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Abstract—The reliability test for embedded 
software system is very difficult due to its complex 
structure and large scale. Markov usage model 
which describes the software usage with Markov 
process is widely used for statistical test. Software 
statistical test based on Markov usage model is an 
effective approach to the generation of test cases 
with high efficiency and the evaluation of software 
reliability in a quantitative way. This paper mainly 
focuses on the generation of Markov usage model of 
software system and the method of software reliability 
test based on it. Firstly, a method to build Markov 
usage model based on improved state transition 
matrix (STM), which is a table-based modeling 
language, is proposed. Then a software reliability test 
method including test case generation and test 
adequacy determination based on Markov usage 
model is presented. An improved Kullback 
discriminant is selected as the judgment criteria of 
convergence from the test chain to the usage chain in 
order to measure whether the testing process is 
sufficient. Finally, a Markov test cases generation tool 
MTCG is developed which implements the methods 
put forward in this paper. Experimental verification 
of test adequacy and efficiency is made through a 
comparison between the Markov usage model-based 
method and a completely random test method, the 
results of which show that software reliability test 
based on Markov usage model is approving, 
high-efficient and promising. 

Index Terms—Markov Usage Model, Software 
Reliability Test, Test Case Generation, Test Adequacy  

I.  INTRODUCTION 

The reliability of embedded software system attracts 
more and more attention since it is widely applied in 
aerospace, military, medical, communications, nuclear 
reactions, and industrial control areas. Due to the large 

scale and complex structure of embedded software 
system, once the software system fails, inestimable 
consequences would be caused, such as loss of life and 
property, severe damage to the natural environment. For 
example, in June 1996, the European Space Agency's 
Ariane 5 launch vehicle exploded catastrophically after 
37 seconds took-off because of software failures. In the 
mid-1980s, the United States Therac-25 radiation therapy 
went out of order in 2nd treatment mode, resulting in a 
severe medical malpractice of two deaths and several 
injuries, because its security system had not been tested 
sufficiently after its interlock device was replaced. Most 
of those accidents are owing to inadequate software 
testing, which cannot guarantee the software reliability 
effectively. 

Different from traditional software testing, software 
reliability test requires the software usage model to 
generate test cases. Software reliability can be evaluated 
according to the statistical results of software testing. 
There are three basic problems of software reliability test, 
the reliability test model, test adequacy and test case 
generation [1-3]. 

Software testing method based on usage model can 
effectively reduce the number of test cases, save testing 
costs and improve software reliability, since it is much 
closer to the actual usage of software system than the 
completely random testing method. Markov usage model 
is a commonly used model in software reliability test, 
which is widely used in the fields such as information 
theory, automatic control, communication techniques, 
computer sciences and genetics [4]. 

Much research has been done on Markov usage model. 
In 1994, Whittaker and Thomason applied Markov chain 
to software reliability test for the first time [5]. Wang Ji 
and Chen Huowang proposed a method of Markov chain 
usage model based on UML use case diagram and state 
diagrams which provides formal description base for 
testing UML-based software [6]. Gao Haichang used the 
Kullback discriminant as the convergence judgment 
criteria of the test-chain to usage-chain, and testified the 
inevitability of the convergence theoretically [7]. Murali 
Krishna proposed a new semi-Markov process-based 
model to compute the network parameters such as 
saturation throughput for the IEEE 802.11 Distributed 
Coordination Function (DCF) employing the Binary 
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Exponential Backoff (BEB) [8]. He Yiming and Pu 
Yingxia applied Markov chains and Spatial Markov chain 
to investigate the spatial and temporal characteristics of 
industrial structure level [9]. Liu YS proposed the CSP 
(checkpoint-based spare processor) model which is an 
improvement of the traditional SP (spare processor) 
model to solve the fault-tolerant problem of SP [10]. Li 
Mingshu proposed an adaptive multilateral negotiation 
model for software process modeling, namely 
AMNM-PA, which is based on non-stationary 
finite-horizon Markov decision processes and uses the 
model-independent Q learning algorithm to choose 
negotiation strategies [11]. Mo YC and Yang XZ 
demonstrated how to analyze mission reliability of the 
generalized PMS with random phase duration and 
Markov regenerative intra phase processes to attack the 
weak points of the state-of-the-art [12]. Liu Y and Ma ZY 
and Shao WZ proposed an approach to transforming 
UML diagrams of software architecture to Markov chain 
for the quantitative evaluation of reliability [13]. Kong 
DG presented a method based on Hidden Markov model 
for the analysis of time sequences in multithread 
programs [14]. Zhang DP and Xia CH proposed an 
effective method for computing optimal state transition 
probabilities for software reliability estimation based on a 
Markov usage model [15]. Xu Libo and Wu Guoxin 
studied the performances of various congestion control 
strategies through building accurate Markov chain 
network models for TD and RED arithmetic [16]. Brian 
and Yariv presented an expectation-maximization 
procedure for estimating the generator of a bivariate 
Markov chain and compared the performance of the 
estimation algorithm to an earlier approximate estimation 
procedure based on time sampling [17]. Zhang Youzhi 
described a hidden Markov model in the field of data 
mining applications [18]. In addition, Tian Xinguang and 
Wang Zikun did lots of contributions to the application of 
the Markov model [19-22]. 

