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Abstract—Increasing interest has been devoted to Planning 
as Heuristic Search over the years. Intense research has 
focused on deriving accurate heuristics in polynomial 
computational time for domain-independent planning. This 
paper reports on an extensive survey and analysis of 
research work related to heuristic derivation techniques for 
state space search planning, as well as other planning 
paradigms. Survey results reveal that heuristic techniques 
have been extensively applied in many efficient planners 
and result in impressive performances. We extend the 
survey analysis to suggest promising avenues for future 
research in heuristic derivation and heuristic search 
techniques. 
 
Index Terms—AI planning; domain-independent planning; 
heuristic search; heuristic derivation; 
 

I.  INTRODUCTION 

AI Planning is known to be PSPACE-complete [1] 
even in the simple STRIPS set [2]. Over the last few 
years a significant increase of the efficiency of planning 
system has been achieved with the evolution of biennial 
International Planning Competitions (IPC) [3]. 

One currently very successful trend in deterministic 
fully-automated planning is heuristic state space search. 
Specifically, Heuristic search-based planners perform a 
heuristic forward or backward search in the space of 
world states to find a path from the start state to a goal 
state. HSP is known as the first heuristic search-based 
planner which was introduced by Bonet et al. and 
competed in AIPS-1998 [4][5]. The success of HSP has 
inspired the development of many efficient planners, 
including FF [6][7], LPG[8][9], Fast Downward [10] and 
LAMA [11][12]. Several of them entered the 
International Planning Competitions. FF was in particular 
awarded for outstanding performance at IPC-2 and was 
the top performance planner in the STRIPS track of IPC-
3. Following in the footstep of planner FF, LPG, Fast 
Downward and LAMA won the classical track of IPC-3, 
IPC-4 and IPC-6, respectively. 

The techniques of heuristic search are also applied in 
other planning paradigms, in addition to deterministic 

state space planning. For example, numerical planning 
(Metric-FF[13], LPG-TD[9]), uncertainty planning 
(MBP[14]), compilation based planning (MIPS[15]). The 
performances of such planning paradigms benefit a lot 
from heuristic search.  

Existing heuristics fell into two categories: on one 
hand, one can focus on deriving an inadmissible heuristic 
for satisficing planning by some fast approaches, e.g., 
[6][10][11]. On the other hand, on can perform a 
complete and accurate analysis to derive admissible 
heuristic for optimal planning, e.g., [16][17].  

As a primary conclusion, we suggest a rough 
classification of heuristics (Table I). A heuristic is 
classified according to its admissibility as well as its 
application in planning paradigms. The above listed 
heuristics obviously represent existing best heuristics.  

This paper studies heuristic techniques used in various 
planning paradigms. First, several classes of heuristics 
applied in state space planning will be analyzed, they are 
as follows: delete-relaxation heuristic, relaxed planning 
graph heuristic, critical path heuristic, causal graph 
heuristic, abstraction heuristic and landmark heuristic. 
Then the heuristic techniques used in non-state space 
planning paradigms will be discussed.  
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TABLE I.   
CLASSIFICATION OF HEURISTICS 

Heuristic admissibility
Planning paradigms 

State-space 
planning 

Other planning 
paradigms 

Inadmissible  

Additive heuristic 

LPG, MFF 

Relaxed planning 
graph heuristic  
Landmark heuristic 
Casual graph 
heuristic 

Admissible  

Critical path 
heuristic BDD 

Pattern database 
heuristic FD 

Abstraction 
heuristic  

Landmark heuristic  
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Figure 1. The relaxation idea to derive heuristic in AI research 

 

 
Figure 2. The core of Delete-Relaxation heuristic: neglect delete 

lists 

II.  HEURISTICS FOR STATE-SPACE PLANNING 

To introduce the background and notations of heuristic 
and planning model, we first identify the concept of 
heuristic and then briefly review STRIPS planning task 
definitions. Several classes of heuristics will be illustrated 
in this section later. 

