
 A Survey of Heuristics for
Domain-Independent Planning

Ruishi Liang

School of Computer Engineering, Zhongshan Institute
University of Electronic Science and Technology of China, Zhongshan 528402, China

Email:liangruishi@gmail.com

Abstract—Increasing interest has been devoted to Planning
as Heuristic Search over the years. Intense research has
focused on deriving accurate heuristics in polynomial
computational time for domain-independent planning. This
paper reports on an extensive survey and analysis of
research work related to heuristic derivation techniques for
state space search planning, as well as other planning
paradigms. Survey results reveal that heuristic techniques
have been extensively applied in many efficient planners
and result in impressive performances. We extend the
survey analysis to suggest promising avenues for future
research in heuristic derivation and heuristic search
techniques.

Index Terms—AI planning; domain-independent planning;
heuristic search; heuristic derivation;

I. INTRODUCTION

AI Planning is known to be PSPACE-complete [1]
even in the simple STRIPS set [2]. Over the last few
years a significant increase of the efficiency of planning
system has been achieved with the evolution of biennial
International Planning Competitions (IPC) [3].

One currently very successful trend in deterministic
fully-automated planning is heuristic state space search.
Specifically, Heuristic search-based planners perform a
heuristic forward or backward search in the space of
world states to find a path from the start state to a goal
state. HSP is known as the first heuristic search-based
planner which was introduced by Bonet et al. and
competed in AIPS-1998 [4][5]. The success of HSP has
inspired the development of many efficient planners,
including FF [6][7], LPG[8][9], Fast Downward [10] and
LAMA [11][12]. Several of them entered the
International Planning Competitions. FF was in particular
awarded for outstanding performance at IPC-2 and was
the top performance planner in the STRIPS track of IPC-
3. Following in the footstep of planner FF, LPG, Fast
Downward and LAMA won the classical track of IPC-3,
IPC-4 and IPC-6, respectively.

The techniques of heuristic search are also applied in
other planning paradigms, in addition to deterministic

state space planning. For example, numerical planning
(Metric-FF[13], LPG-TD[9]), uncertainty planning
(MBP[14]), compilation based planning (MIPS[15]). The
performances of such planning paradigms benefit a lot
from heuristic search.

Existing heuristics fell into two categories: on one
hand, one can focus on deriving an inadmissible heuristic
for satisficing planning by some fast approaches, e.g.,
[6][10][11]. On the other hand, on can perform a
complete and accurate analysis to derive admissible
heuristic for optimal planning, e.g., [16][17].

As a primary conclusion, we suggest a rough
classification of heuristics (Table I). A heuristic is
classified according to its admissibility as well as its
application in planning paradigms. The above listed
heuristics obviously represent existing best heuristics.

This paper studies heuristic techniques used in various
planning paradigms. First, several classes of heuristics
applied in state space planning will be analyzed, they are
as follows: delete-relaxation heuristic, relaxed planning
graph heuristic, critical path heuristic, causal graph
heuristic, abstraction heuristic and landmark heuristic.
Then the heuristic techniques used in non-state space
planning paradigms will be discussed.

Manuscript received October 15, 2011; revised October 30, 2011;
accepted October 30, 2011.

Corresponding author: liangruishi@gmail.com.

TABLE I.
CLASSIFICATION OF HEURISTICS

Heuristic admissibility
Planning paradigms

State-space
planning

Other planning
paradigms

Inadmissible

Additive heuristic

LPG, MFF

Relaxed planning
graph heuristic
Landmark heuristic
Casual graph
heuristic

Admissible

Critical path
heuristic BDD

Pattern database
heuristic FD

Abstraction
heuristic

Landmark heuristic

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2099

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.2099-2106

Figure 1. The relaxation idea to derive heuristic in AI research

Figure 2. The core of Delete-Relaxation heuristic: neglect delete

lists

II. HEURISTICS FOR STATE-SPACE PLANNING

To introduce the background and notations of heuristic
and planning model, we first identify the concept of
heuristic and then briefly review STRIPS planning task
definitions. Several classes of heuristics will be illustrated
in this section later.

A. Heuristic
The notion of heuristic are strategies using readily

accessible, though loosely applicable, information to
control problem solving in human beings and machines
[18]. Theoretically, there are two classes of problems
where heuristic technique will be taken into account: first,
a problem may have not a precise answer, then heuristic
is used to find a most possible solution; Second, a
problem has a precise answer but exhaustive search or
blind search is impractical to solve it. Herein, heuristic
method plays an important role in such situations by
bringing experience-based techniques into solving
problems.