Our major work in this paper focuses on the 
construction and verification of Markov usage model, and 
how to generate test cases as few as possible based on the 
usage model in the premise of ensuring test adequacy in 
order to improve the efficiency of embedded software 
reliability test. 

This paper is structured as follows. Section II presents 
an introduction of Markov usage model and proposes a 
modeling method for Markov usage model based on STM. 
In Section III, we put forward a software testing method 
based on Markov usage model, including test case 
generation and test adequacy determination. In Section IV, 
we carry out an experiment with an independently 
developed test case generation tool MTCG and make 
verification on the efficiency and adequacy of software 
reliability test based on Markov usage model. The 
conclusions are drawn in Section V. 

II.  MARKOV USAGE MODEL 

A.  Introduction of Markov Usage Model 

Markov usage model is a classic software usage model, 

which describes the software usage with Markov process. 
In probability and statistics theory, if the state of a 

process or a system at the moment t0 is known and its 
state at the moment t has no relationship with any other 
states before t0 ( t > t0 ), we can conclude that the process 
is a Markov process and the process or the system has 
Markov property, which is also called memoryless 
property. 

The Markov process can be described with a 
distribution function. Assume that a stochastic process X(t) 
(t∈T) is a Markov process and has a state space I. For t1 
< t2 < … < tn ( n ≥ 3，ti∈T ), the conditional probability 
distribution of X(tn) under the conditions that X(ti) = xi 
( xi∈I， i =1, 2, ... , n−1 ) equals its conditional 
probability distribution under the condition that X(tn-1) = 
xn-1. That is to say, for xn∈R, 

1 1 2 2

1 1 1 1

{ ( ) | ( ) , ( ) ,
( ) } { ( ) | ( ) }

n n

n n n n n n

P X t x X t x X t x
X t x P X t x X t x− − − −

≤ = = …
= = ≤ =   (1) 

The Markov chain is the Markov process with discrete 
time and states, which can be denoted by {Xn = X(n)，n=0, 
1, 2, …}. Assume that a Markov chain has a state space 
I={a1, a2,…} (ai∈R), the Markov property can also be 
described with the conditional probability distribution as 
follows: 

1 1 1 1{ | , , , ,
} { | }

m n j tr irt i t i

m i m n j m i

P X a X a X a X a
X a P X a X a

+

+

= = = … =

= = = =
   (2) 

Here, n, r∈N+, 210 rt t t m≤ < <…< < . 
The conditional probability Pij denotes the transition 

probability of the Markov chain from state ai at the 
moment m to state aj at the moment m+n. The definition 
of Pij can be described as follows: 

( , ) { | }ij m n j m iP m m n P X a X a++ = = =   (3) 
As the Markov chain transfers to one of the states in 

{a1, a2,…} at the moment m+n from the state ai at the 
moment m inevitably, the following equality can be 
discovered: 

j 1
( , ) 1, ( 1,2, )ijP m m n i

∞

=

+ = = …∑        (4) 

A matrix constituted of transition probability is called 
the transition probability matrix of a Markov chain. The 
transition probability matrix is of great use in the 
generation of test cases and in the determination of test 
adequacy. Based on (4), we can obviously conclude that 
the summation of the elements value in each row is 1 in a 
transition probability matrix. 