A.  Heuristic  
The notion of heuristic are strategies using readily 

accessible, though loosely applicable, information to 
control problem solving in human beings and machines 
[18]. Theoretically, there are two classes of problems 
where heuristic technique will be taken into account: first, 
a problem may have not a precise answer, then heuristic 
is used to find a most possible solution; Second, a 
problem has a precise answer but exhaustive search or 
blind search is impractical to solve it. Herein, heuristic 
method plays an important role in such situations by 
bringing experience-based techniques into solving 
problems. 

A heuristic or heuristic function is said to be 
admissible if it is no more than the lowest-cost path to the 
goal, i.e., it never overestimates the cost of reaching the 
goal [19]. Specifically, let h be a heuristic function, for 
any state s,  if h(s) ≤ distance-to-goal(s), then h is 
admissible. If a heuristic is not admissible, then it is 
inadmissible.  

The common key idea to derive any heuristic in AI 
research is relaxation, i.e., ignoring some constraints in 
original complex problem CP to obtain a simpler problem 
SP which is easy to solve in polynomial time complexity. 
See figure 1. 

 

B.  STRIPS Planning Task 
In propositional STRIPS planning, all construct are 

based on logic propositions. Given a set of propositions F, 
a world state s is a set of (true) propositions. An action a 
is given as a triple of proposition sets, a = (pre(a), add(a), 
del(a)), where pre(a) ⊆ F is the preconditions of a, and 
add(a) ⊆ F and del(a) ⊆ F are the add list and the delete 
list, respectively. Given a world state s and an action a, 
the result of executing a in s, namely result(s, a), is 
result(s, a) := s ∪ add(a) \ del(a), if the action is 
applicable in s, i.e., pre(a) ⊆ s. Otherwise, result(s, a) is 
undefined. The set of all applicable actions in state s is 
denoted as App(s). The result of executing an action 
sequence <a1, a2,…, aN> in a state s is recursively defined 
by result(s, <a1, a2,…, aN>) := result(result(s, a1), <a1, 
a2,…, aN>), and result(s, <>) := s. 

Definition 1. A STRIPS planning task T = (F, A, I, G) 
is a tuple where F is the set of logic propositions, and A is 
the set of grounded actions, and I and G are initial state 
and goal state, respectively.  

An action sequence <a1, a2,…, aN> is a plan for T if 
and only if G ⊆ result(I, <a1, a2,…, aN>). 

 

C.  Delete-Relaxation Heuristic 
In classic planning, since result(s, a) := s ∪add(a) \ 

del(a), a very intuitive relaxation idea for the classic 
planning search is to neglect del(a). This simplified 
result(s, a) involves only a monotonic increase in the 
number of propositions from s to result(s, a). Hence, it is 
easier to compute distances to goals with such a 
simplified result mapping.  See figure 2. 

In the following, two well-known delete-relaxation 
heuristics which were first developed in HSP and HSPr 
by Halsum et al. will be analyzed: one is additive 
heuristic hadd, and the other is maximum heuristic hmax 
[4][5]. 

Given a STRIPS task T = (F, A, I, G). Let s be a search 
state in T and p be an atom, the distance from s to p, 
denoted by da(s, p), is the minimum number of actions 
required to reach from s to a state containing p. 

0, ,
( , ) , , ( ), ,

min{1 ( , ( )) | ( ), }, .

a

a

if p s
d s p if a A p add a and p s

d s prec a p add a a A otherwise

⎧ ∈
⎪= ∞ ∀ ∈ ∉ ∉⎨
⎪ + ∈ ∈⎩
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The distance from s to a set of propositions F is 
computed as follows: 

0, ,
( , )

( , ), .
a

a
p F

if F s
d s F

d s p otherwise∈

⊆⎧⎪= ⎨
⎪⎩∑

 

As a result, additive heuristic is defined as follows: 
( ) ( , )add ah s d s G≡  

The additive heuristic is not admissible, which 
motivates the idea of maximum heuristic. Similar to 
additive heuristic, the distance from a state s to an atom p, 
denoted by dx(s, p), is the minimum number of actions 
required to reach from s to a state containing p. 

