
Software Reliability Test Based on Markov
Usage Model

Kuanjiu Zhou

1School of Software, Dalian University of Technology, Dalian, China
Email: zhoukj@dlut.edu.cn

Xiaolong Wang1, Gang Hou1*, Jie Wang1 and Shanbin Ai1

Email: {wxl_dut, hg.dut, wangjie1003, aishanbin}@163.com

Abstract—The reliability test for embedded
software system is very difficult due to its complex
structure and large scale. Markov usage model
which describes the software usage with Markov
process is widely used for statistical test. Software
statistical test based on Markov usage model is an
effective approach to the generation of test cases
with high efficiency and the evaluation of software
reliability in a quantitative way. This paper mainly
focuses on the generation of Markov usage model of
software system and the method of software reliability
test based on it. Firstly, a method to build Markov
usage model based on improved state transition
matrix (STM), which is a table-based modeling
language, is proposed. Then a software reliability test
method including test case generation and test
adequacy determination based on Markov usage
model is presented. An improved Kullback
discriminant is selected as the judgment criteria of
convergence from the test chain to the usage chain in
order to measure whether the testing process is
sufficient. Finally, a Markov test cases generation tool
MTCG is developed which implements the methods
put forward in this paper. Experimental verification
of test adequacy and efficiency is made through a
comparison between the Markov usage model-based
method and a completely random test method, the
results of which show that software reliability test
based on Markov usage model is approving,
high-efficient and promising.

Index Terms—Markov Usage Model, Software
Reliability Test, Test Case Generation, Test Adequacy

I. INTRODUCTION

The reliability of embedded software system attracts
more and more attention since it is widely applied in
aerospace, military, medical, communications, nuclear
reactions, and industrial control areas. Due to the large

scale and complex structure of embedded software
system, once the software system fails, inestimable
consequences would be caused, such as loss of life and
property, severe damage to the natural environment. For
example, in June 1996, the European Space Agency's
Ariane 5 launch vehicle exploded catastrophically after
37 seconds took-off because of software failures. In the
mid-1980s, the United States Therac-25 radiation therapy
went out of order in 2nd treatment mode, resulting in a
severe medical malpractice of two deaths and several
injuries, because its security system had not been tested
sufficiently after its interlock device was replaced. Most
of those accidents are owing to inadequate software
testing, which cannot guarantee the software reliability
effectively.

Different from traditional software testing, software
reliability test requires the software usage model to
generate test cases. Software reliability can be evaluated
according to the statistical results of software testing.
There are three basic problems of software reliability test,
the reliability test model, test adequacy and test case
generation [1-3].

Software testing method based on usage model can
effectively reduce the number of test cases, save testing
costs and improve software reliability, since it is much
closer to the actual usage of software system than the
completely random testing method. Markov usage model
is a commonly used model in software reliability test,
which is widely used in the fields such as information
theory, automatic control, communication techniques,
computer sciences and genetics [4].

Much research has been done on Markov usage model.
In 1994, Whittaker and Thomason applied Markov chain
to software reliability test for the first time [5]. Wang Ji
and Chen Huowang proposed a method of Markov chain
usage model based on UML use case diagram and state
diagrams which provides formal description base for
testing UML-based software [6]. Gao Haichang used the
Kullback discriminant as the convergence judgment
criteria of the test-chain to usage-chain, and testified the
inevitability of the convergence theoretically [7]. Murali
Krishna proposed a new semi-Markov process-based
model to compute the network parameters such as
saturation throughput for the IEEE 802.11 Distributed
Coordination Function (DCF) employing the Binary

This work is supported by the National Natural Science Foundation
of China (Grant No. 91018003) and the Central University Basic
Research Special Foundation (Grant No. 1600-852007).