A heuristic or heuristic function is said to be
admissible if it is no more than the lowest-cost path to the
goal, i.e., it never overestimates the cost of reaching the
goal [19]. Specifically, let h be a heuristic function, for
any state s, if h(s) ≤ distance-to-goal(s), then h is
admissible. If a heuristic is not admissible, then it is
inadmissible.

The common key idea to derive any heuristic in AI
research is relaxation, i.e., ignoring some constraints in
original complex problem CP to obtain a simpler problem
SP which is easy to solve in polynomial time complexity.
See figure 1.

B. STRIPS Planning Task
In propositional STRIPS planning, all construct are

based on logic propositions. Given a set of propositions F,
a world state s is a set of (true) propositions. An action a
is given as a triple of proposition sets, a = (pre(a), add(a),
del(a)), where pre(a) ⊆ F is the preconditions of a, and
add(a) ⊆ F and del(a) ⊆ F are the add list and the delete
list, respectively. Given a world state s and an action a,
the result of executing a in s, namely result(s, a), is
result(s, a) := s ∪ add(a) \ del(a), if the action is
applicable in s, i.e., pre(a) ⊆ s. Otherwise, result(s, a) is
undefined. The set of all applicable actions in state s is
denoted as App(s). The result of executing an action
sequence <a1, a2,…, aN> in a state s is recursively defined
by result(s, <a1, a2,…, aN>) := result(result(s, a1), <a1,
a2,…, aN>), and result(s, <>) := s.

Definition 1. A STRIPS planning task T = (F, A, I, G)
is a tuple where F is the set of logic propositions, and A is
the set of grounded actions, and I and G are initial state
and goal state, respectively.

An action sequence <a1, a2,…, aN> is a plan for T if
and only if G ⊆ result(I, <a1, a2,…, aN>).

C. Delete-Relaxation Heuristic
In classic planning, since result(s, a) := s ∪add(a) \

del(a), a very intuitive relaxation idea for the classic
planning search is to neglect del(a). This simplified
result(s, a) involves only a monotonic increase in the
number of propositions from s to result(s, a). Hence, it is
easier to compute distances to goals with such a
simplified result mapping. See figure 2.

In the following, two well-known delete-relaxation
heuristics which were first developed in HSP and HSPr
by Halsum et al. will be analyzed: one is additive
heuristic hadd, and the other is maximum heuristic hmax
[4][5].

Given a STRIPS task T = (F, A, I, G). Let s be a search
state in T and p be an atom, the distance from s to p,
denoted by da(s, p), is the minimum number of actions
required to reach from s to a state containing p.

0, ,
(,) , , (), ,

min{1 (, ()) | (), }, .

a

a

if p s
d s p if a A p add a and p s

d s prec a p add a a A otherwise

⎧ ∈
⎪= ∞ ∀ ∈ ∉ ∉⎨
⎪ + ∈ ∈⎩

2100 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

The distance from s to a set of propositions F is
computed as follows:

0, ,
(,)

(,), .
a

a
p F

if F s
d s F

d s p otherwise∈

⊆⎧⎪= ⎨
⎪⎩∑

As a result, additive heuristic is defined as follows:
() (,)add ah s d s G≡

The additive heuristic is not admissible, which
motivates the idea of maximum heuristic. Similar to
additive heuristic, the distance from a state s to an atom p,
denoted by dx(s, p), is the minimum number of actions
required to reach from s to a state containing p.

0, ,
(,) , , (), ,

min{1 (, ()) | (), }, .

x

x

if p s
d s p if a A p add a and p s

d s prec a p add a a A otherwise

⎧ ∈
⎪= ∞ ∀ ∈ ∉ ∉⎨
⎪ + ∈ ∈⎩

However, the distance from s to a set of propositions F

is different from the equation in additive heuristic
framework, it is computed as follows:

0, ,
(,)

max{ (,) | }, .
x

x

if F s
d s F

d s p p F otherwise
⊆⎧

= ⎨
∈⎩

As a result, the maximum heuristic hmax is defined as
follows:

max () (,)xh s d s G≡
As a generalization, the additive heuristic combines the

costs to all subgoals as the distance estimator of a search
state to goal state, while the maximum heuristic considers
only the relaxed distance to the most difficult subgoal as
heuristic of a search state.