0, ,
( , ) , , ( ), ,

min{1 ( , ( )) | ( ), }, .

x

x

if p s
d s p if a A p add a and p s

d s prec a p add a a A otherwise

⎧ ∈
⎪= ∞ ∀ ∈ ∉ ∉⎨
⎪ + ∈ ∈⎩

 
However, the distance from s to a set of propositions F 

is different from the equation in additive heuristic 
framework, it is computed as follows: 

0, ,
( , )

max{ ( , ) | }, .
x

x

if F s
d s F

d s p p F otherwise
⊆⎧

= ⎨
∈⎩

 

As a result, the maximum heuristic hmax is defined as 
follows: 

max ( ) ( , )xh s d s G≡  
As a generalization, the additive heuristic combines the 

costs to all subgoals as the distance estimator of a search 
state to goal state, while the maximum heuristic considers 
only the relaxed distance to the most difficult subgoal as 
heuristic of a search state. 

Based on additive heuristic and maximum heuristic, 
HSP performs a progression search from initial state to 
goal state by standard hill-climbing search algorithm, 
while HSP2 does similar forward heuristic search but 
with weight A* algorithm. In contrast, HSPr is a 
regression planner which performs the search backward 
from the goal state rather than forward from initial state 
in order to avoid re-computation of the estimate costs for 
all atoms in every encountered new state. Overall, the 
HSP planner family got an impression result in AIPS 
1998 planning contest and inspired the developments of 
various distinguished heuristic techniques for last decade. 

Liu et al. studied a novel approach named PINCH to 
speed up the calculation of delete-relaxation heuristics 
[20]. The core operations are ordering the value updates 
and reusing information from the calculation of previous 
heuristic values. The experimental result showed that 
PINCH method saved at most 80% heuristic computation 
time compared to HSP and HSP 2. 

D.  Relaxed Planning Graph Heuristic 
Relaxed Planning Graph (RPG) heuristic was 

introduced firstly in Fast-Forward (FF) planner [6][7], 
where FF is a progression heuristic planner, searching the 
space of world states of a planning task in the forward 
direction, guided by Relaxed Planning Graph heuristic 
functions. RPG heuristic is also based on the delete-
relaxation idea, however, different from additive heuristic 
and maximum heuristic that defined in recursive 

formulation, it estimates the goal distance of search state 
through defining a relaxation of original planning task by 
ignoring the delete effects of the actions in A and solving 
the relaxed task explicitly.  

Specifically, a planning graph for the relaxed planning 
task will be constructed by the GraphPlan [21] algorithm 
first. Then a non-optimal relaxed plan, a solution to the 
relaxed task, can be extracted from the planning graph in 
polynomial time, which is the basis of heuristic function. 

Definition 2. Given a STRIPS task T = (F, A, I, G). 
The relaxation a+ of an action a ∈ A, a = (pre(a), add(a), 
del(a)), is defined as a+ = (pre(a), add(a), ∅). 
Accordingly, the relaxation T+ of T is (F, A+, I, G), where 
A+ = { a+ | a ∈ A }.  

An action sequence <a1, a2,…, aN> is a relaxed plan 
for T if <a1

+, a2
+,…, aN

+> is a plan for T+. 
Definition 3. Given a STRIPS task T = (F, A, I, G). 

Let s be a search state in T. The relaxed planning graph 
(RPG) for the relaxed task (F, A+, I, G) is a layered graph 
alternating between proposition levels and action levels, 
which is represented as a sequence P0, A0,..., Pi, Ai,..., Ak-1, 
Pk . 