* Corresponding author: Email: hg.dut@163.com

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2061

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.2061-2068

Exponential Backoff (BEB) [8]. He Yiming and Pu
Yingxia applied Markov chains and Spatial Markov chain
to investigate the spatial and temporal characteristics of
industrial structure level [9]. Liu YS proposed the CSP
(checkpoint-based spare processor) model which is an
improvement of the traditional SP (spare processor)
model to solve the fault-tolerant problem of SP [10]. Li
Mingshu proposed an adaptive multilateral negotiation
model for software process modeling, namely
AMNM-PA, which is based on non-stationary
finite-horizon Markov decision processes and uses the
model-independent Q learning algorithm to choose
negotiation strategies [11]. Mo YC and Yang XZ
demonstrated how to analyze mission reliability of the
generalized PMS with random phase duration and
Markov regenerative intra phase processes to attack the
weak points of the state-of-the-art [12]. Liu Y and Ma ZY
and Shao WZ proposed an approach to transforming
UML diagrams of software architecture to Markov chain
for the quantitative evaluation of reliability [13]. Kong
DG presented a method based on Hidden Markov model
for the analysis of time sequences in multithread
programs [14]. Zhang DP and Xia CH proposed an
effective method for computing optimal state transition
probabilities for software reliability estimation based on a
Markov usage model [15]. Xu Libo and Wu Guoxin
studied the performances of various congestion control
strategies through building accurate Markov chain
network models for TD and RED arithmetic [16]. Brian
and Yariv presented an expectation-maximization
procedure for estimating the generator of a bivariate
Markov chain and compared the performance of the
estimation algorithm to an earlier approximate estimation
procedure based on time sampling [17]. Zhang Youzhi
described a hidden Markov model in the field of data
mining applications [18]. In addition, Tian Xinguang and
Wang Zikun did lots of contributions to the application of
the Markov model [19-22].

Our major work in this paper focuses on the
construction and verification of Markov usage model, and
how to generate test cases as few as possible based on the
usage model in the premise of ensuring test adequacy in
order to improve the efficiency of embedded software
reliability test.

This paper is structured as follows. Section II presents
an introduction of Markov usage model and proposes a
modeling method for Markov usage model based on STM.
In Section III, we put forward a software testing method
based on Markov usage model, including test case
generation and test adequacy determination. In Section IV,
we carry out an experiment with an independently
developed test case generation tool MTCG and make
verification on the efficiency and adequacy of software
reliability test based on Markov usage model. The
conclusions are drawn in Section V.

II. MARKOV USAGE MODEL

A. Introduction of Markov Usage Model

Markov usage model is a classic software usage model,

which describes the software usage with Markov process.
In probability and statistics theory, if the state of a

process or a system at the moment t0 is known and its
state at the moment t has no relationship with any other
states before t0 (t > t0), we can conclude that the process
is a Markov process and the process or the system has
Markov property, which is also called memoryless
property.

The Markov process can be described with a
distribution function. Assume that a stochastic process X(t)
(t∈T) is a Markov process and has a state space I. For t1
< t2 < … < tn (n ≥ 3，ti∈T), the conditional probability
distribution of X(tn) under the conditions that X(ti) = xi
(xi∈I， i =1, 2, ... , n−1) equals its conditional
probability distribution under the condition that X(tn-1) =
xn-1. That is to say, for xn∈R,

1 1 2 2

1 1 1 1

{ () | () , () ,
() } { () | () }

n n

n n n n n n

P X t x X t x X t x
X t x P X t x X t x− − − −

≤ = = …
= = ≤ = (1)

The Markov chain is the Markov process with discrete
time and states, which can be denoted by {Xn = X(n)，n=0,
1, 2, …}. Assume that a Markov chain has a state space
I={a1, a2,…} (ai∈R), the Markov property can also be
described with the conditional probability distribution as
follows:

1 1 1 1{ | , , , ,
} { | }

m n j tr irt i t i

m i m n j m i

P X a X a X a X a
X a P X a X a

+

+

= = = … =

= = = =
 (2)

Here, n, r∈N+, 210 rt t t m≤ < <…< < .
The conditional probability Pij denotes the transition

probability of the Markov chain from state ai at the
moment m to state aj at the moment m+n. The definition
of Pij can be described as follows:

(,) { | }ij m n j m iP m m n P X a X a++ = = = (3)
As the Markov chain transfers to one of the states in

{a1, a2,…} at the moment m+n from the state ai at the
moment m inevitably, the following equality can be
discovered:

j 1
(,) 1, (1,2,)ijP m m n i

∞

=

+ = = …∑ (4)

A matrix constituted of transition probability is called
the transition probability matrix of a Markov chain. The
transition probability matrix is of great use in the
generation of test cases and in the determination of test
adequacy. Based on (4), we can obviously conclude that
the summation of the elements value in each row is 1 in a
transition probability matrix.

Integrated the concepts presented above, the Markov
usage model is a sequence of states and transitions with
the key characteristic that the appearance probability of
state si depends only on the previous state and is
independent of any other history states.

