
Formal Description of Simulation Runtime
Support Platform Architecture with XYZ/ADL

Sun Li-yang
Nanjing University of Science and Technology

Science and Technology on Information System Engineering Laboratory
CETC 28th, Nanjing, China

Email:li_yang_sun@126.com

Mao Shao-jie
Science and Technology on Information System Engineering Laboratory

CETC 28th, Nanjing, China
Email:mao_shao_jie@126.com

Liu Zhong

Nanjing University of Science and Technology
Nanjing, China

Email:eezliu@mail.njust.edu.cn

Abstract— Net-centric simulation runtime support platform
(NCS-RSP) provides an environment supporting the
construction of community of simulation task (CoST). This
paper adopts dual software architecture description
framework XYZ/ADL to describe the architecture of
NCS-RSP by graphic language and formal language
respectively. Then we decompose and refine the core service
layer during the construction of CoST. Not only this
description method expresses the architecture graphics and
behavioral abstraction of NCS-RSP from visual viewpoint,
but also validates the correctness and completeness of
architecture design from formal view. The research is a new
attempt of formal description in military simulation domain
and it provides a guideline for the composition and reuse of
NCS-RSP service.

Index Terms—net-centric simulation; service composition;
runtime support platform architecture; architecture
description language

I INTRODUCTION

Net-Centric simulation (NCS) concept and technology
is brought forward to meet the requirement of simulation
application in military net-centric warfare. NCS is a novel
distributed simulation method, which relies on the
information grid infrastructure and service oriented
architecture (SOA), defining unified standards for
simulation resource description, access and share, and
implementing specified simulation application task by
dynamically creating and running the community of
simulation task (CoST). The target of NCS is to establish
a compatible architecture for the simulation and
operational systemsby incorporating the simulation and
information grid technology. Then, the simulation and
operational systems can integrate and interoperate
seamlessly while M&S service can be considered as a

part of the C4I system capability package. Runtime
Support Platform (RSP) is the core technology of NCS in
support of the dynamical CoST construction. CoST is a
virtual organization that is motivated by a specified
simulation task and is combined by relevant simulation
resources and facilities distributed in WAN.

System model validation in software design phase is
important to realize its smooth transition from analysis
and design to software implementation. We should
reasonably and correctly organize system as possible as
we can, in order to enhance the reliability and
manufacture efficiency of the software. It is an effective
method to combine engineering description method
(graphics modeling) with formal method (strict semantic
and validation) to solve problems during the software
architecture design process. Architecture description
language (ADL) is the basics of software architecture
development, which has well-knit math base and provides
a precise definition of coherence, maturity, stipulation,
correctness, etc. ADLs are possible method for us to
design, develop and validate software in a systemic way.

There is a lot of benefits by using ADLs to design
software architecture, as is shown above. This paper
firstly introduces variable ADLs and analyzes their
characteristics. Then XYZ/ADL language is chosen to
describe Net-Centric Simulation Runtime Support
Platform (NCS-RSP). Not only does the description by
XYZ/ADL provide the intuitionistic graphics description
and behavioral abstraction, but also it offers the dynamic
semantic analysis and validation of CoST construction.
Our research is the development and extendibility of both
services composition technology and formal languages in
military simulation domain.

2026 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.2026-2032

II. RELATED WORK

A. Formal Language
How to describe the architecture is a primary problem

to study software architecture and there are variable
exhibition forms and methods. For instance, diagram
method, module connection language, soft component
description and ADL, etc. So far, none of the description
of architecture is formal and most of them rely on the
experiences and the skills of designers. In traditional
software development means, informal diagrams and
texts are used to describe software architecture. They are
neither able to characterize the ports we expected
between components nor describe meaning of
composition relation from different systems. In addition,
This description method can neither be understood easily
by developers nor adapted to formal analysis and
simulation. Moreover, the method lacks corresponding
support tools which can help accomplish the design work
or be used to analyze the consistency or completeness. In
contrast, the formal description method is much more
precise, integrated and non-different meaning. So it is
important to describe architecture in a formal and
standard way. But before the formal description, the
informal process is inevitable. We abstract some formal
tags and symbols from informal courses and then
standardize to achieve the formal architecture design and
description. ADLs preserve the characteristics of
traditional program and define the abstract elements that
are suitable for software architecture expression and
description for the integrity and abstract of software
architecture. So they could describe software architecture
precisely and strictly as well as to support the refinement,
validation, evolution and analysis of software
architecture.