Based on additive heuristic and maximum heuristic,
HSP performs a progression search from initial state to
goal state by standard hill-climbing search algorithm,
while HSP2 does similar forward heuristic search but
with weight A* algorithm. In contrast, HSPr is a
regression planner which performs the search backward
from the goal state rather than forward from initial state
in order to avoid re-computation of the estimate costs for
all atoms in every encountered new state. Overall, the
HSP planner family got an impression result in AIPS
1998 planning contest and inspired the developments of
various distinguished heuristic techniques for last decade.

Liu et al. studied a novel approach named PINCH to
speed up the calculation of delete-relaxation heuristics
[20]. The core operations are ordering the value updates
and reusing information from the calculation of previous
heuristic values. The experimental result showed that
PINCH method saved at most 80% heuristic computation
time compared to HSP and HSP 2.

D. Relaxed Planning Graph Heuristic
Relaxed Planning Graph (RPG) heuristic was

introduced firstly in Fast-Forward (FF) planner [6][7],
where FF is a progression heuristic planner, searching the
space of world states of a planning task in the forward
direction, guided by Relaxed Planning Graph heuristic
functions. RPG heuristic is also based on the delete-
relaxation idea, however, different from additive heuristic
and maximum heuristic that defined in recursive

formulation, it estimates the goal distance of search state
through defining a relaxation of original planning task by
ignoring the delete effects of the actions in A and solving
the relaxed task explicitly.

Specifically, a planning graph for the relaxed planning
task will be constructed by the GraphPlan [21] algorithm
first. Then a non-optimal relaxed plan, a solution to the
relaxed task, can be extracted from the planning graph in
polynomial time, which is the basis of heuristic function.

Definition 2. Given a STRIPS task T = (F, A, I, G).
The relaxation a+ of an action a ∈ A, a = (pre(a), add(a),
del(a)), is defined as a+ = (pre(a), add(a), ∅).
Accordingly, the relaxation T+ of T is (F, A+, I, G), where
A+ = { a+ | a ∈ A }.

An action sequence <a1, a2,…, aN> is a relaxed plan
for T if <a1

+, a2
+,…, aN

+> is a plan for T+.
Definition 3. Given a STRIPS task T = (F, A, I, G).

Let s be a search state in T. The relaxed planning graph
(RPG) for the relaxed task (F, A+, I, G) is a layered graph
alternating between proposition levels and action levels,
which is represented as a sequence P0, A0,..., Pi, Ai,..., Ak-1,
Pk .

1 1

, 0
:

{ () | () }, 1

: { | () } ,0 .

i
i i

i i

s if i
P

P add a pre a P if i k

A a A pre a P i k
− −

+

=⎧
= ⎨ ⊆ ≤ ≤⎩
= ∈ ⊆ ≤ <

U

where k is the final layer of the relaxed planning graph.
After constructing the RPG for a search state s, FF

starts at the final layer of RPG and uses a backtrack-free
procedure that extracts a sequence of actions that
correspond to a successful relaxed plan for s. During the
extraction process, two kinds of sets are maintained: the
sequence of sub-goal sets G1,..., Gk that represent the sub-
goals first appearing in the respective levels P1,..., Pk; the
sequence of solution action set O0,..., Ok-1 that represent
the actions achieving the sub-goals in G1,..., Gk. Actually,
the sequence < O0,..., Ok-1> is the relaxed plan for s, and
the total number of actions in the sequence is the heuristic
value for s, i.e.,

1
0() | |t

i ih s O−
== Σ .

If no relaxed plan can be extracted, the heuristic value
of s is set to ∞.

Based on RPG and relaxed plan, a pruning strategy
called helpful actions is proposed in FF. Formally, the set
of helpful actions to s is defined as

HPA (s) := {a∈A | pre(a) ⊆ s ∧ add(a) ∩G1 ≠ ∅}.
where G1 is the set of sub-goals constructed at layer P1

of RPG.
The core search procedure used in FF is a variation of

classic hill climbing local search algorithm, namely,
enforced hill-climbing search algorithm. It performs a
manner of systematic search to find better states but in
local search state spaces.

If the local search in FF fails to find better states, i.e., it
encounters a local minimal, then a complete heuristic
search algorithm is activated to solve the planning task
from scratch.