Fig. 1 gives an example of Markov usage model.
{START, A, B, C, EXIT} is the state space, in which
START denotes the beginning state of the software usage
and EXIT denotes the ending state. {(a, 1.0), (b, 0.5), (c,
0.5), (d, 0.75), (e, 0.25), (f, 0.5), (g, 0.25), (h, 0.25)} is
the transition set of the usage model and the decimals

2062 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

denote the transition probability. Especially, for an
embedded software system, the transitions or events in
the transition set can be used to denote interrupts or
messages.

Figure 1. An example of Markov usage model.

B. Modeling Method Based on STM
One of the key problems in software testing based on

Markov usage model is how to construct the model in the
requirements modeling. Nowadays, some useful research
in the Markov modeling has been done in Reference [1-2,
5-7]. In this paper, we present a method of modeling
Markov usage model based on State Transition Matrix
(STM) [23-24]. STM is a table-based modeling language
for describing behavior of distributed systems [25-26].
Kong Weiqiang has given a detailed description of STM
[27], and uses STM to model checking for embedded
software. In this paper, we improve the form of STM by
adding the probability of events, in order to suit for the
generation of Markov usage model.

Programming language and table notations can be
mixed for specifying a system design in STM [28-29]. In
this paper, we consider a subset of STM with the
motivation of giving a precise description that can be
formally verified efficiently. In order to formally describe
UML state machines, we formalize the structure of STMs
and the dynamic behavior of their design, adopting a
similar approach used in Reference [27]. Fig.2 shows an
example of STM.

Figure 2. An example of state transition matrix(STM).

We firstly describe an action language L that is needed
for defining the structure of STMs. L is chosen to be a
simple subset of ANSI C language and thus the syntax

and semantics follow the conventions of C programming
language. Type system of L consists of Boolean, Integer,
and Real. Supported expressions of L are (A) Boolean
literals true and false, Integer literals and Real literals, (B)
Variable identifiers, and (C) infix expressions leftexpr op
rightexpr, where op can be one of +, -, *, /, %, &&, ||, >,
<, >=, <=, = =, or !=, with the semantics of ANSI C.
Supported statements of L are (A) assignments of the
form lhs = rhs, and (B) if statements of the form if
condition {statement1} else {statement2}.

Assuming this action language L, the structure of a
STM H is a tuple <S,E,P,C>, where

 S is a finite set of state. Each state s∈S is associated
with a (unique) index number denoted by index(s)∈ Nat.
During execution of H, only one state denoted by
active(H) is active. Initially, the active state is s where
index(s) = 0.

 E is a finite set of events consisting of external
events Eexternal and internal events Einternal, where Eexternal ∩
Einternal =φ . An event eE ∈Eexternal is represented by a
Boolean variable of L (whose name is prefixed with a
lower-case “x” by convention), and an event eI ∈Einternal

is represented by a Boolean expression (possibly a
Boolean variable) of L. Each event is associated with a
(unique) index number denoted by index(e)∈ Nat.

 P is a finite set of transition probability. Pij∈P
means the probability of event Ej occurs, while in the
state Si. Here, the value of Pi1 is limited by two types of
constraint, one is structure constraint, and the other is
usage constraint. Structure constraint reflects the basic
properties of Markov usage chain, mainly including (A)
0.001<=Pi1<=0.999 and (B) the summation of Pi1, Pi2, ...,
Pin is 1. Structure constraint is fitted for all software
system. Usage constraint reflects the actual usage of
software system, including (A) linear constraints such as
P2,4 =2P2,3, P3,5 =P1,3+2P1,5, and (B) interval constraints
such as 0.25<=P3,1<0.35, 0.5<P3,1<=0.85. Usage
constraint can be obtained from requirements analysis
and usage statistics of software system. Based on these
constraints above, all the transition probability in P can
be figured out by solving the equation constituted of
inequality constraints.

 C is a finite set of cells consisting of Normal cells
Cnormal, Ignore cells Cignore, and Invalid cells Cinvalid. Each
normal cell cN ∈ Cnormal is a tuple < s, e, u, a, s’ > ∈ S
× E × (L ∪ {null}) × (L ∪{/}) × S. We define
source(cN)=s, event(cN)=e, guards(cN)=u, actions(cN)=a,
and target(cN)= s’. Each Ignore cell is a tuple < s, e, />,
and each Invalid cell is a tuple < s, e, ×>. Functions
source and event are also defined for Ignore and Invalid
cells cI ∈ Cignore∪ Cinvalid as for cN, but guards, actions
and target are not.