There are variable ADLs which are comportable for
certain domains, typically, C2 [3] is a kind of ADL based
on component and message which applies to the software
architecture of large-scaled frequent interoperation
hierarchy GUI. Rapide [4] is a visual ADL which is based
on events. It is applicable to the simulation of distributed
system architecture. Darwing[5] and Wright[6]
respectively adopt π evolution and CSP as their math
basic and both languages are usually adopted by the
description of distributed and parallel system architecture.
There are some other famous ADLs such as Aesop,
ArTek, SADL, UniCon, Weaves, etc. Many Chinese
scholars propose several novel ADLs, like A-ADL [7],
etc. N. Medvidovic and R.N.Taylor [8] introduces an ADL
classification framework and analyze advantage and
disadvantage of several typical ADLs in detail that
indicates the importance of multi-layer, multi-view of
architecture description and code creation.

B. XYZ/ADL
XYZ/E [9] is proposed by academician of Chinese

academy of sciences TANG ZhiSong. XYZ/E is the first
executable temporal logic language in the world which is
based on Manna-Pnueli linear temporal logic system and
combined with temporal logic operators. XYZ/E is both a
logic system and a program design language, and

supports real-time, blending, corresponding and visual
program design methods. XYZ/E’s expression mode is
similar to normal advanced language so it is easily
accepted by engineers and programmers. The
characteristic of XYZ/E is that it can describe different
abstract layers from formal specification to executable
program within uniform semantic framework. XYZ/E can
also express the dynamical semantic of program as well
as static semantic of specification. This characteristic is
comportable for describing software architecture.

XYZ/ADL [10] is an architecture description language
based on XYZ/E. This language can express both the
static and dynamical semantic of the software architecture.
The characteristic of XYZ/ADL can remedy the
shortcomings of other ADLs that cannot describe and
analysis two above semantics. Such as the CSP is more
suitable for describing dynamical behaviors and the Z is
suitable for static properties. They are not executable and
usually separate architecture specification description
from structure realization. Refinement of specification is
hard and is not able to support the whole process of
software architecture. XYZ/ADL could not only formally
describe software architecture, but also refine different
abstract layers of architecture. In addition, we can use
XYZ/ADL to validate the consistency of semantic in
refinement process. XYZ/ADL is now widely used and
many experts bring it to real projects, which push
XYZ/ADL’s further development. [11-15] list some
research achievements and applications of XYZ/ADL.

Zhu Xueyang [16] proposes a dual software
architecture description framework. The framework
supports the basic concepts of software architecture
which is used widely in software engineering. The front
end of XYZ/ADL is a collection of graphical languages,
including the usual ‘box-and-line’ diagrams as structure
expression, the UML activity diagrams and state charts as
behavioral expression. The back end of XYZ/ADL is the
linear temporal logic language XYZ/E, which can
represent both dynamic and static semantics of systems as
its unified formal semantic backbone. The graphical
languages at the front end can facilitate the
communication among software engineers and their use
of this framework. The formal language at the back end is
the basis of formal analysis and verification.

XYZ/ADL is adopted as a formal language to research
architecture of NCS-RSP. The concept of dual software
architecture description framework is used here. Firstly
figure the architecture graphics in the front end to
describe the NCS-RSP architecture. Secondly we use
UML sequence diagram to present the abstract behavior
of the architecture. We introduce the reason why we use
UML sequence diagram and then explain the abstract
behavior of core service layer literally. Finally we make
use of XYZ/ADL to describe the interoperation of core
service layer formally, refine the services’ interoperation
and analyze in semantic view. Our work shows that
XYZ/ADL could not only avoid the redundancy and
imprecision of text, but also describe the architecture
precisely, intactly and without misunderstanding. Future
more reserach could analyze and validate the architecture

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2027

© 2012 ACADEMY PUBLISHER

design completeness and correctness from visual
viewpoint.

III. NCS-RSP ARCHITECTURE DIAGRAM DESCRIPTION

A. Graphics Description
To meet the requirements of NCS and provide various

simulation services, we propose a multi-layer
service-oriented NCS-RSP architecture, which will
support the dynamical construction of CoST. Fig.1 shows
the NCS-RSP architecture and in[1-2] we explain the
architecture layer by layer and presents the support
relationship between the layers.