Integrated the concepts presented above, the Markov 
usage model is a sequence of states and transitions with 
the key characteristic that the appearance probability of 
state si depends only on the previous state and is 
independent of any other history states. 

Fig. 1 gives an example of Markov usage model. 
{START, A, B, C, EXIT} is the state space, in which 
START denotes the beginning state of the software usage 
and EXIT denotes the ending state. {(a, 1.0), (b, 0.5), (c, 
0.5), (d, 0.75), (e, 0.25), (f, 0.5), (g, 0.25), (h, 0.25)} is 
the transition set of the usage model and the decimals 
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denote the transition probability. Especially, for an 
embedded software system, the transitions or events in 
the transition set can be used to denote interrupts or 
messages. 
 

 
Figure 1. An example of Markov usage model. 

B.  Modeling Method Based on STM 
One of the key problems in software testing based on 

Markov usage model is how to construct the model in the 
requirements modeling. Nowadays, some useful research 
in the Markov modeling has been done in Reference [1-2, 
5-7]. In this paper, we present a method of modeling 
Markov usage model based on State Transition Matrix 
(STM) [23-24]. STM is a table-based modeling language 
for describing behavior of distributed systems [25-26]. 
Kong Weiqiang has given a detailed description of STM 
[27], and uses STM to model checking for embedded 
software. In this paper, we improve the form of STM by 
adding the probability of events, in order to suit for the 
generation of Markov usage model. 

Programming language and table notations can be 
mixed for specifying a system design in STM [28-29]. In 
this paper, we consider a subset of STM with the 
motivation of giving a precise description that can be 
formally verified efficiently. In order to formally describe 
UML state machines, we formalize the structure of STMs 
and the dynamic behavior of their design, adopting a 
similar approach used in Reference [27]. Fig.2 shows an 
example of STM. 
 

 
Figure 2. An example of state transition matrix(STM). 

We firstly describe an action language L that is needed 
for defining the structure of STMs. L is chosen to be a 
simple subset of ANSI C language and thus the syntax 

and semantics follow the conventions of C programming 
language. Type system of L consists of Boolean, Integer, 
and Real. Supported expressions of L are (A) Boolean 
literals true and false, Integer literals and Real literals, (B) 
Variable identifiers, and (C) infix expressions leftexpr op 
rightexpr, where op can be one of +, -, *, /, %, &&, ||, >, 
<, >=, <=, = =, or !=, with the semantics of ANSI C. 
Supported statements of L are (A) assignments of the 
form lhs = rhs, and (B) if statements of the form if 
condition {statement1} else {statement2}. 

Assuming this action language L, the structure of a 
STM H is a tuple <S,E,P,C>, where 

 S is a finite set of state. Each state s∈S is associated 
with a (unique) index number denoted by index(s)∈ Nat. 
During execution of H, only one state denoted by 
active(H) is active. Initially, the active state is s where 
index(s) = 0. 

 E is a finite set of events consisting of external 
events Eexternal and internal events Einternal, where Eexternal ∩ 
Einternal =φ . An event eE ∈Eexternal is represented by a 
Boolean variable of L (whose name is prefixed with a 
lower-case “x” by convention), and an event eI ∈Einternal 

is represented by a Boolean expression (possibly a 
Boolean variable) of L. Each event is associated with a 
(unique) index number denoted by index(e)∈  Nat. 

 P is a finite set of transition probability. Pij∈P 
means the probability of event Ej occurs, while in the 
state Si. Here, the value of Pi1 is limited by two types of 
constraint, one is structure constraint, and the other is 
usage constraint. Structure constraint reflects the basic 
properties of Markov usage chain, mainly including (A) 
0.001<=Pi1<=0.999 and (B) the summation of Pi1, Pi2, ..., 
Pin is 1. Structure constraint is fitted for all software 
system. Usage constraint reflects the actual usage of 
software system, including (A) linear constraints such as 
P2,4 =2P2,3, P3,5 =P1,3+2P1,5, and (B) interval constraints 
such as 0.25<=P3,1<0.35, 0.5<P3,1<=0.85. Usage 
constraint can be obtained from requirements analysis 
and usage statistics of software system. Based on these 
constraints above, all the transition probability in P can 
be figured out by solving the equation constituted of 
inequality constraints. 