The heuristic search framework combining with
relaxed planning graph heuristic used in FF is presented
in Figure 3.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2101

© 2012 ACADEMY PUBLISHER

Input: a planning task <A, I, G>
Output: a solution planπor Failure

π:= < >;
s := I;
h(s) is heuristic estimator for state S computed by
relaxed planning graph heuristic procedure
while h(s) != 0 do

perform Enforced Hill-Climbing search to find
a better state s’ with h(s‘) < h(s)
if no such state s’ can be found then

π= active Greedy Best-First search from
scratch to sovle the planning task;
return π;

endif
add the actions on the path to s’ at the end of π
s = s’;

endwhile
return π;

Figure 3. The heuristic search framework combining with relaxed

planning graph heuristic used in FF

The key of relaxed planning graph heuristic is the
construction and extraction of a relaxed plan
corresponding to a relaxed planning task, i.e., no delete
effects are taken into account during computations.
However, as pointed out in the literature [22], in a
number of benchmark domains, e.g., Blocksworld,
Gridworld, such relaxed plan provides poor guidance to
heuristic search to reach the goal. Hence, Yoon et al. [22]
proposed a leaning approach to improve relaxed planning
graph heuristic by partially incorporate delete list
information. Specifically, the approach leverage the
delete lists for the actions in a relaxed plan by an
inductive way, i.e., learning a linear regression function
that approximates the differences between relaxed plan
length and the observed distance-to-goal of states in the
available training plans. The value of regression function
is seen as a kind of revision to basic relaxed plan length.
As a result, the improved heuristic is the sum of basic
relaxed plan length and regression function.

The idea of relaxed planning graph heuristic is also
applied widely in other planning models besides in
STRIPS set, such as numerical planning, contingent
planning, conformant planning, etc. See section III in
detail.

E. Critical Path Heurisitc
The notation of critical path heuristic was refined by

Helmert and Domshlak [23]. Indeed, it represents the hm
heuristic family which was first formulated by Haslum
and Geffner [24].

As mentioned in delete-relaxation heuristic, the max
heuristic is admissible but less informative than the
additive heuristic because it only considers one most
difficult atom when computing heuristic for every state.

A nature extension to max heuristic is to take into
account more atoms in each iteration, which results in the
generalization of hm heuristic family. Technically, the
heuristic value of an intermediate search state to goal
state is assigned with the highest cost of reaching a subset
with at most m satisfied atoms within the search state.
The formal definition of hm heuristic family is as follows.

The distance from a state s to a set of atoms F, denoted
by d(s, F), is the minimum number of actions required to
reach from s to a state containing F.

1

0, ,
(,) , , ,

min{1 (, (,)) | }, .

if F s
d s F if a A a is not relevant F

d s F a a is relevant F otherwiseγ −

⎧ ⊆
⎪= ∞ ∀ ∈⎨
⎪ +⎩

Then the estimated distance from s to goal state G is
computed as follows:

1

0, ,
, , ,

(,)
min {1 (, (,)) | | | },

max { (,) | | | }, .

m

a
m

F

if G s
if a A a is not relevant G

d s G
d s G a a is relevant G and G m

d s F F G and F m otherwise

γ −

⊆⎧
⎪∞ ∀ ∈⎪= ⎨ + ≤⎪
⎪ ⊆ =⎩

Given the estimated distance, the hm heuristic of a

search state s is defined as follows:
m () (,)mh s d s G≡

The computation complexity is polynomial time in the

number of m from a theoretic point of view.
Although the extension seems to be slight and the

theoretic computation is in polynomial time complexity,
it requires a feasible computation method for hm heuristic
family. The main contribution of hm heuristic family
proposed by Haslum and Geffner is mapping shortest-
path problem in state space into suitably defined shorted-
path problems in atom space. Another interested
contribution of hm heuristic family lies in its abilities to
deal with planning with action cost as well as parallel
planning.

hm heuristic family provides more informative estimate
for a search state than additive heuristic and max heuristic.
Generally, the bigger value the parameter m takes, the
better heuristic we can obtain. A main disadvantage for
large m value is the time-consuming computation process
for each search state because more subgoal interactions
are taken into account. Hence, as a trade-off between the
accuracy of the heuristic and its computational cost, it is
reasonable to set m less than or equal with two.

