

Research on Development and Test of Signal-
oriented Driver

Yiping Wang

Naval Aeronautical and Astronautical University, Yantai, China
Email: 13505358626@163.com

Tianzhu Wen and Yongshuang Shang

Naval Aeronautical and Astronautical University, Yantai, China
Email: wentianzhu1987@yahoo.com.cn

Abstract—In this paper, the development and test of signal-
oriented driver are studied. Firstly, the signal and test
model based on STD (Signal and Test Definition) standard
are introduced. Signal models include static signal model
and dynamic signal model. Test models include intrinsic
measurement and generic measurement. Secondly, the
developing process of signal-oriented driver is analyzed,
including instruments analysis, instrument capability
description file editing, driver framework determination,
internal code compilation and driver debugging. At last the
test programs for Ag34410A signal-oriented driver
compiled by TPL (Test Procedure Language) are shown.
The test results illuminate that the development and test of
signal-oriented driver are reasonable, and the driver for
Ag34410A is right, but there are also some other problems
should be resolved for realizing signal-oriented test.
Index Terms—STD, signal model, signal-oriented, TPL,
ATS.

I. INTRODUCTION

Since the function of connecting instrument with
computer and intelligence device is supplied, RS232、
GPIB、USB and LAN interfaces have been developed
by manufacturers one after another. In that case, the
instrument driver is generated to unify the method of
using and controlling the instrument. The essence of
instrument driver is a set of subroutines which can be
invoked by users. By using it, various functions of
instrument can be completed even without knowing the
programming protocol and steps of each instrument. In
order to ensure that the instrument control commands or
language has good consistency and achieve the goal of
instrument interchangeable and TPS portable, series of
software technical specifications and standards are
launched [1,2].

As a result of different objects, test technologies are
divided into two categories: instrument-oriented test and
signal-oriented test. Software technical specifications and
standards of instrument-oriented test mainly include
IEEE-488、SCPI (standard command for programming
instrument) and VPP (VXI plug & play). The software
technical specifications and standards of signal-oriented
test mainly include ATLAS (Abbreviated Test language
for All System), IVI-Signal and STD [3]. The development
course of them is depicted in Fig. 1.

IEEE-488.2 defines the encoding, syntax format,

information exchange control protocol and public remote
command statement of using GPIB bus, but doesn’t
define the instrument-related command. To a certain
extent, it has achieved GPIB bus-based instrument of the
same manufacturer interchangeable. SCPI which is on the
basis of IEEE-488.2 and IEEE-754 is a set of common
commands. It can control many types of instrument in the
same way but also limit the expansion of instrument
function at the same time, so it can be said that it
achieves part of instrument interchangeable whose
function is strictly matched. VPP specification unifies the
software control interface of various instruments by
defining VISA (Virtual Instrument Software Architecture)
library. However, there is no strict semantics definition,
so it can only achieve the same type instrument of the
same manufacturer interchangeable. IVI model is a driver
design standard which is defined on the basis of VPP
specification by IVI foundation. It achieves the same type
instrument interchangeable by defining class driver and
physical driver, but it has many disadvantages, such as
the useful standard is little, the openness of standard is
low and only 80% function of the same type instrument
can be interchangeable.

Instrument-oriented test is disadvantage to implement
instrument interchangeable, so signal-oriented test on
which expectations are centered. ATLAS is a special test
language which has complete syntax structure and
semantics definition, but there are many problems arising
from lack of expansion capability and rigorous
mathematical definition. IVI-Signal defines the method
of how to convert the instrument control command into
the test signal description and achieves a high level

Figure 1 The development of software technical

specifications and standards

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1807

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1807-1815

instrument interchangeable. But the instrument driver
takes the form of instrument-oriented COM components,
so the really instrument interchangeable isn’t achieved.
STD standard provides the means to define and
describe signals used in testing. It includes SML (Signal
Model Language) layer, BSC (Basic Signal Component)
layer, TSF (Test Signal Framework) layer and Test
Requirement layer. According to it, users are allowed to
choose the operating environment and even the
programming languages. So it can resolve the problems
which we encountered before and achieve the goal of
instrument interchangeable and TPS portable.