Events of a STM and guards of a Normal cell are
expressed as L expressions of type Boolean, and actions
of a Normal cell are a list of L statements. A cell c of a
STM H, which is pinpointed by its index numbers
(index(source(c)), index(event(c))) together with its
guards if guards(c) ≠ null1, specifies the behavior of H
(under condition of guards(c) if available) when event

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2063

© 2012 ACADEMY PUBLISHER

event(c) is dispatched while H is in state source(c) (i.e.,
active(H) = source(c)). If c ∈ Cnormal, actions(c) will be
executed2 atomically and after that, H moves to state
target(c). If c ∈ Cignore, denoted in a STM table by the
symbol “/”, nothing changes. If c ∈ Cinvalid, denoted in a
STM table by the symbol “×”, an error occurs.
Informally, an Ignore cell means that the dispatch of an
event in a state is ignored, and an Invalid cell means that
the dispatch of an event in a state is never possible.

III. SOFTWARE TESTING METHODS BASED ON MARKOV
USAGE MODEL

The Markov usage model constructed with the methods
given above provides an essential model for the reliability
testing of embedded software. The method of test case
generation based on Markov usage model is the key
problem in reliability test of embedded software and the
most important job we focus on in this paper.

A. Algorithm of the Generation of Test Cases
In the generation of test cases for embedded software

based on Markov usage model, a test case is a sequence
of states or transitions passing though the Markov test
chain from the beginning state to the ending state. The
Markov test chain is formed from the usage model as
follows:

Firstly, the test chain is built based on the structure of
the usage chain and each transition probability of the
edges is replaced to a counter with an initial value 0.
Then, as the testing process goes forward, the counter of
the edge increases by 1 if a test case goes through it.
Finally, the counter of each edge is converted to transition
probability based on the statistical results.

In this paper, we present an algorithm of test case
generation based on Markov usage model in software
reliability test as follows:

Step 1: Let st_curr denote the current state and set the
value of st_curr = START.

Step 2: Generate a uniform random decimal rnd
between 0 and 1 at the state st_curr and select a transition
with the strategy in Step 3.

Step 3: Based on all the transitions {(tk, pk)} (k=1,
2, …, m and k, m∈N+) from the state st_curr to the state
st_next in the usage model, divide the interval [0, 1) into
m intervals {I1, I2, …, Im}. Here I1=[0, p1), I2 =[p1,
p1+p2) ,…, Im=[p1+p2+…+pm, 1). If rnd∈Ik, record the
transition tk and set st_curr = st_next.

Step 4: Repeat Step 2 and Step 3 until the value of
st_curr equals EXIT and all the transitions recorded in
Step 3 form a test case.

Step 5: Repeat all the steps above to generate enough
test cases until the testing process is sufficient.

In the algorithm given above, test cases are generated
from uniform random decimals referenced to transition
probability of Markov usage model. This algorithm not
only satisfies the randomness of the test case generation
process, but also takes the transition statistical probability
of software usage into account. That is why we can
generate test cases more corresponded to the actual usage

of software system with a smaller quantity. Table I shows
an example of a test case generated based on the Markov
usage model in Fig. 1.

TABLE I.
AN EXAMPLE OF A TEST CASE GENERATED BASED ON

MARKOV USAGE MODEL

Order Transition/Event Next State
1 a A
2 c C
3 g B
4 e C
5 f C
6 h EXIT

B. Feasibility of Test Case Generation Algorithm
In software testing based on Markov usage model, the

key point to ensure the feasibility of test case generation
algorithm is to generate random paths in which Ptj is
equal to Pj. Ptj is the output edge transition probability of
state S in the test chain, and atj is the corresponding edge
to aj in the usage chain.

Assume that the state S has k output edges, such as a1,
a2, …, ak, P1, P2, …, Pk are their corresponding probability.
We have the following equality

1P
1

i =∑
=

k

i

 (5)

 Assume that the number of visiting state S in the test
chain is n and the number of output edge aj (1≤j≤k)is m,
corresponding to the Bernoullitheorem we have the
conclusion that

jP
n
m
=

∞→n
lim (6)

According to the above formula, it can be ensured than
the transition probability atj in the test chain is equal to
the access probability Ptj in the usage chain when n is
large enough as long as the random decimal generation
obey the 0~1 uniform random distribution.

1
1

k 1

1

tj
1 k 1

P 1 |

j

k
k
j

k

P j j

k k j
kP

dx P P P=
−

=

−

= =

∑
= = − =∑ ∑

∑
∫ (7)

It is obviously that Ptj is always equal to Pj when n is
large enough as long as the random decimals generated
for the path selection obey the 0~1 uniform random
distribution.