Haslum et al. also developed a novel admissible
heuristic based on hm heuristic, named additive hm
heuristic [25]. The main improvement for hm heuristic is
to partition the set of actions A into n disjoint set
A1,…,An, and then each individual heuristic hm

Ai will be
compute separately which requires much less time than
the computation of original hm heuristic constructed on
the set of actions A. Finally, additive hm heuristic is
assigned with the sum of all hm

Ai value.

2102 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Abstraction

A complex problem with
large search space

An abstracted problem with
small search space

Sol(AP)Heu(CP)

Solution of AP

≡

Heuristic of CP

CP AP

Figure 4. The abstraction idea to derive heuristic in AI research

F. Causal graph heuristic
Causal graph heuristic was proposed by Helmert in

planner Fast Downward [10] that was developed based on
SAS+ planning formalism where state is represented as
multi-valued variable. Generally speaking, causal graph
is a directed graph constructed based on domain
transition graphs and causal dependencies imposed on
domain transition graphs. The planning process is then
viewed as search in causal graph of a planning task. Let s
be a search state, the causal graph heuristic h is computed
as follows:

h (s) = ∑v∈V costv (s(v), g(v))
where v is a state variable and costv (s(v), g(v)) is the

cost estimate from s(v) to g(v), i.e. the cost of changing
the value of v from s(v) to g(v). The planner uses causal
graph heuristic to guide heuristic search in causal graph.

G. Abstraction Heuristic
Besides delete-relaxation idea in heuristic research for

classic planning, another promising heuristic method is
abstraction [16][26]. From conceptual view, abstraction
is a way to make the search space of abstracted problem
smaller than that of original problem. Since the search
space is small enough, it is feasible to derive heuristic
through computing the abstracted problem by various
approaches or algorithms. See figure 4. This is the
common theoretic basis similar with relaxation idea to
derive heuristic in AI research. However, the main
difference from relaxation idea is that an abstracted
problem is not required to satisfy polynomial property,
i.e., polynomial computation cost. Often, an abstracted
problem will be pre-computed before search by blind
search algorithm in order to obtain an optimal solution
which is the tighter lower bound heuristic on the real
optimal solution of original problem. Herein, abstraction
heuristic is admissible.

Generally speaking, an abstraction of a search state is
given by a mapping χ: S → Sχ, where S is the set of the
states in original planning task and Sχ is the set of the
abstracted states in abstract planning task. The definition

of abstraction thus can be generalized to planning task, or
states transition system in more general form. The
abstraction heuristic value hχ (s) is then the cost from χ (s)
to the closest goal state of the abstract planning task.

The first attempt to bring abstraction heuristic into
planning communication is the derivation of pattern
database heuristic (PDB) by Edelkamp in the literature
[16] , which are based on projecting the planning task
onto a subset of its state variables and then explicitly
searching for optimal plans in the abstract space. Pattern
database heuristics [27] [28][29] are well known for its
distinguished performance in solving Rubik’s Cube
problems, 15-Puzzle and other similar combinatorial
problems. By properly constructing state space and
planning space, it is possible to derive PDB heuristic in
the context of deterministic planning.

Following PDB heuristic, several other abstraction
heuristics have been proposed, for example, constrained
PDB heuristic [30], symbolic pattern database heuristic
[31], merge-and-shrink abstraction heuristic [26],
explicit-state abstraction heuristic [32], implicit
abstraction heuristic [33], and structural patterns [34].
Symbolic PDB heuristic uses Boolean function to
represent heuristic function in the context of symbolic
planning space. Exactly speaking, symbolic PDB is
constructed in the form of binary decision diagram
(BDD). Based on symbolic representation of heuristic
function and planning space, explicit pattern database
search algorithm and symbolic pattern database search
algorithm thus can be both incorporated into the symbolic
planning framework. Merge-and-shrink abstraction
derives heuristic based on the SAS+ formulation
consisting of two parts: the merging strategy that decides
to choose which two abstractions to compute their
synchronized product, and the shrinking strategy that
chooses which abstraction to compute its homomorphism.
Over the years, abstract heuristics have shown to be very
effective in several hard search problems, including cost-
optimal planning [35].