 C is a finite set of cells consisting of Normal cells 
Cnormal, Ignore cells Cignore, and Invalid cells Cinvalid. Each 
normal cell cN ∈  Cnormal is a tuple < s, e, u, a, s’ > ∈  S 
× E × (L ∪   {null}) × (L ∪{/}) × S. We define 
source(cN)=s, event(cN)=e, guards(cN)=u, actions(cN)=a, 
and target(cN)= s’. Each Ignore cell is a tuple < s, e, />, 
and each Invalid cell is a tuple < s, e, ×>. Functions 
source and event are also defined for Ignore and Invalid 
cells cI ∈ Cignore∪ Cinvalid as for cN, but guards, actions 
and target are not. 

Events of a STM and guards of a Normal cell are 
expressed as L expressions of type Boolean, and actions 
of a Normal cell are a list of L statements. A cell c of a 
STM H, which is pinpointed by its index numbers 
(index(source(c)), index(event(c))) together with its 
guards if guards(c) ≠ null1, specifies the behavior of H 
(under condition of guards(c) if available) when event 
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event(c) is dispatched while H is in state source(c) (i.e., 
active(H) = source(c)). If c ∈  Cnormal, actions(c) will be 
executed2 atomically and after that, H moves to state 
target(c). If c ∈  Cignore, denoted in a STM table by the 
symbol “/”, nothing changes. If c ∈  Cinvalid, denoted in a 
STM table by the symbol “×”, an error occurs. 
Informally, an Ignore cell means that the dispatch of an 
event in a state is ignored, and an Invalid cell means that 
the dispatch of an event in a state is never possible. 

III.  SOFTWARE TESTING METHODS BASED ON MARKOV 
USAGE MODEL 

The Markov usage model constructed with the methods 
given above provides an essential model for the reliability 
testing of embedded software. The method of test case 
generation based on Markov usage model is the key 
problem in reliability test of embedded software and the 
most important job we focus on in this paper. 

A.  Algorithm of the Generation of Test Cases 
In the generation of test cases for embedded software 

based on Markov usage model, a test case is a sequence 
of states or transitions passing though the Markov test 
chain from the beginning state to the ending state. The 
Markov test chain is formed from the usage model as 
follows: 

Firstly, the test chain is built based on the structure of 
the usage chain and each transition probability of the 
edges is replaced to a counter with an initial value 0. 
Then, as the testing process goes forward, the counter of 
the edge increases by 1 if a test case goes through it. 
Finally, the counter of each edge is converted to transition 
probability based on the statistical results. 

In this paper, we present an algorithm of test case 
generation based on Markov usage model in software 
reliability test as follows: 

Step 1: Let st_curr denote the current state and set the 
value of st_curr = START. 

Step 2: Generate a uniform random decimal rnd 
between 0 and 1 at the state st_curr and select a transition 
with the strategy in Step 3. 

Step 3: Based on all the transitions {(tk, pk)} (k=1, 
2, …, m and k, m∈N+) from the state st_curr to the state 
st_next in the usage model, divide the interval [0, 1) into 
m intervals {I1, I2, …, Im}. Here I1=[0, p1), I2 =[p1, 
p1+p2) ,…, Im=[p1+p2+…+pm, 1). If rnd∈Ik, record the 
transition tk and set st_curr = st_next. 

Step 4: Repeat Step 2 and Step 3 until the value of 
st_curr equals EXIT and all the transitions recorded in 
Step 3 form a test case. 

Step 5: Repeat all the steps above to generate enough 
test cases until the testing process is sufficient. 

In the algorithm given above, test cases are generated 
from uniform random decimals referenced to transition 
probability of Markov usage model. This algorithm not 
only satisfies the randomness of the test case generation 
process, but also takes the transition statistical probability 
of software usage into account. That is why we can 
generate test cases more corresponded to the actual usage 

of software system with a smaller quantity. Table I shows 
an example of a test case generated based on the Markov 
usage model in Fig. 1. 
 