C. Test Adequacy Determination Criteria
Test adequacy determination criteria become an

essential problem that must be addressed in software
reliability test. The test adequacy determination criteria
based on Markov usage model is a model comparison
criteria which comparing the usage environment (usage
chain) and test environment (test chain). The test can be
considered sufficient until the test chain impend over the
usage chain.

The test chain U and the usage chain T can be seen as
two different descriptions of Markov process in software

2064 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

reliability test theory based on Markov usage model, so
the Discriminant value can be applied to determine the
adequacy of software testing. Discriminant value, also
known as Kullback discriminant, is the mathematical
expectation of convergence value of two random
processes. For simplicity, discriminant value is denoted
by D(U,T), where U represents the usage chain, T
represents the test chain. The value of D(U, T) is closer to
0, the test chain T is more similar to the usage chain U.
The testing process is considered sufficient and can be
stopped when the discriminant value is less than the
expected threshold value. Discriminant value can be
calculated accurately as follows:

)]

|T),...,X,XPr(X
|U),...,X,XPr(X[log(

n
1limD(U,T)

n10

n10

n ∞→
= (8)

()0 1 nPr X , X ,..., X | λ represents the circumstances
of executing n set of test cases under the condition of
probability distribution with parameter λ. The D(U,T)
cannot be obtained directly by calculating the usage chain
U and the test chain T and the test. It’s equivalent formula
as follows:

∑∑
==

=
u

1j i,j

i,j
i,j

u

1i
i t

u
loguπD(U,T) (9)

The uij, and tij represent the transition probability from
state i to state j in usage chain and test chain respectively.
πi represent the long-run occupation ratio of state i.
Clearly, the state's occupation ratio in the long-run is
equal to the sum of products of adjacent state's
occupation ratio and the transition probability from the
adjacent state to the state. And the sum of all state’s
transition probability in the long-run is equal to one. The
calculate method as follows:

 ∑=
n

i
jiij P ,ππ (10)

 1π
n

1i
i =∑

=

 (11)

The discriminant value of D(U,T) is not always
calculable according to (9). If the test chain does not
cover all edge of the usage chain-chain, the value of tij is
zero and is not calculable. Therefore, only when the test
chain covers all the edge, the D(U, T) is feasible and
meaningful.

We adopt an improved Kullback discriminant, denoted
K(U,T), to be criteria for judging the adequacy of
software reliability test. The K(U,T), as follows, is a
variant calculation method to D(U,T) which is always
calculable after modified.

∑∑
== +

=
u

1j i,ji,j

i,j
i,j

u

1i
i t))ε-ε(sgn(t

u
loguπK(U,T)

(12)

Here, ε is a sufficiently small positive decimal. sgn (x)
represent a function: When x = 0, sgn (x) = 0; when x <0,
sgn (x) = 1; when x> 0, sgn (x) = 1. Obviously, when the
test chain T does not cover all the edges, K(U, T) is
calculable as usual. When the test chain T covers all
edges, ε-ε (sgn (ti, j)) = 0. Thus K(U, T) is equal to

D(U,T).
The closer is the test chain T to the usage chain U, the

nearer to zero is the K(U,T). The convergence threshold
can be set properly and acceptably according to the
parameters of different software systems. When the value
of K(U,T) is less than the threshold, the test adequacy can
be considered reached and the testing process can be
stopped.

IV. EXPERIMENTS AND VERIFICATION

In this paper, a generation tool of test cases based on
Markov usage model, named MTCG (Markov Test Cases
Generator), was successfully developed and implemented
in C# language with Microsoft Visual Studio 2008
integrated development environment and .NET
Framework 3.5 framework. This test case generation tool
MTCG enable software testers to customize and verify a
Markov usage model of software system based on STM
and then automatically draw a graph for the usage model.
However, the main function of MTCG is to generate test
cases based on the usage model customized above
automatically and get the statistical information in testing
process in order to evaluate and improve the reliability of
the software. Using MTCG, we carried out an experiment
of software testing based on the usage model shown in
Fig. 1 and analyzed the adequacy of the testing process
and the efficiency of the testing method proposed in this
paper.

A. Adequacy Verification of Software Reliability Test
Process

Based on the improved Kullback discriminant
proposed in section III, an experiment was carried out
with ε=0.00001 and K(U, T) threshold =0.001 to test and
verify the adequacy of the testing process. Table II shows
the statistical results in the experiment, including the
node coverage, edge coverage and the value of K(U, T)
with different number of test cases.