Figure 1. NCS-RSP architecture

B. UML Sequence Diagrams
The figure above displays the architecture from visual

method which shows how the NCS-RSP supports CoST’s
construction and operation. After completing the CoST
construction, the CoST runs in a Net-Centric environment.
The CoST management service informs the members that
the simulation starts by sending them a message. After
receiving the message, the CoST members would operate
according to the simulation task, while the simulation
data distributed service guides the message interaction
within the members in the CoST. When the simulation
task completed, the CoST management service will
inform all the members to end the simulation task and the
CoST stops running. During the simulation runtime,
CoST is supported by CoST management and simulation
resources management service. Other members can apply
joining and resigning the CoST at anytime during its
runtime. Multi and different CoSTs can be run in NCS
environment with various time management strategy,
simulation steps, etc. They are supported by time
management and simulation interoperability services.
Besides the graphics description, we will also use UML
sequence diagrams in front end analysis to describe
NCS-RSP behavioral expression.

To describe the NCS-RSP which is composed by
variable services, we consider the UML state chart
diagram or activity diagram to reveal the services’
interoperation. State chart diagram is able to show the
action of an object in its lifecycle while activity diagram
aims at the examples analysis which can help to
understand examples’ work flow or deal with
multithreading applications. But if we want to show the
interoperation among variable objects, state chart diagram
or activity diagram is not comportable. So in stead we use
UML sequence diagrams. In this part, we only present the
UML sequence diagrams of core service layer in
NCS-RSP to illustrate services interoperation relationship
in core service layer, as shown in Fig.2. The other layers
in UML charts are similar as the core service layer.

IV. NCS-RSP ARCHITECTURE FORMAL DESCRIPTION

A. Simulation Core Service Layer Formal Description
In the last section we use UML sequence diagrams to

describe the behavioral expression of NCS-RSP core
service layer; and we literal present the service
interoperation. This description method is complex and
redundant but is not easily understood or accepted by
users. So we adopt XYZ/ADL language to describe the
UML sequence diagram. After the formal description, we
will refine the interoperation process of the time
management and CoST management. By the introduction,
Not only could we exactly know the relationship in the
core service layer by formal way, but also we validate the
correctness and completeness of the software architecture
design.

There are variable services in the core service layer
and each service exists as service components, which
cause the services interoperation among the layer
complicated. In NCS-RSP, the core service layer is only a
part of it, so this layer also works with simulation basic
service layer and common support layer as component. In
This section we take core service layer as composite
component which is connected according to certain
requirement and then we describe its structural models.
This is the first step to refine;and reflect the messages
transmission relation withinmain components.

Composite component incarnate the configuration and
hierarchy relation both in landscape and portrait
viewpoint. Composite component ports description is
similar to simple ports, but its behavior is denoted by
connection of several sub-components. So our description
would illustrate which component and connector
instances are contained in a composite component and
how they get inter-connected with each other. We define
these sub-components based on the service contents of
core service layer as follows in Fig.3: SimResMan,
SimAccess, CoSTMan, SimInter, TimeMan, DataDistri.
Fig.3 shows us the description of core service layer.

2028 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 2. NCS-RSP core service layer UML sequence chart

The simulation core service layer composite
component combination announcement indicates which
component and connector instances are contained in it
and grammar is as follows.

Fig. 3 is the first step refinement process of core
service layer composite component and is also the initial
formal verification process. We define the composite
component input and output port. The first step of the
simulation core service layer is given and is also the
elementary process of formal validation. Firstly we define
the input and output ports of composite component.
Secondly we attach and bind the sub-component ports to
connector role. The ‘#’ defines attachment operation that
component ports in left side are attached to connector
roles in right side. Attachment shows the relation of
components and interoperation in which the components
participate. Some sub-component ports are not attached
to any roles; instead they are specified as ports of
composite component. We name it binding operation and
define as ‘##’. Right formula is ports of composite
component so we omit the component name. Finally, in
‘%COMPUTATION’ part we explain the semantic of
composite component, and regard the
‘%COMPUTATION’ as elementary refinement.

B. Refinement
RONG M[17] introduced three methods of architecture

refinement: basing on behavior substitute, style and
component. The method based on component can be
evolved into two processes: refinement from coarse
grained to fine grained, and refinement from informal to
formal. This method separates the architectural level
coarse grained components into components in terms of
specifications. Components also can determine their sub

styles according to requirement and form fine grained
components step by step.