The study described in this paper consists of the
development and test of signal-oriented instrument driver
which are based on STD standard. The organization of
this paper is as follow. Section II introduces signal and
test model based on STD standard. In section III, the
model of signal-oriented driver is shown, and the
developing process of signal-oriented driver is analyzed.
In addition, the Ag34401A driver is made as an example.
In section IV, the method of test signal-oriented driver
and the TPL of test Ag34401A driver are given. Finally,
future work for the further development of this system is
proposed.

II. SIGNAL AND TEST MODEL

The signal and test model should be first introduced
before developing signal-oriented driver. Because it can
be used to describe not only test requirement but also
instrument. By citing a specific example, the way of
building self-defined signal model based on BSCs and
TSF signals in STD standard is analyzed, and the test
block diagram based on both test models are given.

A. Signal Model

Signal includes static signal and dynamic signal in STD
standard. Static signal is a signal whose definition does
not change over time. All basic signal components (BSCs)
and test signal framework (TSF) models are static signals.
Dynamic signal is a signal whose definition changes over
time, by use of the control interface. These changes must
be initiated with one of the signal method calls or by
changing the interconnections of a signal model [4].

1) Static signal model
BSCs, the fundamental components of STD standard,

play the role of building blocks which can be used to
define more complex signals but can’t be decomposed
into simpler components. Fig. 2 represents a generalized
form of a BSC and shows all possible interfaces and
properties.

In the BSC model shows in Fig. 2, Class Name is the
name of the BSC subclasses, e.g., Sinusoid. Signal Name
is the name of the specific signal being modeled e.g.,
Phase A. BSC provides the signal interface that transfers a
signal, its attributes, and its values to other BSCs. In is the
reference of input signal. Out is the output signal. Sync
and Gate are events which decided the behavior of BSC.

2) Dynamic signal model
Dynamic signal model reflects the changes of signal

states and the interaction between the interfaces of all the
BSCs in signal model.

The states of signal defined in STD standard contain
stopped, paused and running [4].

Stopped—The Stopped state indicates that the signal is
in a generalized reset condition, i.e., no signal activity is
present. Thus a Stopped Signal can represent either no
signal at all or a signal from an allocated resource that has
not been activated or triggered. All Signals initiate to the
Stopped state.

Paused—The Paused signal is waiting to be triggered
into the Running state by an external event. A Paused
signal does not yet exist, but all the necessary resources
have been acquired and prepared and are awaiting the
final on or go event.

Running—The Running signal is active and exists as a
signal or gated event stream. A Running Signal is
measurable and available for use.

The methods defined in STD standard contain stop, run
and change.

Stop ([timeout=0])—The Stop method resets,
disconnects, or turns off any Paused or Running Signal
and frees any associated signal resources. Following a
successful Stop, the state of the Signal will become
Stopped.

Run ([timeout=0])—The Run method sets up, starts,
connects, or turns on a Stopped signal. Following a
successful Run, the state of the Signal is Paused and
subsequently becomes Running. The Run method on a
Running or Paused Signal will reinitialize the Signal to its
value at time t = 0.

Change ([timeout=0])—The Change method initiates
the Signal to its next setting. If no further settings are
pending, Change () indicates that the current Signal is
finished and no longer needed. This knowledge allows the
source BSCs to change the signal to the next available
setup. If no further signal conditions are available, Change
() resets the signal to the Stopped state.

Methods and states are interdependent. Calling a
method indicates an intention for a state to change. See
Fig. 3.

Figure 2 BSC diagram

1808 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

B. Measurenment Model

The STD standard provide for two methods with which
measurement values (and test) can be specified. One is
intrinsic measurement (e.g., RMS, Instantaneous) and the
other is generic measurement (Measure As) [5, 6].

1) Intrinsic Measurement
Intrinsic measurement defines methods or techniques

which are signal type independent, including
Counter: counts when a measurement would be taken,

but does not take any specific measurement.
Interval: measures the interval between the In/Sync

event going active and the Gate event going active.
Instantaneous: measures the amplitude of the signal in

the dimension “type” at specified instances in time.
RMS: measures the root-mean-square (rms) value of a

signal.
Average: is the arithmetic mean of all the signal values

during the gate time.
PeakToPeak: is the difference between the highest

value and the lowest value during the gate time.
Peak: is the measured value that is furthest away from

the mean value.
PeakPos: is the value obtained by subtracting the mean

value from the maximum measurement of the signal
during the gate time.