TABLE II.
STATISTICAL RESULTS OF TEST CASES GENERATED BASED

ON MARKOV USAGE MODEL

No. Number
of Cases

Node
Coverage

Edge
Coverage K(U,T)

1 1 0.8000 0.5000 0.8055

2 2 1.0000 0.8750 0.6643

3 3 1.0000 1.0000 0.5928

4 4 1.0000 1.0000 0.1807

5 5 1.0000 1.0000 0.0706

6 10 1.0000 1.0000 0.0123

7 20 1.0000 1.0000 0.0188

8 50 1.0000 1.0000 0.0099

9 100 1.0000 1.0000 0.0064

10 200 1.0000 1.0000 0.0049

11 300 1.0000 1.0000 0.0042

12 391 1.0000 1.0000 0.0006

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2065

© 2012 ACADEMY PUBLISHER

The first two rows of Table II show that the value of K
(U, T) also can be calculated with the use of improved
Kullback discriminant, even under the condition that the
test cases failed to cover all the migration edges in usage
model. This result coincides well with the theory
proposed in section III and also indicates that the
calculation method of K(U,T) with the improved
Kullback discriminant is approving.

Statistical data in Table II shows that the convergence
value K(U, T) from the test chain to the usage chain
decreases overall as the number of test cases increases,
which proves the fact that the test adequacy enhances
gradually with the increase of test cases in software
reliability test.

Fig. 3 shows the two matrixes of transition probability
of the test chain and the usage chain when the test
adequacy is reached. We can obviously discover that the
difference between the two matrixes is extremely small,
that is to say, the test chain has been very close to the
usage chain when the testing process ends.

(a)

(b)

Figure 3. Matrixes of transition probability of the usage chain (a) and
the test chain (b) when testing is sufficient.

B. Efficiency Verification of the Test Case Generation
Method

In order to test and verify the effectiveness of the test
case generation method presented in this paper, an
external button is added to our test case generator MTCG
to generate test cases in a completely random way.
Comparison between the statistical results of test cases
generated by Markov usage model and those in a

completely random way are made, the results of which
indicates that the generation method is efficient.

Table III shows the statistical results of test cases
generated in a completely random way for a comparison,
including the number of test cases, node coverage, edge
coverage and the discriminant value K(U,T). Here ε is set
to 0.00001 and the threshold of K(U,T) is set to 0.001.

TABLE III.
STATISTICAL RESULTS OF TEST CASES GENERATED IN A

COMPLETELY RANDOM WAY

No. Number
of Cases

Node
Coverage

Edge
Coverage K(U,T)

1 1 0.8000 0.5000 0.8055

2 2 1.0000 0.8750 0.6833

3 3 1.0000 0.8750 0.6258

4 4 1.0000 0.8750 0.6307

5 5 1.0000 1.0000 0.5690

6 10 1.0000 1.0000 0.3739

7 20 1.0000 1.0000 0.3048

8 50 1.0000 1.0000 0.2832

9 100 1.0000 1.0000 0.0859

10 200 1.0000 1.0000 0.0968

11 400 1.0000 1.0000 0.0754

12 800 1.0000 1.0000 0.0413

13 1000 1.0000 1.0000 0.0295

14 2000 1.0000 1.0000 0.0012

15 2169 1.0000 1.0000 0.0009

Based on the statistical data in Table III, for the same

software usage model in Fig. 1, 2169 test cases are
generated until the testing process is sufficient in a
completely random way. That is to say, in a completely
random testing, at least 2169 test cases have to be
executed in order to correspond to the actual usage of
software system. However, based on the statistical data in
Table II, only 391 test cases are generated by Markov
usage model when the test adequacy is reached. That is to
say, in a Markov usage model-based testing, much fewer
test cases (18% in our experiments) need to be executed
to correspond to the actual usage of software system.
Integrated the comparison and analysis above, we can
conclude that the test case generation method based on
Markov usage model proposed in this paper is of high
efficiency (See Fig. 4).

In addition, we can discover that the testing methods
based on Markov usage model can cover all the
transitions faster than a completely random testing
method if the edge coverage is compared in Table II and
Table III. That is to say, software testing based on
Markov usage model has stronger ability of path
coverage than completely random testing.

2066 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 4. Different convergence status of discriminant between the

Markov usage model-based and completely random testing methods.

C. Characteristic Analysis of Testing Method
Furthermore, we can find that the convergence value

K(U, T) from the test chain to the usage chain increases
abnormally while the test cases increasing from ten to
twenty according to the sixth and seventh rows in Table II.
This is a normal phenomenon which is caused by the
instability of the test chain. In fact, this instability
characteristic is a localized phenomenon, and will not
affect the test adequacy determination.