1 1

, 0
:

{ ( ) | ( ) }, 1

: { | ( ) } ,0 .

i
i i

i i

s if i
P

P add a pre a P if i k

A a A pre a P i k
− −

+

=⎧
= ⎨ ⊆ ≤ ≤⎩
= ∈ ⊆ ≤ <

U
 

where k is the final layer of the relaxed planning graph. 
After constructing the RPG for a search state s, FF 

starts at the final layer of RPG and uses a backtrack-free 
procedure that extracts a sequence of actions that 
correspond to a successful relaxed plan for s. During the 
extraction process, two kinds of sets are maintained: the 
sequence of sub-goal sets G1,..., Gk that represent the sub-
goals first appearing in the respective levels P1,..., Pk; the 
sequence of solution action set O0,..., Ok-1 that represent 
the actions achieving the sub-goals in G1,..., Gk. Actually, 
the sequence < O0,..., Ok-1> is the relaxed plan for s, and 
the total number of actions in the sequence is the heuristic 
value for s, i.e., 

1
0( ) | |t

i ih s O−
== Σ . 

If no relaxed plan can be extracted, the heuristic value 
of s is set to ∞. 

Based on RPG and relaxed plan, a pruning strategy 
called helpful actions is proposed in FF. Formally, the set 
of helpful actions to s is defined as  

HPA (s) := {a∈A | pre(a) ⊆ s ∧ add(a) ∩G1 ≠ ∅}. 
where G1 is the set of sub-goals constructed at layer P1 

of RPG. 
The core search procedure used in FF is a variation of 

classic hill climbing local search algorithm, namely, 
enforced hill-climbing search algorithm. It performs a 
manner of systematic search to find better states but in 
local search state spaces. 

If the local search in FF fails to find better states, i.e., it 
encounters a local minimal, then a complete heuristic 
search algorithm is activated to solve the planning task 
from scratch.  

The heuristic search framework combining with 
relaxed planning graph heuristic used in FF is presented 
in Figure 3. 

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2101

© 2012 ACADEMY PUBLISHER



Input: a planning task <A, I, G> 
Output: a solution planπor Failure 

π:= < >; 
s := I; 
h(s) is heuristic estimator for state S computed by
relaxed planning graph heuristic procedure 
while  h(s) != 0  do 

perform Enforced Hill-Climbing search to find
a better state s’ with h(s‘) < h(s) 
if  no such state s’ can be found  then 

π= active Greedy Best-First search from
scratch to sovle the planning task; 
return π; 

endif 
add the actions on the path to s’ at the end of π
s = s’; 

endwhile 
return π; 

 
Figure 3. The heuristic search framework combining with relaxed 

planning graph heuristic used in FF 

 

The key of relaxed planning graph heuristic is the 
construction and extraction of a relaxed plan 
corresponding to a relaxed planning task, i.e., no delete 
effects are taken into account during computations. 
However, as pointed out in the literature [22], in a 
number of benchmark domains, e.g., Blocksworld, 
Gridworld, such relaxed plan provides poor guidance to 
heuristic search to reach the goal. Hence, Yoon et al. [22] 
proposed a leaning approach to improve relaxed planning 
graph heuristic by partially incorporate delete list 
information. Specifically, the approach leverage the 
delete lists for the actions in a relaxed plan by an 
inductive way, i.e., learning a linear regression function 
that approximates the differences between relaxed plan 
length and the observed distance-to-goal of states in the 
available training plans. The value of regression function 
is seen as a kind of revision to basic relaxed plan length. 
As a result, the improved heuristic is the sum of basic 
relaxed plan length and regression function.  

The idea of relaxed planning graph heuristic is also 
applied widely in other planning models besides in 
STRIPS set, such as numerical planning, contingent 
planning, conformant planning, etc. See section III in 
detail. 

 

E.  Critical Path Heurisitc 
The notation of critical path heuristic was refined by 

Helmert and Domshlak [23].  Indeed, it represents the hm 
heuristic family which was first formulated by Haslum 
and Geffner [24].  

As mentioned in delete-relaxation heuristic, the max 
heuristic is admissible but less informative than the 
additive heuristic because it only considers one most 
difficult atom when computing heuristic for every state. 

A nature extension to max heuristic is to take into 
account more atoms in each iteration, which results in the 
generalization of hm heuristic family. Technically, the 
heuristic value of an intermediate search state to goal 
state is assigned with the highest cost of reaching a subset 
with at most m satisfied atoms within the search state. 
The formal definition of hm heuristic family is as follows. 