PeakNeg: is the value obtained by subtracting the
mean value from the minimum measurement of the signal
during the gate time.

MaxInstantaneous: is the maximum measurement of
the signal during the gate time.

MinInstantaneous: is the minimum measurement of the
signal during the gate time.

2) Generic Measurement
Fig. 4 is used to explain the principle of generic

measurement, the red broken line indicate the AC signal
to be measured, and the test parameter is frequency, in
which XML static signal description is <Measure As="tsf:
AC_SIGNAL" attribute="freq" nominal=" 120 V"/>.
Because of the reference signal is AC_SIGNAL whose
voltage is 120 V, changed the frequency of reference
signal until the minimum rms value is gotten, and the
value of that reference signal frequency is the test result.

C. Example

In this example, the UUT test requirements are defined
as follow

Input a 120V, 50Hz three-phase ac signal with 1A
current limit o the UUT.

Assuming the output signal is ac signal, measure the
RMS voltage.

Assuming the type of output signal is unknown,
measure the RMS voltage.

1) signal modeling
According to the test requirement, the three-phase ac

signal which has current limit attribute is needed to build.
It should have seven BSCs. The interface properties and
model description of AC3PHASE_POWER are shown in
Table Ⅰ and Table Ⅱ respectively.

TABLE I.
AC3PHASE_POWER INTERFACE PROPERTIES

Description Name Type Default Range
AC3PHASE_POWER Signal amplitude ampl Physical — —
AC3PHASE_POWER Signal frequency freq Physical — —
AC3PHASE_POWER Signal Current limit curr_limit Physical — —

Stopped

Paused

Running

Stop()

Run()

Change() Run()

Change()

Change()
Stop()

Run()

Stop()

start event

Figure 3 Signal state changes

0 0.01 0.02 0.03 0.04 0.05 0.06
-200

-100

0

100

200

Time (s)

V
ol

ta
ge

 (V
)

Figure 4 Generic measure best match example

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1809

© 2012 ACADEMY PUBLISHER

The equation of Phase A, Phase B and Phase C in
AC3PHASE are：

Phase A：
2cos(2)
3aY A ftπ π= −

Phase B： cos(2)bY A ftπ=

Phase C：
2cos(2)
3cY A ftπ π= +

Where A is the amplitude, f is the frequency.
XML static signal description of

AC3PHASE_POWER is < AC3PHASE_POWER name
= "AC3P1" ampl = "120 V" freq = "50 Hz" curr_limit =
"2 A" / >, and the waveform is shown in Fig. 5.

The signal model of AC3PHASE_POWER is shown in

Fig.6.

2) Signal testing
According to the test requirement, the three-phase ac

signal should be supplied to the UUT. If the output signal
is ac signal, the generic measurement will be taken. Else if
the output signal is unknown, the intrinsic measurement
will be taken. UUT test block diagram is shown in Fig. 7[7].

TABLE II.
AC3PHASE_POWER MODEL DESCRIPTION

Name Type Terminal Input Output Formula

Three Phase Wye ThreePhaseWye

Signal[Out] — AC3PHASE_POWER —
channelWidth — — 3
Signal[In] Current Limit A — —
Signal[In] Current Limit B — —
Signal[In] Current Limit C — —

Current Limit A Limit
Signal[Out] — Three Phase Wye —
limit curr_limit — —
Signal[In] Phase A — —

Current Limit B Limit
Signal[Out] — Three Phase Wye —
limit curr_limit — —
Signal[In] Phase B — —

Current Limit C Limit
Signal[Out] — Three Phase Wye —
limit curr_limit — —
Signal[In] Phase C — —

Phase A Sinusoid

Signal[Out] — Current Limit A —
amplitude ampl — —
frequency freq — —
phase — — -2/3π

Phase B Sinusoid

Signal[Out] — Current Limit B —
amplitude ampl — —
frequency freq — —
phase — — 0

Phase C Sinusoid

Signal[Out] — Current Limit C —
amplitude ampl — —
frequency freq — —
phase — — 2/3π

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-200

-100

0

100

200

Time (s)

V
ol

ta
ge

 (V
)

Phase A
Phase B
Phase C

Figure 5 AC3PHASE_POWER example

Figure 6 AC3PHASE POWER signal model

1810 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

In Fig. 7 red block indicates the source who supplies

the tree-phase ac signal, green block indicates the generic
measurement sensor, yellow block indicates the intrinsic
measurement sensor and blue block indicates the
connection between BSCs and UUT. Broken lines indicate
that the two measurement models can’t run at the same
time.