This phenomenon also can be found in Table III. The
convergence value K(U,T) increases abnormally twice
according to the third, fourth, ninth and tenth rows in
Table III. This proves that random testing is much more
instable than the testing method proposed in this paper
which is based on Markov usage model.

V. CONCLUSIONS

Software reliability test based on Markov usage model
is an efficient approach to test cases generation and
software reliability evaluation in a quantitative way. In
this paper, we propose a modeling method for Markov
usage model based on improved state transition matrix
(STM), which also contributes to usage model checking.
A method for test case generation based on Markov usage
model is put forward in detail, and the test adequacy
determination method is furtherly presented. We select an
improved Kullback discriminant as the convergence
judgment criteria from the test chain to the usage chain in
order to measure whether the test adequacy has been
reached. An experiment with an independently developed
test case generation tool MTCG is carried out and the
statistical results show that software reliability test based
on Markov usage model can generate much fewer test
cases (18% in our experiment) than the completely
random testing method in the premise of ensuring test
adequacy. That is to say, Markov usage model-based
software reliability test presented in this paper is
approving, high-efficient and promising.

REFERENCES

[1] Prowell SJ. JUMBL: A tool for model-based statistical

testing // Proceedings of the 36th Annual Hawaii
International Conference on System Sciences [C].IEEE
Computer Society Press, 2003.

[2] Sayre K, Poore JH. Stopping Criteria for Statistical
Testing [J]. Information and Software Technology, 2000,
12(42): 851-857.

[3] Xi Hongyu, Xu Hong, Gao Zhongyi. Ada Software Test
Case Generation Tool [J]. Journal of Software, 1997,8(04):
297-302.

[4] Zhang Yufen, Zhang Qunfeng, Yu Ruihua. Markov
Property of Markov Chains and Its Test [C]. Proceedings
of the Ninth International Conference on Machine
Learning and Cybernetics, July 2010, 11-14.

[5] Whittaker JA, Thomason MG. A Markov Chain Model
for Statistical Software Testing[J]. IEEE Transactions on
Software Engineering, 1994, 20(10):812-824.

[6] Yan Jiong, Wang Ji, Chen Huowang. Deriving Software
Markov Chain Usage Model from UML Models[J].
Journal of Software, 2005, 16(8):1386−1394(in Chinese).

[7] Gao Haichang, Feng Boqin, Zeng Ming,
HeXiaohong. Statistical Software Test Based on Markov
Chain Path Usage Model [J]. Computer Engineering, 2006,
32(19): 20-22(in Chinese).

[8] Murali Krishna Kadiyala, Dipti Shikha, Ravi Pendse et al.
Semi-Markov Process based Model for Performance
Analysis of Wireless LANs [C]. Seventh IEEE PerCom
Workshop on Pervasive Wireless Networking, March
2011,613-618.

[9] Yiming He, Yingxia Pu, Jiechen Wang et al.
Spatial-temporal dynamics of Sichuan industrial structure
with Markov chains approach [C]. 18th International
Conference on Geoinformatics, June 2010, 1-6.

[10] Liu YS, Zhang T, Zhang CF, Zha YB. A fault-tolerant
scheduling algorithm for heterogeneous distributed
real-time simulation systems [J]. Journal of Software,
2006, 17(10):2040−2047(in Chinese).

[11] Li N, Li MS, Wang Q, Zhao C, Du SZ. Adaptive Agent
Negotiation for Software Process Modeling [J]. Journal of
Software, 2009, 20(3): 557−566(in Chinese).

[12] Mo YC, Yang XZ, Cui G, Liu HW. Mission Reliability
Analysis of Generalized Phased Mission Systems [J].
Journal of Software, 2007, 18(4):1068−1076(in Chinese).

[13] Liu Y, Ma ZY, He X, Shao WZ. Approach to
transforming UML model to reliability analysis model [J].
Journal of Software, 2010, 21(2): 287−304(in Chinese).

[14] Kong DG, Tan XB, Xi HS, Shuai JM, Gong T. Hidden
Markov model for multi-thread programs time sequence
analysis [J]. Journal of Software, 2010, 21(3): 461−472
(in Chinese).

[15] Zhang DP, Nie CH, Xu BW. Importance Sampling
Method of Software Reliability Estimation [J]. Journal of
Software, 2009, 20(10): 2859−2866(in Chinese).