In the light of refinement above, we are aware of the
interoperation relationship within services in core service
layer. However it is only the basic description of the
abstract software architecture. In this section we will
adopt refinement method based on component to
construct model of core service layer architecture. This
method will be more exact and complicated in realization
details than previous refinement. Refine to this degree,
we could not only achieve the executable program level,
but also validate the correctness and completeness of
architecture design roundly. We take time management
and CoST management as examples to illustrate the
refinement process.
a) Service component description

For instance, we design the time management
component as Time_Management in Fig.4 which owns a
port TimeServiceport. Similarly we can also define CoST
management component CoST_Management and its port
CoSTServiceport, etc.

Other services could also be defined by the component
definition method but they are not listed here.
b) Service connector description

This part we shows the relation between CoST
Management and Time Management. They are connected
through the connector defined by XYZ/ADL. Fig.5
illustrates the definition of time management connector
Time_ManagementConn.

c) Refinement
It is shown above that text description can not depict

problems clearly. But graphics description is more
intuitional and understandable than text. I.e. Integral

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2029

© 2012 ACADEMY PUBLISHER

Figure 3. NCS-RSP core service layer description

Figure 4. Service Component description

Description of Core Service Layer
%COMPONENT CoreService = = [

%PORT Recive1 = = MESSAGE;
□ [LB = START_receive=>Receive1 ? ComService ∧ $O LB = e1]
//receive messages from common support layer

%PORT Recive2 = = MESSAGE;
□ [LB = START_receive=>Receive2 ? BasicService ∧ $O LB = e1]
// receive messages from basic service layer

%PORT Send1 = = MESSAGE;
□ [LB = e0=> Send1! state1 ∧ $O LB = e1]
// send messages to common support layer

%PORT Send2 = = MESSAGE;
□ [LB = e0=> Send2! State2 ∧ $O LB = e12]
//end messages to basic service layer

%COMPOSITION == [SimResMan; SimAccess; CoSTMan; SimInter; TimeMan; DataDistri;
c1:Conne1; c2:Conne2; c3:Conne3; c4:Conne4; c5:Conne5]

%ATTACHMENT = = [CoSTMan.Send1 # c1.Source; SimResMan.Receive1 # c1.Sink;
SimAccess.Send1 # c2.Source; SimInter.Receive1 # c2.Sink;
SimAccess.Send2 # c3.Source; CoSTMan.Receive1 # c3.Sink;

CoSTMan.Send2 # c4.Source; TimeMan.Receive1 # c4.Sink;
CoSTMan.Send3 # c5.Source; DataDistri.Receive1 # c5.Sink;
CoSTMan.Send1##Send1; SimResMan.Send2##Send2;
CoSTMan.Receive1##Receive1; SimResMan.Receive2##Receive2]

%COMPUTATION = = [
LB = START_receive1=> $O LB = e1;

LB = e1=> $O Receive1 = CoSTMan.Receive1 ∧$O Receive2 = SimResMan.Receive2 ∧$O Send1 =
CoSTMan.Send1∧$O Send2 = SimResMan.Send2 ∧$OLB = e2;

LB = e2=> || [SimResMan.COMPUTATION; c1.GLUE; SimAccess.COMPUTATION; c2.GLUE;
CoSTMan.COMPUTATION; c3.GLUE; SimInter.COMPUTATION; c4.GLUE;
TimeMan.COMPUTATION; c5.GLUE; DataDistri.COMPUTATION]]

Description of Time Management Component
%COMPONENT Time_Management = = [
%PORT TimeServiceport = timeserviceprovide (% Recive1 int.identifyID;
 % Recive2 DWORD timestep;
 % Send1 BOOL block;
 % Send2 BOOL AdvState)

//define messages in TimeServiceport port
//define advance node ID、time step、deadlock identifier、time advance state
//similarly define messages timeservicereceive

];
//define operations in TimeServiceport port

[timedatareceive [Required; Type: Input; Message: timeservicereceive];
timedataprovide [Provided; Type: Output; Message: timeserviceprovide]];

//define behavior in TimeServiceport port
[//provide messages to CoST management and receive call back information]
%SERVICEBEHAVIOR = = [//component behavior is the same as port behavior]
%PROPERTY = = Resource Specification