The distance from a state s to a set of atoms F, denoted 
by d(s, F), is the minimum number of actions required to 
reach from s to a state containing F. 

1

0, ,
( , ) , , ,

min{1 ( , ( , )) | }, .

if F s
d s F if a A a is not relevant F

d s F a a is relevant F otherwiseγ −

⎧ ⊆
⎪= ∞ ∀ ∈⎨
⎪ +⎩

 

Then the estimated distance from s to goal state G is 
computed as follows: 

1

0, ,
, , ,

( , )
min {1 ( , ( , )) | | | },

max { ( , ) | | | }, .

m

a
m

F

if G s
if a A a is not relevant G

d s G
d s G a a is relevant G and G m

d s F F G and F m otherwise

γ −

⊆⎧
⎪∞ ∀ ∈⎪= ⎨ + ≤⎪
⎪ ⊆ =⎩

 
Given the estimated distance, the hm heuristic of a 

search state s is defined as follows: 
m ( ) ( , )mh s d s G≡  

 
The computation complexity is polynomial time in the 

number of m from a theoretic point of  view.  
Although the extension seems to be slight and the 

theoretic computation is in polynomial time complexity, 
it requires a feasible computation method for hm heuristic 
family. The main contribution of hm heuristic family 
proposed by Haslum and Geffner is mapping shortest-
path problem in state space into suitably defined shorted-
path problems in atom space. Another interested 
contribution of hm heuristic family lies in its abilities to 
deal with planning with action cost as well as parallel 
planning. 

hm heuristic family provides more informative estimate 
for a search state than additive heuristic and max heuristic. 
Generally, the bigger value the parameter m  takes, the 
better heuristic we can obtain. A main disadvantage for 
large m value is the time-consuming computation process 
for each search state because more subgoal interactions 
are taken into account. Hence, as a trade-off between the 
accuracy of the heuristic and its computational cost, it is 
reasonable to set m less than or equal with two. 

Haslum et al. also developed a novel admissible 
heuristic based on hm heuristic, named additive hm 
heuristic [25]. The main improvement for hm heuristic is 
to partition the set of actions A into n disjoint set  
A1,…,An, and then each individual heuristic hm

Ai will be 
compute separately which requires much less time than 
the computation of original hm heuristic constructed on 
the set of actions A. Finally, additive hm heuristic is 
assigned with the sum of all hm

Ai value. 
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Abstraction

A complex problem with 
large search space

An abstracted problem with 
small search space

Sol(AP)Heu(CP)

Solution of AP

≡

Heuristic of CP

CP AP

 
Figure 4. The abstraction idea to derive heuristic in AI research

F. Causal graph heuristic  
Causal graph heuristic was proposed by Helmert in 

planner Fast Downward [10] that was developed based on 
SAS+ planning formalism where state is represented as 
multi-valued variable. Generally speaking, causal graph 
is a directed graph constructed based on domain 
transition graphs and causal dependencies imposed on 
domain transition graphs. The planning process is then 
viewed as search in causal graph of a planning task. Let s 
be a search state, the causal graph heuristic h is computed 
as follows:  

h (s) = ∑v∈V costv (s(v), g(v)) 
where v is a state variable and  costv (s(v), g(v)) is the 

cost estimate from s(v) to g(v), i.e. the cost of changing 
the value of v from s(v) to g(v). The planner uses causal 
graph heuristic to guide heuristic search in causal graph. 

G.  Abstraction Heuristic 
Besides delete-relaxation idea in heuristic research for 

classic planning, another promising heuristic method is 
abstraction [16][26]. From conceptual view, abstraction 
is a way to make the search space of abstracted problem 
smaller than that of original problem. Since the search 
space is small enough, it is feasible to derive heuristic 
through computing the abstracted problem by various 
approaches or algorithms. See figure 4. This is the 
common theoretic basis similar with relaxation idea to 
derive heuristic in AI research. However, the main 
difference from relaxation idea is that an abstracted 
problem is not required to satisfy polynomial property, 
i.e., polynomial computation cost. Often, an abstracted 
problem will be pre-computed before search by blind 
search algorithm in order to obtain an optimal solution 
which is the tighter lower bound heuristic on the real 
optimal solution of original problem. Herein, abstraction 
heuristic is admissible. 