[16] Xu Libo, Wu Guoxin. Analysis on Congestion Control
Strategy Based on Time Series Deduction [J]. Chinese
Journal of Computers, 2007, 30(9): 1638-1644(in
Chinese).

[17] Brian L. Mark and Yariv Ephraim. On Modeling Network
Congestion Using Continuous-time Bivariate Markov
Chains [C]. 45th Annual Conference on Information
Sciences and Systems March, March 2011, 1-6.

[18] Zhang Youzhi. Research and application of hidden
Markov model in data mining [C]. Second IITA
International Conference on Geoscience and Remote
Sensing (IITA-GRS), Aug. 2010, 459-462.

[19] Tian Xinguang, Gao Lizhi, Sun Chunlai3, Zhang Eryan.
Anomaly Detection of Program Behaviors Based on
System Calls and Homogeneous Markov Chain Model [J].

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2067

© 2012 ACADEMY PUBLISHER

Journal of Computer Research and Developmen, 2007,
44(9): 1538-1544.

[20] Zhang DP, Nie CH, Xu BW. Cross-Entropy Method based
on Markov Decision Process for Optimal Software
Testing [J]. Journal of Software, 2008, 19(10): 2770-2779
(in Chinese).

[21] Wang Zi-kun, Yang Xin-gu. Birth-and-death process and
Markov chains. Beijing, Science press, 2005.

[22] Wang HJ, Li ZS, Cheng Y, Zhou P, Zhou W. A latent
variable model for cluster ensemble [J]. Journal of
Software, 2009, 20(4): 825−833(in Chinese).

[23] M. Watanabe, Extended Hierarchy State Transition Matrix
Design Method -Version 2.0 [J], CATS Technical Report,
1998.

[24] M. Matsumoto, K. Anada, D. Ueshima, M. Watanabe, and
A. Fukuda, Model Checking of State Transition Matrix[C],
In ITSSV 2005, AIST Technical Report
AIST-PS-2005-017, pp. 2-11, 2005.

[25] A. Armando, J. Mantovani and L. Platania, Bounded
Model Checking of Software using SMT Solvers instead
of SAT Solvers, In SPIN 2006, LNCS 3925, pp. 146-162,
2006.

[26] L. Moura and N. Bjørner, Z3: An Efficient SMT Solver
[C], In TACAS 2008, LNCS 4963, pp. 337-340, Springer,
2008.

[27] Weiqiang Kong, Tomohiro Shiraishi, Yuki Mizushima, et
al. An SMT Approach to Bounded Model Checking of
Design in State Transition Matrix [C]. Proceeding ICCSA
2010, IEEE Computer Society Washington, DC, USA,
2010, pp. 231-238.

[28] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs [C], in TACAS, 2004, pp. 168–176.

[29] L. Xu, SMT-based bounded model checking for realtime
systems [C], in QSIC, 2008, pp. 120–125.

Kuanjiu Zhou received B.S. degree in 1989 and M.S. degree in
1993 from Harbin Institute of Technology in computer science,
Harbin, China, and the Ph.D degree in 1996 from Harbin

Institute of Technology in management science and engineering.
During his M.S. work, his research interests include computer
science, software testing. During his Ph.D work, he specialized
in the complexity theory and system engineering. Since 1996,
he has been a software engineer, working for Huawei Co. in
Shenzhen, and Hisense Group in Qingdao. At Huawei, he
leaded a team that developed INSM in an intelligent network.
At Hisense, he researched the CDMA (Code Division Multiple
Access) mobile. His current research interests include software
testing and reliability theory.

Xiaolong Wang received B.S. degree in software engineering
in 2011 from Dalian University of Technology, Dalian, China,
is a M.S. candidate in computer science at Dalian University of
Technology, Dalian, China, since 2011. His current research
interests include software engineering, software testing and
reliability theory.

Gang Hou received B.S. degree in 2005 from Dalian University
of Technology in computer science and engineering, Dalian,
China, and M.S. degree in 2008 from Dalian University of
Technology in software engineering. His current research
interests include software engineering, software testing and
reliability theory.

Jie Wang received B.S. degree in 2002 and M.S. degree in
2004 from Harbin Institute of Technology in computer science,
Harbin, China, and the Ph.D degree in 2009 from Harbin
Institute of Technology in computer architecture. His current
research interests include FPGA, software testing and reliability
theory.

Shanbin Ai received B.S. degree in software engineering in
2011 from Dalian University of Technology, is a M.S. candidate
in computer science at Dalian University of Technology, Dalian,
China, since 2011. His current research interests include
software engineering, software testing and reliability theory.

2068 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

