there are
more footprints at kS than the total at all its immediate
successors, i.e.,

()
() | | | | 0k k ll N k

Cnt S Y Y
∈

= − >∑ . The
probability that transaction corresponding to
the thi footprint at kS is still resident at kS is given by

,
()

(,) : [(| |) ()]
k lccdf k T l l k

l N k
P i S F Y Y Y i

∈

= −∑ (19)

where (| |)l lY Y is the most recent footprint at state lS . In
this case, the CCDF edge-weights corresponding to
state kS are

(, ;) : (,), 1 | |k k ccdf k kW i S P i S i Yδ = ∀ ≤ ≤ (20)
()kCnt S number of identical copies of the CCDF

node kδ are added to the bigraph.
Theorem 6: MLR in SMP. Given a SMP with an

acyclic state transition digraph and I.I.D. transitions, the
MLR is given by the decentralized minimum-weight
matching in the bigraph systems ((),)m mP B B , where
partition ()mB is given by the algorithm in literature [9]
and the edge weights for each bipartite system are given
by (18) and (20).

The instance of MLR matching between transaction
footprints and according instances producing them is

showed in Fig.5. The probability that all the transactions
are correctly tracked correctly is the product of the ML-
probabilities of all the bigraph systems.

The algorithm in literature [9] is used to get 0 { }B A= ,
1 { , , }B B C D= , 2 { }B E= and 3 { , , }B F G H= partition,

and ({A, C, D}, {B, C, D}), ({B}, {E}) and ({E, G, H},
{F, G, H}) compose three bigraph system.

Start Hotel
Booking

Flight
Booking

Ticket Delievery
With FedEx

Online
Pay

Train
Booking

A B

C

D
E

Tourism Service

F

End

Ticket Delievery
With UPS

G

H

Figure 5. The MLR matching example of transaction footprints and
instances that produce them.

VI THE SIMULATION EXPERIMENT

A. The Accuracy Test of Footprint Stripping
In order to validate the accuracy of footprint stripping

method presented in this paper, practically monitored
footprints with tokens are used as test data, we will
compare computing results of footprints stripping with
practical situation. Here, we only consider state transition
time and ignore residence time in each states. Being
convenient for illustration, we label every state(Fig. 1).
The timestamp that footprints are in each state is showed
in table 1.

TABLE 1.
THE FOOTPRINTS AND CORRESPONDENCE TIMESTAMPS IN FIG.5

All possible footprints and according weight sum about
bigraph ({A, C, D}, {B, C, D}) are showed in table 2. In
table 2, there are 18 kinds of footprint sequences in this
bigraph, only 4 of them have weight sum, the reason is
that the difference of timestamp of other footprint
sequence is negative, such case can’t occur in actual
environment. The second footprint has the maximum-
weight sum in 4 kinds of footprint sequences, which is in
correspondence with actual sequence in Fig 5. All
possible footprints and according weight sum about
bigraph ({B}, {E}) are showed in table 3. In table 3, there
are 6 kinds of footprint sequences in this bigraph, only 2
of them have weight sum, and the second footprint has
the maximum-weight sum, which is in correspondence
with actual sequence in Fig 5. Above test results shows
that our method may effectively strip transaction
footprints with incomplete tokens.

For the accuracy test of footprints stripping(including
partial batch), the stripping results is also in
correspondence with actual sequence in Fig.5. Table 4
shows all possible footprints and according weight sum
about bigraph ({A, C, D}, {B, C, D}). Here, footprint 6, 9,
12 and 16 have not been produced still, their weights are
calculated with formula (8b). The second footprint has

the maximum-weight sum in 4 kinds of footprint
sequences, which is in correspondence with actual
sequence in Fig 5.

At the aspect of pressure test of algorithm accuracy, we
select 500 sets of actual data, and according testing
results is illustrated in Fig. 6, the accuracy of stripping
algorithm reaches 89% and misdiagnosis rate is about
11%. Compared to traditional methods, the improved
algorithm has higher matching efficiency.

TABLE 2.
ALL POSSIBLE FOOTPRINTS AND WEIGHT SUM IN BIGRAPH 1.

TABLE 3.
ALL POSSIBLE FOOTPRINTS AND WEIGHT SUM IN BIGRAPH 2.

No 1 2 3 4 5 6 7 8
timestamp 0.000 0.105 0.396 0.210 3.485 1.192 0.899 5.116

No 9 10 11 12 13 14 15 16
timestamp 2.095 5.898 1.608 4.096 2.066 6.586 3.215 6.118

No footprint sequence weight sum
1 1－4－6, 2－7, 3－5－8 10.8677
2 1－4－7, 2－6, 3－5－8 11.5921
3 2－4－6, 1－7, 3－5－8 10.7532
4 2－4－6, 3－7, 1－5－8 11.4001
5 …… ——

No footprint sequence weight sum
1 6—9, 7—11, 8—10 3.9788
2 6—11, 7—9, 8—10 3.8297
3 …… ——

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2147

© 2012 ACADEMY PUBLISHER

TABLE 4.
ALL POSSIBLE FOOTPRINTS AND WEIGHT SUM IN BIGRAPH 1

(INCLUDING PARTIAL BATCH).