TABLE I. 
AN EXAMPLE OF A TEST CASE GENERATED BASED ON 

MARKOV USAGE MODEL 

Order Transition/Event Next State 
1 a A 
2 c C 
3 g B 
4 e C 
5 f C 
6 h EXIT 

 

B.  Feasibility of Test Case Generation Algorithm 
In software testing based on Markov usage model, the 

key point to ensure the feasibility of test case generation 
algorithm is to generate random paths in which Ptj is 
equal to Pj. Ptj is the output edge transition probability of 
state S in the test chain, and atj is the corresponding edge 
to aj in the usage chain. 

Assume that the state S has k output edges, such as a1, 
a2, …, ak, P1, P2, …, Pk are their corresponding probability. 
We have the following equality 

1P
1

i =∑
=

k

i

                (5) 

  Assume that the number of visiting state S in the test 
chain is n and the number of output edge aj (1≤j≤k)is m, 
corresponding to the Bernoullitheorem we have the 
conclusion that 

jP
n
m
=

∞→n
lim                (6) 

According to the above formula, it can be ensured than 
the transition probability atj in the test chain is equal to 
the access probability Ptj in the usage chain when n is 
large enough as long as the random decimal generation 
obey the 0~1 uniform random distribution. 

1
1

k 1

1

tj
1 k 1

P 1 |

j

k
k
j

k

P j j

k k j
kP

dx P P P=
−

=

−

= =

∑
= = − =∑ ∑

∑
∫      (7) 

It is obviously that Ptj is always equal to Pj when n is 
large enough as long as the random decimals generated 
for the path selection obey the 0~1 uniform random 
distribution. 

C.  Test Adequacy Determination Criteria 
Test adequacy determination criteria become an 

essential problem that must be addressed in software 
reliability test. The test adequacy determination criteria 
based on Markov usage model is a model comparison 
criteria which comparing the usage environment (usage 
chain) and test environment (test chain). The test can be 
considered sufficient until the test chain impend over the 
usage chain. 

The test chain U and the usage chain T can be seen as 
two different descriptions of Markov process in software 
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reliability test theory based on Markov usage model, so 
the Discriminant value can be applied to determine the 
adequacy of software testing. Discriminant value, also 
known as Kullback discriminant, is the mathematical 
expectation of convergence value of two random 
processes. For simplicity, discriminant value is denoted 
by D(U,T), where U represents the usage chain, T 
represents the test chain. The value of D(U, T) is closer to 
0, the test chain T is more similar to the usage chain U. 
The testing process is considered sufficient and can be 
stopped when the discriminant value is less than the 
expected threshold value. Discriminant value can be 
calculated accurately as follows: 

   
)]

|T),...,X,XPr(X
|U),...,X,XPr(X[log(

n
1limD(U,T)

n10

n10

n ∞→
=    (8) 

( )0 1 nPr X , X ,..., X | λ  represents the circumstances 
of executing n set of test cases under the condition of 
probability distribution with parameter λ. The D(U,T) 
cannot be obtained directly by calculating the usage chain 
U and the test chain T and the test. It’s equivalent formula 
as follows: 

∑∑
==

=
u

1j i,j

i,j
i,j

u

1i
i t

u
loguπD(U,T)        (9) 

The uij, and tij represent the transition probability from 
state i to state j in usage chain and test chain respectively. 
πi represent the long-run occupation ratio of state i. 
Clearly, the state's occupation ratio in the long-run is 
equal to the sum of products of adjacent state's 
occupation ratio and the transition probability from the 
adjacent state to the state. And the sum of all state’s 
transition probability in the long-run is equal to one. The 
calculate method as follows: 

              ∑=
n

i
jiij P ,ππ              (10) 

               1π
n

1i
i =∑

=

                (11) 

The discriminant value of D(U,T) is not always 
calculable according to (9). If the test chain does not 
cover all edge of the usage chain-chain, the value of tij is 
zero and is not calculable. Therefore, only when the test 
chain covers all the edge, the D(U, T) is feasible and 
meaningful. 

We adopt an improved Kullback discriminant, denoted 
K(U,T), to be criteria for judging the adequacy of 
software reliability test. The K(U,T), as follows, is a 
variant calculation method to D(U,T) which is always 
calculable after modified. 