Generally speaking, an abstraction of a search state is 
given by a mapping χ: S → Sχ, where S is the set of the 
states in original planning task and Sχ is the set of the 
abstracted states in abstract planning task. The definition 

of abstraction thus can be generalized to planning task, or 
states transition system  in more general form. The 
abstraction heuristic value hχ (s) is then the cost from χ (s) 
to the closest goal state of the abstract planning task. 

The first attempt to bring abstraction heuristic into 
planning communication is the derivation of pattern 
database heuristic (PDB) by Edelkamp in the literature 
[16] , which are based on projecting the planning task 
onto a subset of its state variables and then explicitly 
searching for optimal plans in the abstract space. Pattern 
database  heuristics [27] [28][29] are well known for its 
distinguished performance in solving Rubik’s Cube 
problems, 15-Puzzle and other similar combinatorial 
problems. By properly constructing state space and 
planning space, it is possible to derive PDB heuristic in 
the context of deterministic planning.  

Following PDB heuristic, several other abstraction 
heuristics have been proposed, for example, constrained 
PDB heuristic [30], symbolic pattern database heuristic 
[31], merge-and-shrink abstraction heuristic [26], 
explicit-state abstraction heuristic [32], implicit 
abstraction heuristic [33], and structural patterns [34]. 
Symbolic PDB heuristic uses Boolean function to 
represent heuristic function in the context of symbolic 
planning space. Exactly speaking, symbolic PDB is 
constructed in the form of binary decision diagram 
(BDD). Based on symbolic representation of heuristic 
function and planning space, explicit pattern database 
search algorithm and symbolic pattern database search 
algorithm thus can be both incorporated into the symbolic 
planning framework. Merge-and-shrink abstraction 
derives heuristic based on the SAS+ formulation 
consisting of two parts: the merging strategy that decides 
to choose which two abstractions to compute their 
synchronized product, and the shrinking strategy that 
chooses which abstraction to compute its homomorphism. 
Over the years, abstract heuristics have shown to be very 
effective in several hard search problems, including cost-
optimal planning [35].  

H.  Landmark Heuristic 
The notion of landmarks for deterministic planning are 

facts that must take place at some point in every solution 
plan for a given planning task [36]. For instance, on(A, B) 
is a goal in a Blocksworld task that has block A stacked 
on block B. It is evident that clear(B) must hold at some 
point for the goal  on(A, B) to be achieved, and thus 
clear(B) is a landmark for that task. Goals are trivially 
landmarks, and thus on(A, B) is a landmark as well. 
There is an ordering between these two landmarks. Due 
to different constraints imposed on orderings, various 
ordering relationships will be defined precisely [36][37]. 
Given an instantiated planning task, all landmarks and 
orderings can be extracted theoretically, though it is 
indeed PSPACE-hard. A number of approximate methods 
have been proposed to obtain landmarks and orderings as 
much as possible in preprocess before planning. 

The Landmark heuristic was first introduced by 
Richter et al. [12].  Since landmark is a intermediate (or 
goal-level) fact that must be achieved in order to reach a 

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2103

© 2012 ACADEMY PUBLISHER



 
Heuristics 

(admissible, inadmissible)

Planning Paradigms 
(state space planning, others)

Search algorithms 
(optimal, suboptimal)

 
Figure 5. The abstraction idea to derive heuristic in AI research

goal, a naive idea using landmark and ordering 
information to derive heuristic for a state s is to compute 
the  landmarks that still need to be achieved from s 
onwards. Given a planning task T, the set of extracted 
landmarks L and the set of orderings between landmarks 
D are pre-computed before planning. Let s be a search 
state and π be a path, i.e., a sequence of states, then the 
formal definition of landmark heuristic h is defined as 
follows: 

h (s) = (L - Accepted (s, π)) ∪ ReqAgain (s, π) 
where Accepted(s, π) ⊆ L and ReqAgain(s, π) ⊆ 

Accepted (s, π) are the sets of accepted and required again 
landmarks, respectively. A landmark is accepted if it is 
true at some time along π. An accepted landmark is 
required again if (i) it does not hold in , and (ii) it is 
ordered greedy necessarily before some landmark which 
is not accepted. The number L (s, π) is then the heuristic 
value assigned to state s. 