H. Landmark Heuristic
The notion of landmarks for deterministic planning are

facts that must take place at some point in every solution
plan for a given planning task [36]. For instance, on(A, B)
is a goal in a Blocksworld task that has block A stacked
on block B. It is evident that clear(B) must hold at some
point for the goal on(A, B) to be achieved, and thus
clear(B) is a landmark for that task. Goals are trivially
landmarks, and thus on(A, B) is a landmark as well.
There is an ordering between these two landmarks. Due
to different constraints imposed on orderings, various
ordering relationships will be defined precisely [36][37].
Given an instantiated planning task, all landmarks and
orderings can be extracted theoretically, though it is
indeed PSPACE-hard. A number of approximate methods
have been proposed to obtain landmarks and orderings as
much as possible in preprocess before planning.

The Landmark heuristic was first introduced by
Richter et al. [12]. Since landmark is a intermediate (or
goal-level) fact that must be achieved in order to reach a

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2103

© 2012 ACADEMY PUBLISHER

Heuristics

(admissible, inadmissible)

Planning Paradigms
(state space planning, others)

Search algorithms
(optimal, suboptimal)

Figure 5. The abstraction idea to derive heuristic in AI research

goal, a naive idea using landmark and ordering
information to derive heuristic for a state s is to compute
the landmarks that still need to be achieved from s
onwards. Given a planning task T, the set of extracted
landmarks L and the set of orderings between landmarks
D are pre-computed before planning. Let s be a search
state and π be a path, i.e., a sequence of states, then the
formal definition of landmark heuristic h is defined as
follows:

h (s) = (L - Accepted (s, π)) ∪ ReqAgain (s, π)
where Accepted(s, π) ⊆ L and ReqAgain(s, π) ⊆

Accepted (s, π) are the sets of accepted and required again
landmarks, respectively. A landmark is accepted if it is
true at some time along π. An accepted landmark is
required again if (i) it does not hold in , and (ii) it is
ordered greedy necessarily before some landmark which
is not accepted. The number L (s, π) is then the heuristic
value assigned to state s.

The LAMA planner [11] developed by Richter and
Westphal employed such landmark based heuristic in its
search framework and was the clear winner of the
Sequential Satisficing Track at the 2008 International
Planning Competition. in addition to derive heuristic,
landmark information is also used to compute preferred
operators. Karpas and Domshlak [38] also proposed a
methodology for deriving admissible heuristic estimates
for cost-optimal planning from a set of planning
landmarks. The resulting heuristics fall into a novel class
of multi-path dependent heuristics.

I. Summary
So far, we have discussed several heuristic derivation

techniques separately. There are some incomplete
comparisons on accuracy of these heuristics [23][39]. A
new trend is to combine different heuristics to form a
more informative heuristic estimate. For example, Roger
et al. described several methods for combining heuristics
estimates in satisficing planning framework [40].
Helmert et al. obtained landmark cut heuristic by
analyzing the connections between four classes of
heuristics [23]. Domshlak et al. proposed a way to bring
landmarks information into abstraction [41].

III. HEURISTIC FOR OTHER PLANNING PARADIGMS

Besides in state space planning, heuristic techniques
are also applied in other planning paradigms. Metric-FF
[13] can be seen as a numeric version of FF, thus it is also
a heuristic planner. The heuristic of Metric-FF
significantly extends the ability of relaxed planning graph
heuristic to deal with numeric information. The planner
LPG-TD derives heuristic in action graph which is able to
handle numeric information [9]. MBP is a non-
deterministic planner [14] performs heuristic search in
and/or graph. The compilation based planner MIPS [15]
uses heuristic techniques in BDD search space in order to
compact large search space. Other planners employing
heuristic techniques include SATPLAN [42], SAPAPS,
YochanPS [43] and so on. The performances of those
planning paradigms benefit a lot from heuristic search.

VI. CONSLUSION

As a fundamental problem-solving tool in artificial
intelligence research as well as in computer science,
heuristic techniques are widely used to solve lots of
complicated problems. Researchers pay much effort to
derive accurate heuristics, to construct compact search
spaces, and to develop effective guided search algorithms.
So far, a number of generic heuristic search algorithms
are developed by researchers which fell into two
categories: complete search and local search. Examples
of complete search algorithms used in planning include
A*, WA*, greedy best-first search, Anytime Heuristic
[43], BDDA* [44], Examples of local search algorithms
include hill climbing, Enforced Hill Climbing, stochastic
local search, and so on.