2030 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

NCS-RSP core service layer architecture in Fig.1 and
Fig.2 is showed legibly and pellucidly. But graphic
description only can show service contents. It is hard to
analyze the connection relation among services or
validate the correctness of design. So we use formal
language to describe the architecture and also we refine
the architecture from high abstract level to low concrete

level. This description and refinement forms an
architectural layer that every refinement step is
corresponded to a refinement mode,,which guarantees the
correctness of refinement and also validates the
completeness of design. The formal refinement of time
management service is shown in Fig.6

Figure 5. Time Management Connector Description

Figure.6 Time Management Service Refinement

V. DISCUSSION

This paper introduces the NCS-RSP architecture, and
adopts a XYZ/ADL based architecture description
framework. Firstly we introduce architecture graphics and
UML sequence diagram while they describe the
architecture in visualization method. Then we refine the
services in architecture from formal semantic point of
view. The research above provides a formal theoretical
guidance of services reuse and composite in NCS-RSP. It
is an innovative attempt of service composite formal
description in military simulation domain.

An ADL should not only has strict formal semantic,
but also consider engineering usage in practice.
Consequently ADLs can really perform a function in
software development process and denote different
abstract layers conveniently. We use XYZ/ADL language
to refine the CoST system component and realize smooth
link from visual graphics to formal method. The
interoperation of connectors’ roles, components’ ports
and ports binding becomes an ordinal combined model of
the system. The formal description of NCS-RSP supports

Description of Time Management Connector
%CONNECTOR Time_ManagementConn = = [

//define CoSTManagementRole messages: costmanagementresponse, costmanagementrequest;
TimeServiceRole messages: timeserviceprovide, timeservicereceive

//define operations of CoSTManagementRole: Serviceinvoke, ReturnServiceinvokeMessage;
Operations of TimeServiceRole: timedatareceive, timedataprovide

%ROLE CoSTManagementRole = = [costmanagementresponse; costmanagementrequest];
[Provided_Operation; Serviceinvoke;
Required_Operation; ReturnServiceinvokeMessage];
[//receive service calls information and return results]

//define behavior of connector role
//similarly define role CoSTManagementRole

%GLUE = = [//describe interoperation of two roles: provide time management information by
timedataprovide and execute time management service]]

Description of Time Management Component
%COMPONENT Time_Management = = [
%PORT TimeServiceport = timeserviceprovide (% Recive1 int.identifyID;
% Recive2 DWORD timestep;
% Send1 BOOL block;
% Send2 BOOL AdvState)

//define messages in TimeServiceport port
//define advance node ID、time step、deadlock identifier、time advance state
//similarly define messages timeservicereceive

];
//define operations in TimeServiceport port

[timedatareceive [Required; Type: Input; Message: timeservicereceive];
timedataprovide [Provided; Type: Output; Message: timeserviceprovide]];

//define behavior in TimeServiceport port
[//provide messages to CoST management and receive call back information]
%SERVICEBEHAVIOR = = [//component behavior is the same as port behavior]
%PROPERTY = = Resource Specification

//service components should meet the specification requirement

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2031

© 2012 ACADEMY PUBLISHER

services composition semantic analysis and is an
elementary attempt in military simulation field.

UML and its extended mechanism are widely used in
practice development as software architecture description
tool. We combine the software architecture with UML
and adopt UML sequence diagram as architecture
behavioral description.

In the formal description of NCS-RSP architecture, we
only introduce several services but the whole platform
architecture description is similar. Time management is
one of the key technologies of NCS-RSP and our
refinement only presents a primary time management
algorithm. The detailed algorithm will be given in future
research

REFERENCES

[1] Mao S J, Li Y P, Lin J N, Deng K B, Sun L Y. Research on
Concepts and Technique of Network-Centric Simulation
[J].Journal of System Simulation, Vol.22, No.7, Jul, 2010.

[2] SUN L Y, LIU Z, MAO S J, DENG K B. Research on the
Runtime Support Platform for the Net-Centric Simulation
[J]. ICACTE, 2010.