   
∑∑
== +

=
u

1j i,ji,j

i,j
i,j

u

1i
i t))ε-ε(sgn(t

u
loguπK(U,T)

 
(12) 

Here, ε is a sufficiently small positive decimal. sgn (x) 
represent a function: When x = 0, sgn (x) = 0; when x <0, 
sgn (x) = 1; when x> 0, sgn (x) = 1. Obviously, when the 
test chain T does not cover all the edges, K(U, T) is 
calculable as usual. When the test chain T covers all 
edges, ε-ε (sgn (ti, j)) = 0. Thus K(U, T) is equal to 

D(U,T). 
The closer is the test chain T to the usage chain U, the 

nearer to zero is the K(U,T). The convergence threshold 
can be set properly and acceptably according to the 
parameters of different software systems. When the value 
of K(U,T) is less than the threshold, the test adequacy can 
be considered reached and the testing process can be 
stopped. 

IV.  EXPERIMENTS AND VERIFICATION 

In this paper, a generation tool of test cases based on 
Markov usage model, named MTCG (Markov Test Cases 
Generator), was successfully developed and implemented 
in C# language with Microsoft Visual Studio 2008 
integrated development environment and .NET 
Framework 3.5 framework. This test case generation tool 
MTCG enable software testers to customize and verify a 
Markov usage model of software system based on STM 
and then automatically draw a graph for the usage model. 
However, the main function of MTCG is to generate test 
cases based on the usage model customized above 
automatically and get the statistical information in testing 
process in order to evaluate and improve the reliability of 
the software. Using MTCG, we carried out an experiment 
of software testing based on the usage model shown in 
Fig. 1 and analyzed the adequacy of the testing process 
and the efficiency of the testing method proposed in this 
paper. 

A.  Adequacy Verification of Software Reliability Test 
Process 

Based on the improved Kullback discriminant 
proposed in section III, an experiment was carried out 
with ε=0.00001 and K(U, T) threshold =0.001 to test and 
verify the adequacy of the testing process. Table II shows 
the statistical results in the experiment, including the 
node coverage, edge coverage and the value of K(U, T) 
with different number of test cases. 

TABLE II. 
STATISTICAL RESULTS OF TEST CASES GENERATED BASED 

ON MARKOV USAGE MODEL 

No. Number 
of Cases

Node 
Coverage 

Edge 
Coverage K(U,T) 

1 1 0.8000 0.5000 0.8055 

2 2 1.0000 0.8750 0.6643 

3 3 1.0000 1.0000 0.5928 

4 4 1.0000 1.0000 0.1807 

5 5 1.0000 1.0000 0.0706 

6 10 1.0000 1.0000 0.0123 

7 20 1.0000 1.0000 0.0188 

8 50 1.0000 1.0000 0.0099 

9 100 1.0000 1.0000 0.0064 

10 200 1.0000 1.0000 0.0049 

11 300 1.0000 1.0000 0.0042 

12 391 1.0000 1.0000 0.0006 
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The first two rows of Table II show that the value of K 
(U, T) also can be calculated with the use of improved 
Kullback discriminant, even under the condition that the 
test cases failed to cover all the migration edges in usage 
model. This result coincides well with the theory 
proposed in section III and also indicates that the 
calculation method of K(U,T) with the improved 
Kullback discriminant is approving. 

Statistical data in Table II shows that the convergence 
value K(U, T) from the test chain to the usage chain 
decreases overall as the number of test cases increases, 
which proves the fact that the test adequacy enhances 
gradually with the increase of test cases in software 
reliability test. 

Fig. 3 shows the two matrixes of transition probability 
of the test chain and the usage chain when the test 
adequacy is reached. We can obviously discover that the 
difference between the two matrixes is extremely small, 
that is to say, the test chain has been very close to the 
usage chain when the testing process ends. 
 

 
(a) 

 
(b) 

Figure 3. Matrixes of transition probability of the usage chain (a) and 
the test chain (b) when testing is sufficient. 