III. SIGNAL-ORIENTED DREIVER DEVELOPMENT

Signal-oriented test process is shown in Fig.8. When
the test requirement and instrument are described in
signals, virtual resources and physical resources are
generated in turn. Then Run time system completes the
resources matching and path searching according to test
information, path information and instrument capability,
and calls appropriate signal-oriented driver to perform the
test. Signal-oriented model is in the

Driver development, in essence, is using SCPI

command and manufactures’ driver to compile
instrument common functions and physical resource
interface functions. The development of signal-oriented

driver includes five steps, namely instrument analysis,
instrument capability description file editing, driver
framework determination, internal code compilation and
driver debugging. Flowchart of driver development is
shown in Fig. 9.

A. Insreumen Analysis

Instrument analysis is the first step in driver
development. The basic information of instrument such
as bus type, model and address can be got after analysis.
Then manual and program control of instrument are
needed. With instrument manual control, not only the
results of instrument single function test can be validated,
but also the logic and rigor of program will be enhanced.
With instrument program control, the usage of
programmed instructions and manufactures’ drivers can
be learned.

For example, analyze Ag34410A which is produced by
Agilent. It is a digital multimeter which contains six
physical resources, including DC voltage, DC current,
AC voltage, AC current, frequency and resistance
physical resource. The bus type of it is GPIB, and the
four ports of it are INPUT_HI, INPUT_LO, CURR_HI
and CURR_LO.

B. Instrument Capability Description File Editing
Driver development is based on instrument capability

description file, in which the role, signal and ports of
instrument physical resource are described. The role of
instrument physical resource can be categorized into five
groups: source, sensor, terminal, event and switch.
Source is used to supply the signal to UUT. Sensor is
used to measure the signal from UUT. Terminal is used
to both supply and measure the signal from the UUT.
Event is used to supply the sync signal and trigger signal.
Switch is used to connect and disconnect the signal. The
architecture of instrument capability description file is
shown in Fig. 10.

Sensor

Event

Term
inal

Sw
itch

Source

Figure 8 Signal-oriented test process

AC_SIGNAL

Voltage 135 V
MAX

AC3PHASE

115 V
400 Hz

2 A

ThreePhaseWye

J24_5
J24_7
J24_9
J24_10

Input to UUT

TwoWire

X1_1
X1_2

Output from UUT

RMS

Voltage 135 V
MAXsource

Generic measurement

Intrinsic measurement

connection

Figure 7 UUT test block diagram

Start

Instrument analysis

Instrument capability
description file editing

Driver framework
determination

Internal code
compilation

Stop

Driver debug is OK?

Yes

No

Figure 9 Flowchart of driver development

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1811

© 2012 ACADEMY PUBLISHER

C. Driver Framework Determination
There are common functions and interface functions in

the driver. The common functions contain setup function,
close function, reset function and self test function. And
the interface functions are depended on the role of
instrument physical resource, which the mapping relation
between interface functions and the role of instrument
physical resource is shown in TableⅢ.

According to the instrument capability description file,
the functions’ name and type can be got, so the driver
framework which contains all the source codes except
programmed instructions and manufactures’ drivers can
be generated automatically.

D. Internal Code Compile
When driver framework is established, only internal

code is left to fill. The internal code is the secondary
packaging of SCPI and manufacture’s drivers, which are
learned in instrument analysis. So the signal-oriented
driver will be completed, after internal code compilation.

To take Ag34410A for an example, there are 7 parts of
contents in the driver, including common, DC voltage,
DC current, AC voltage, AC current, frequency and
resistance. Each part has its own functions which are
shown in Figure 11.