TABLE 5.
ALL POSSIBLE FOOTPRINTS AND WEIGHT SUM IN BIGRAPH 2

(INCLUDING PARTIAL BATCH).

Figure 6. The misdiagnosis rate of transaction footprints stripping

B. The Comprasion Test of Algorithm Performance
Assuming that the emergence of each state of

footprints obeys normal distribution, we will compare
performance between traditional maximum-weight
matching algorithm and improved one presented in the
paper (Fig. 7). In the process of algorithm performance
test, we increase bigraph vertex to 100 and make statistics
time spending. We see that the temporal performance of
improved algorithm is superior to traditional one more
than tenfold in the same experiment environment, which
is suitable for footprint stripping.

Figure 7. The contrast test of algorithm performance

VI. CONCLUSION

The paper discusses transaction footprint stripping with
incomplete tokens that researchers pay little attention to.
The main idea is as follow: if transaction states are
independent each other and their transition time
composes a multimode SMP, all possible states are
separated into multi-cutsets, each of them composes a
bigraph system, the respective matching is executed in
each bigraph system, and then the results of independent
matching of many bigraph systems are spliced to gain the

most possible footprint sequences, which is post-stripping
and labeled. For satisfying the requirements of analysis
efficiency in open environment, the paper improves
traditional maximum-weight matching algorithm.
Simulation experiment confirms that the method
presented in this paper can effectively implement
transaction footprint stripping with incomplete tokens.

ACKNOWLEDGMENT

The financial supports from the National Basic
Research Program of China (973 Program) under the
grant No. 2011CB302600, the Post-doctoral Science
Foundation of China under the grant No. 20080440216,
the Natural Science Foundation of Hunan Province under
the grant No. 11JJ4050 and the Education Department
Foundation of Hunan Province under the grant No.
11B039 are gratefully acknowledged.

REFERENCES

[1] J. F. Man, Q. Q. Li, X. B. Wen. “Transaction Footprints
Stripping with Incomplete Tokens in Open Network
Environment”. PAAP 2010, Dalian, China. 2010, pp. 206-
213.

[2] ARM. 2007-6-18, 2009-3-20.
http://www.opengroup.org/tech/management/arm/.

[3] T. L. Ahuja, J. B. Magnanti. “Network Flows-Theory,
Algorithms, and Applications”.Prentice Hall,1993, pp.1-35.

[4] H. N. Gabow, R. Tarjan. “Faster Scaling Algorithms for
Network Problems. SIAM Journal of Computing”. Vol. 18,
No. 5, 1989, pp. 1013–1036.

[5] R. W. Irving, T. Kavitha, K. Mehlhorn. “Rank-maximal
Matchings”. The 15th Annual ACM–SIAM Symposium on
Discrete Algorithms, Society for Industrial and Applied
Mathematics. New Orleans, Louisiana, 2004, pp. 68–75.

[6] P. A. Ostrand. “Systems of Distinct Representatives.
Journal of Mathematical Analysis and Applications”, Vol.
32, No. 1, 1970, pp. 1-4.

[7] L. Valiant. “The Complexity of Computing the Permanent”.
Theoretical Computer Science, Vol. 8, No. 2, 1979, pp.
189-201.

[8] A. Anandkumar, C. Bisdikian, D. Agrawal. “Tracking in a
Spaghetti Bowl: Monitoring Transactions Using
Footprints”. The 2008 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems. Annapolis, MD, USA, 2008, pp. 133-144.

[9] J. Monnot, S. Toulouse. “The Path Partition Problem and
Related Problems in Bipartite Graphs”. Operations
Research Letters, Vol. 35, No. 5, 2007, pp. 677-684.

[10] D. Michai. “Reducing rank-maximal to maximum weight
matching”. Theoretical Computer Science. Vol. 389, No.
1-2, 2007, pp. 125-132.

Changyun Li born in Leiyang, China, on
Sep, 7, 1971. He received the PhD in
Computer Software and Theory from Zhejing
University in 2006. He is professor in School
of Computer and Communication of Hunan
University of Technology. His research
interests include trust software, software

architecture.

No footprint sequence weight sum
1 1－4－6, 2－7, 3－5－8 10.9853
2 1－4－7, 2－6, 3－5－8 11.2876
3 2－4－6, 1－7, 3－5－8 11.1052
4 2－4－6, 3－7, 1－5－8 10.8574

… …… ——

No footprint sequence weight sum
1 6—9, 7—11, 8—10 3.3656

… …… ——

2148 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