B.  Efficiency Verification of the Test Case Generation 
Method 

In order to test and verify the effectiveness of the test 
case generation method presented in this paper, an 
external button is added to our test case generator MTCG 
to generate test cases in a completely random way. 
Comparison between the statistical results of test cases 
generated by Markov usage model and those in a 

completely random way are made, the results of which 
indicates that the generation method is efficient. 

Table III shows the statistical results of test cases 
generated in a completely random way for a comparison, 
including the number of test cases, node coverage, edge 
coverage and the discriminant value K(U,T). Here ε is set 
to 0.00001 and the threshold of K(U,T) is set to 0.001. 
 

TABLE III. 
STATISTICAL RESULTS OF TEST CASES GENERATED IN A 

COMPLETELY RANDOM WAY 

No. Number 
of Cases

Node 
Coverage 

Edge 
Coverage K(U,T) 

1 1 0.8000 0.5000 0.8055 

2 2 1.0000 0.8750 0.6833 

3 3 1.0000 0.8750 0.6258 

4 4 1.0000 0.8750 0.6307 

5 5 1.0000 1.0000 0.5690 

6 10 1.0000 1.0000 0.3739 

7 20 1.0000 1.0000 0.3048 

8 50 1.0000 1.0000 0.2832 

9 100 1.0000 1.0000 0.0859 

10 200 1.0000 1.0000 0.0968 

11 400 1.0000 1.0000 0.0754 

12 800 1.0000 1.0000 0.0413 

13 1000 1.0000 1.0000 0.0295 

14 2000 1.0000 1.0000 0.0012 

15 2169 1.0000 1.0000 0.0009 
 
Based on the statistical data in Table III, for the same 

software usage model in Fig. 1, 2169 test cases are 
generated until the testing process is sufficient in a 
completely random way. That is to say, in a completely 
random testing, at least 2169 test cases have to be 
executed in order to correspond to the actual usage of 
software system. However, based on the statistical data in 
Table II, only 391 test cases are generated by Markov 
usage model when the test adequacy is reached. That is to 
say, in a Markov usage model-based testing, much fewer 
test cases (18% in our experiments) need to be executed 
to correspond to the actual usage of software system. 
Integrated the comparison and analysis above, we can 
conclude that the test case generation method based on 
Markov usage model proposed in this paper is of high 
efficiency (See Fig. 4). 

In addition, we can discover that the testing methods 
based on Markov usage model can cover all the 
transitions faster than a completely random testing 
method if the edge coverage is compared in Table II and 
Table III. That is to say, software testing based on 
Markov usage model has stronger ability of path 
coverage than completely random testing. 
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Figure 4. Different convergence status of discriminant between the 

Markov usage model-based and completely random testing methods. 

C.  Characteristic Analysis of Testing Method 
Furthermore, we can find that the convergence value 

K(U, T) from the test chain to the usage chain increases 
abnormally while the test cases increasing from ten to 
twenty according to the sixth and seventh rows in Table II. 
This is a normal phenomenon which is caused by the 
instability of the test chain. In fact, this instability 
characteristic is a localized phenomenon, and will not 
affect the test adequacy determination. 

This phenomenon also can be found in Table III. The 
convergence value K(U,T) increases abnormally twice 
according to the third, fourth, ninth and tenth rows in 
Table III. This proves that random testing is much more 
instable than the testing method proposed in this paper 
which is based on Markov usage model. 

V.  CONCLUSIONS 

Software reliability test based on Markov usage model 
is an efficient approach to test cases generation and 
software reliability evaluation in a quantitative way. In 
this paper, we propose a modeling method for Markov 
usage model based on improved state transition matrix 
(STM), which also contributes to usage model checking. 
A method for test case generation based on Markov usage 
model is put forward in detail, and the test adequacy 
determination method is furtherly presented. We select an 
improved Kullback discriminant as the convergence 
judgment criteria from the test chain to the usage chain in 
order to measure whether the test adequacy has been 
reached. An experiment with an independently developed 
test case generation tool MTCG is carried out and the 
statistical results show that software reliability test based 
on Markov usage model can generate much fewer test 
cases (18% in our experiment) than the completely 
random testing method in the premise of ensuring test 
adequacy. That is to say, Markov usage model-based 
software reliability test presented in this paper is 
approving, high-efficient and promising. 
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