[3] R.N.Taylor, N, Medvidovic, et al. A
component-and-message-based architecture style for GUI
software [J]. IEEE Trans. Software Engineering, 1996,
22(6):390-406

[4] D.C.Luckham.et a1. The Rapide language. Stanford
University, http://pavg.stanford.edu/ rapide/language.html,
l997-07-29

[5] J. Magee. J.Kramer. Dynamic structure in software
architectures. In: Proc. the 4th ACM SIGSOFT
Symposium on Foundations of Software Eng. New York:
ACM Press. 1996. 3-l4

[6] R. Allen, D.Garlan. A formal basis for architectural
connection. ACM Trans. Software Eng, and Methodology,
1997, 6(3):213-249

[7] MA J T, FU S Y, LIU J R. A-Adl: A Multi-agent System
Architecture Description Language. Journal of Software,
2000, 11(10): 1382-1389

[8] N. Medvidovic, R.N.Taylor. A classification and
comparison framework for software architecture
description languages. IEEE Trans. Software Engineering,
2000, 26(1): 70-93

[9] TANG Z S et al. Temporal Logic Design and Software
Engineering. Beijing, Science Press,2002

[10] ZHU X Y. Research on Software Architecture Formal
Description [D].Chinese Academy of Science, 2004.

[11] CHEN L L, ZHANG G Q. A Matching Method from
XYZ/ADL to UML [J]. Journal of Suzhou University
(Nature Science), Vol.22,No.1 Jan, 2006

[12] LIU Y L. XYZ/ADL-Based Electives Management System
Architecture Description [J]. Journal of Yunnan
University, Vol.26

[13] RAO Y, LI Z C. XYZ/ADL-Based Web Services
Architecture Description [J].System Engineering Theory &
Practice, 2006

[14] YANG J Z, RONG M, ZHANG G Q. Aspect-oriented
Software Architecture Description Language AO-ADL [J].
Computer Engineering, Vol.34, No.10, 5, 2008.

[15] RONG M, ZHANG G Q, Software Architecture
Description Approach Integrating Formal Methods and

Visual Methods [J]. Computer Science, Vol. 32, No.4,
2005.

[16] ZHU X Y. The Dual Software Architecture Description
Framework XYZ/ADL [J]. Journal of Computer Research
and Development, 2007, 44(9): 1485-1494.

[17] RONG M, ZHANG G Q. Research on Software
Architecture Refinement Methods [J]. Computer Science,
2003, 30(4):108-110.

Sun Li-yang was born in Nanjing, China,
1985. He received his B.S. degree in
Jiangnan University in 2008. Now he is
studying his postgraduate and doctoral
programs in Nanjing University of
Science and Technology, Jiangsu
Province, China. His research interest is
network information system modeling
and simulation,
Dr. Sun is membership of Chinese

System Simulation Association and Japanese institute of
Electronics, Information and Communication Engineers.

Mao Shao-jie was born in Jiangyin,
China, 1963. He received his B.S. degree
in Nanjing University, China. Now he is
Research Fellow senior engineer in
CETC28th. His research interests
include modeling and simulation of
military command and control
system evaluation.

He is deputy Director of C4ISR
National Defence Science & Technology Key Lab, Since 2000,
he has chaired more than 10 research projects under the
National Basic Research Program of China (973 Program) and
the twelfth five-year plan, etc. He was awarded one 2nd class
National Science and Technology Advance Award. Up to now,
he has published more than 30 papers and published10
monographs.

Prof. Mao is Executive director of Chinese System
Simulation Association member of Chinese Modeling and
Simulation Standardization Committee.

Liu Zhong was born in Anhui, China,
1963. In 1988 he received PhD degree in
the University of Electronic Science and
Technology, China. In 1991 to 1993, he
was funded by Japanese Ministry
of Education Foundation to
do postdoctoral research at the
University of Kyoto, Japan. 1997-1998
he was Visiting Research Scholar to

Hong Kong Chinese University. Up to now, he is professor of
the Department of Electronic Engineering and the chief of
human source department in Nanjing University of Science and
Technology. He is mainly engaged in non-linear chaos
dynamics; signal processing; radar and communications.

Prof.Liu has undertaken a national outstanding Young
Teacher Foundation,Fok Ying Tung education Fund, the
former Department of Electrical and Ordnance Industry
Corporation and other research funds research. Prof.Liu has
published over 80 articles in international academic journals and
conferences. Prof.Liu was awarded two ministerial-level
National Science and Technology Advance Award and was
honored as Fok Ying Tung young Teacher Award (research)
and Jiangsu excellent young teachers and so on.

2032 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