Planning as heuristic search has been a dominant

approach in planning community in last decade. A
number of heuristic based planners are developed and
exhibit distinguished planning performances, such as
HSP, FF, Fast Downward, LAMA, and so on. The hot
topics of heuristic planning are as follows: heuristic
derivation techniques to obtain more accurate heuristic
evaluation with less computation cost, search algorithms
to guide search process more quickly, and planning
paradigms to better match with problem structures and/or
solution requirements. That is to say, due to problem
structures and/or different solution requirements,
admissible or inadmissible heuristics, optimal solution or
suboptimal solution, and state space planning or other
planning paradigms will be considered specifically.

We have reported on an extensive survey and analysis
of research work related to heuristic derivation techniques
for state space search planning and other planning
paradigms. Survey results reveal that heuristic techniques
have been extensively applied in many efficient planners
and result in impressive performances. Further research
includes deriving more accurate heuristics through
exploiting structure information in greater depth, and
combining different heuristic estimates into a consistent
framework to improve the informativeness of the
heuristics.

2104 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers
for their helpful suggestions to improve the manuscript.
This work was supported in part by the Scientific
Research Foundation of Zhongshan Institute, University
of Electronic Science and Technology of China under
Grant No. 410YKQ03.

REFERENCES
[1] Helmert M. 2003. Complexity results for standard

benchmark domains in planning. Artificial Intelligence
143(2):219~262.

[2] Fikes, R. Nilsson, N. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving.
Artificial Intelligence 2: 189-208.

[3] International Planning Competition Archives official
website: http://ipc.icaps-conference.org/.

[4] Bonet, B., Geffner, H. Planning as Heuristic Search. 2001.
Artificial Intelligence 129:5-33.

[5] Bonet, B., Geffner, H. Heuristic Search Planner 2.0. AI
Magazine 2001, 22(3): 77-80.

[6] Hoffmann, J. and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14: 253-302.

[7] Hoffmann, J. Where "Ignoring Delete Lists" Works: Local
Search Topology in Planning Benchmarks. Journal of
Artificial Intelligence Research, 2005(24): 685-758.

[8] Gerevini, A., Serina, I. LPG: a Planner based on Local
Search for Planning Graphs. Proceedings of the 6th
International Conference on Artificial Intelligence
Planning and Scheduling (AIPS'02), 2002: 12-22.

[9] Gerevini, A., Saetti, A., Serina, I. An Approach to Efficient
Planning with Numerical Fluents and Multi-Criteria Plan
Quality. Artificial Intelligence, 2008, 172(8-9):899-944.

[10] Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191--246.

[11] Richter, S. and Westphal, M. The LAMA planner: Guiding
cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research, 2010, 39: 127-177.

[12] Richter, S., Helmert, M. and Westphal, M. 2008.
Landmark revisited. In Proc. AAAI 2008, 975–982.

[13] Hoffmann, J. The Metric-FF Planning System: Translating
"Ignoring Delete Lists" to Numeric State Variables.
Journal of Artificial Intelligence Research, 2003,20: 291-
341.

[14] Bertoli, P. and Cimatti, A. and Pistore, M. and Roveri, M.
and Traverso, P. 2001. MBP: a model based planner. In
Proc. of the IJCAI’01 Workshop on Planning under
Uncertainty and Incomplete Information.

[15] Edelkamp, S. and Helmert, M. 2001. The model checking
integrated planning system (MIPS). AI Magazine,
22(3):67-71.

[16] Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 13–24.

[17] Karpas, E., Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009),
pp. 1728–1733.

[18] Pearl, J. 1983. Heuristics: intelligent search strategies for
computer problem solving. New York, Addison-Wesley,
1983.

[19] Russell, J., Norvig, P. 2002. Artificial Intelligence: A
Modern Approach. Prentice Hall. 2002.

[20] Liu, Y. and Koenig, S. and Furcy, D. 2002. Speeding up
the calculation of heuristics for heuristic search-based
planning. In Proceedings of the National Conference on
Artificial Intelligence (AAAI 2002), 484-491.

[21] Blum A., Furst M. Fast Planning Through Planning Graph
Analysis. Artificial Intelligence, 1997, 90:281--300.

[22] Yoon, S. and Fern, A. and Givan, R. 2006. Learning
Heuristic Functions from Relaxed Plans. In Proc. of
International conference on automated planning and
scheduling (ICAPS 2006), 162-171.

[23] Helmert, M. and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What's the Difference Anyway. In
Proc. of International conference on automated planning
and scheduling (ICAPS 2009), 162-169.

[24] Haslum, P. and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proc. of AIPS 2000, 140-149.