The LAMA planner [11] developed by Richter and 
Westphal employed such landmark based heuristic in its 
search framework and was the clear winner of the 
Sequential Satisficing Track at the 2008 International 
Planning Competition. in addition to derive heuristic,  
landmark information is also used to compute preferred 
operators.  Karpas and Domshlak [38] also proposed a 
methodology for deriving admissible heuristic estimates 
for cost-optimal planning from a set of planning 
landmarks. The resulting heuristics fall into a novel class 
of multi-path dependent heuristics. 

I. Summary 
So far, we have discussed several heuristic derivation 

techniques separately. There are some incomplete 
comparisons on accuracy of these heuristics [23][39]. A 
new trend is to combine different heuristics to form a 
more informative heuristic estimate. For example, Roger 
et al. described several methods for combining heuristics 
estimates in satisficing planning framework [40].  
Helmert et al. obtained landmark cut heuristic by 
analyzing the connections between four classes of 
heuristics [23]. Domshlak et al. proposed  a way to bring 
landmarks information into abstraction [41]. 

 

III. HEURISTIC FOR OTHER PLANNING PARADIGMS 

Besides in state space planning, heuristic techniques 
are also applied in other planning paradigms. Metric-FF 
[13] can be seen as a numeric version of FF, thus it is also 
a heuristic planner. The heuristic of Metric-FF 
significantly extends the ability of relaxed planning graph 
heuristic to deal with numeric information. The planner 
LPG-TD derives heuristic in action graph which is able to 
handle numeric information [9]. MBP is a non-
deterministic planner [14] performs heuristic search in 
and/or graph. The compilation based planner MIPS [15] 
uses heuristic techniques in BDD search space in order to 
compact large search space. Other planners employing 
heuristic techniques include SATPLAN [42], SAPAPS, 
YochanPS [43] and so on. The performances of those 
planning paradigms benefit a lot from heuristic search. 

VI. CONSLUSION 

As a fundamental problem-solving tool in artificial 
intelligence research as well as in computer science, 
heuristic techniques are widely used to solve lots of 
complicated problems. Researchers pay much effort to 
derive accurate heuristics, to construct compact search 
spaces, and to develop effective guided search algorithms. 
So far, a number of generic heuristic search algorithms 
are developed by researchers which fell into two 
categories: complete search and local search. Examples 
of complete search algorithms used in planning include 
A*, WA*, greedy best-first search, Anytime Heuristic 
[43], BDDA* [44],  Examples of local search algorithms 
include hill climbing, Enforced Hill Climbing, stochastic 
local search, and so on. 

 
Planning as heuristic search has been a dominant 

approach in planning community in last decade. A 
number of heuristic based planners are developed and 
exhibit distinguished planning performances, such as 
HSP, FF, Fast Downward, LAMA, and so on.  The hot 
topics of heuristic planning are as follows: heuristic 
derivation techniques to obtain more accurate heuristic 
evaluation with less computation cost, search algorithms 
to guide search process more quickly, and planning 
paradigms to better match with problem structures and/or 
solution requirements. That is to say, due to problem 
structures and/or different solution requirements, 
admissible or inadmissible heuristics, optimal solution or 
suboptimal solution, and state space planning or other 
planning paradigms will be considered specifically. 

We have reported on an extensive survey and analysis 
of research work related to heuristic derivation techniques 
for state space search planning and other planning 
paradigms. Survey results reveal that heuristic techniques 
have been extensively applied in many efficient planners 
and result in impressive performances. Further research 
includes deriving more accurate heuristics through 
exploiting structure information in greater depth, and 
combining different heuristic estimates into a consistent 
framework to improve the informativeness of the 
heuristics. 
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