[25] Haslum, P. and Bonet, B. and Geffner, H. 2005. New
admissible heuristics for domain-independent planning. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI 2005), 1163-1168.

[26] Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
Proc. ICAPS 2007, 176–183.

[27] Korf, R.E. and Taylor, L.A. 1996. Finding optimal
solutions to the twenty-four puzzle. In Proceedings of the
National Conference on Artificial Intelligence (AAAI
1996), 1202-1207.

[28] Korf, R.E. 1998. Finding optimal solutions to Rubik's
Cube using pattern databases. In Proceedings of the
National Conference on Artificial Intelligence (AAAI
1998), 700-705.

[29] Korf, R.E. and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence, 2002, 134(1-2): 9-22.

[30] Haslum, P. and Botea, A. and Helmert, M. and Bonet, B.
and Koenig, S. 2007. Domain-independent construction of
pattern database heuristics for cost-optimal planning. In
Proceedings of 22rd AAAI Conference on Artificial
Intelligence (AAAI'07), 1007- 1012.

[31] Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In Proc. Artificial Intelligence Planning
and Scheduling (AIPS 2002), 274-283.

[32] Helmert, M. and Haslum, P. and Hoffmann, J. 2008.
Explicit-state abstraction: A new method for generating
heuristic functions. In Proceedings of 23rd AAAI
Conference on Artificial Intelligence (AAAI'08), 1547-
1550.

[33] Katz, M., and Domshlak, C. Implicit Abstraction
Heuristics. Journal of Artificial Intelligence Research,
2010, 39: 51-126.

[34] Katz, M., and Domshlak, C. 2009. Structural-pattern
databases. In Proc ICAPS 2009, 186–193.

[35] Katz, M., Domshlak, C. (2010). Optimal admissible
composition of abstraction heuristics. Artificial
Intelligence, 174, 767–798.

[36] Hoffmann J and Porteous J and Sebastia L. Ordered
landmarks in planning. Journal of Artificial Intelligence
Research, 2004, 22: 215-278.

[37] Koehler, J. and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven
planning algorithm. Journal of Artificial Intelligence
Research, 2000, 12: 338-386.

[38] Karpas, E., Domshlak, C. (2009). Cost-optimal planning
with landmarks. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-09), pp.
1728–1733, Pasadena, CA, USA.

[39] Helmert, M. and MattmUller. 2008. Accuracy of
admissible heuristic functions in selected planning domains.
In Proceedings of 23rd AAAI Conference on Artificial
Intelligence (AAAI'08), 938-943.

[40] Roger, G. and Helmert, M. 2009. Combining heuristic
estimators for satisficing planning. In ICAPS 2009
Workshop on Heuristics for Domain-Independent Planning,
43-48.

[41] Domshlak, C., Katz, M., Lefler, S. 2010. When
abstractions met landmarks. In Proc ICAPS 2010, pp. 50–
56.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2105

© 2012 ACADEMY PUBLISHER

[42] Kautz, H. and Selman, B. 2004. SATPLAN04: Planning as
satisfiability. In Proc. ICAPS 2004.

[43] Benton, J. and Do, M. and Kambhampati, S. 2009.
Anytime heuristic search for partial satisfaction planning.
Artificial Intelligence, 173(5-6): 562-592.

[44] Jensen, R.M. and Veloso, M.M. and Bryant, R.E. 2008.
State-set branching: Leveraging BDDs for heuristic search.
Artificial Intelligence, 172(2-3): 103-139.

Ruishi Liang, is currently a lecturer of
Computer Science at Zhongshan Institute,
University of Electronic Science and
Technology of China. His main research
interests include AI planning, heuristic

search in planning. He received his Ph.D degree from Sun Yat-
sen University in mainland of China in 2010, and was a member
of AI planning group directed by Professor Yunfei Jiang from
2005 to 2010. In last five years, he developed two deterministic
planner HQFF and ASOP which both are competitive with
some top performance planners in satisficing track at the
International Planning Competitions (IPC), and contributed
many publications on the area of AI planning, especially on the
topics of heuristic search based planning and subgoal orderings
for planning. Now he directs the Scientific Research Foundation
of Zhongshan Institute, University of Electronic Science and
Technology of China under Grant No. 410YKQ03, and is a
member of National Natural Science Foundation of China under
Grant No. 60970042. His email address is
liangruishi@gmail.com.

2106 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