Instrument capability description file

Instrument basic information

Instrument ports information

Instrument physcal resources

source

sensor

term
inal

sw
itch

event

Figure 10 Architecture of instrument capability file

TABLE III.
ROLE AND INTERFACE FUNCTIONS MAPPING

role Interface functions function

source

InstrmentPrefix_ResourcePrefix_Setup (SigPSource source, int TimeOutValue). Setup source

InstrmentPrefix_ResourcePrefix_Run (SigPSource source, int TimeOutValue). Output source signal

InstrmentPrefix_ResourcePrefix_Change (SigPSource source, int TimeOutValue). Change source attributes

InstrmentPrefix_ResourcePrefix_Stop (SigPSource source, int TimeOutValue). Stop source signal output

sensor
InstrmentPrefix_ResourcePrefix_Setup (SigPSensor sensor, int TimeOutValue). Setup sensor

InstrmentPrefix_ResourcePrefix_Run (SigPSensor sensor, int TimeOutValue). Measure input signal

event

InstrmentPrefix_ResourcePrefix_Setup (SigPEvent event, int TimeOutValue). Setup event

InstrmentPrefix_ResourcePrefix_Run (SigPEvent event, int TimeOutValue). Enable event

InstrmentPrefix_ResourcePrefix_Stop (SigPEvent event, int TimeOutValue). Disenable event

terminal

InstrmentPrefix_ResourcePrefix_Setup (SigPTerminal terminal, int TimeOutValue). Setup terminal

InstrmentPrefix_ResourcePrefix_Transmit (SigPTerminal terminal, int length, int itemSize, int data
[], int TimeOutValue).

Transmit data

InstrmentPrefix_ResourcePrefix_Receive (SigPTerminal terminal, int length, int itemSize, int data
[], int TimeOutValue).

Receive data

InstrmentPrefix_ResourcePrefix_Change (SigPTerminal terminal, int TimeOutValue). Change terminal attributes

InstrmentPrefix_ResourcePrefix_Stop (SigPTerminal terminal, int TimeOutValue). Stop terminal

switch

InstrmentPrefix_ResourcePrefix_Connect (SigPSwitch switch, int Pole, int TimeOutValue). Connect switch

InstrmentPrefix_ResourcePrefix_Connect (SigPSwitch mtx, int row, int col, int TimeOutValue). Connect matrix

InstrmentPrefix_ResourcePrefix_Disconnect(SigPSwitch mtx, int row, int col, int TimeOutValue). Disconnect matrix

1812 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

E. Driver Debuging

Driver debugging is a boring and tedious process, but
very necessary. Through repeated testing an instrument, it
can be make sure that whether the function of driver is
complete, the operation of testing is reasonable, or the
output and measurement results are correct. During the
driver debugging, if any problem is found, the previous
steps should be re-analyzed, and new driver will be
generated.

Three instruments are needed to debug the six physical
resources of Ag34410A. DC power Ag6673 is supplied
for debugging DC voltage and DC current physical
resource. AC power Ci801RP is supplied for debugging
AC voltage, AC current and frequency physical resource.
Programmable resistance Ra4072A is supplied for
debugging resistance physical resource. The driver
debugging model of Ag34410A is shown in Fig 12.

IV. SIGNAL-ORIENTED DREIVER TEST

The signal-oriented driver needs to be tested, after its
development. TPL is used to compile the test program of
driver, for the reason that it can be embedded into any
carrier language, and has good portability.

A. TPL Statements
TPL statements are focused on single actions. Single

action test statements describe a critical testing action that
can’t be further subdivided with respect to the UUT. TPL
statements provided in STD are shown in Table Ⅳ.

B. Test Program Interface

The test program of driver is needed to testify whether
the driver meet the requirement and is convenience to use.
And it can control instrument directly. The interface of
Ag34410A test program is shown in Fig 13.

D
ig

ita
l m

ul
tim

et
er

（
A

g3
44

10
A
）

D
C

 pow
er

（
A

g6673
）

A
C

 pow
er

（
C

i801R
P
）

Program
m

able
R

esistance
(R

a4072A
)

DC voltage

DC current

AC voltage

AC current

Frequency

Resistance

DC voltage

DC current

AC voltage

AC current

Resistance

Frequency

Figure 12 driver debugging model of Ag34410A

TABLE IV.
TPL STATEMENTS

keywords TPL

Setup

Setup source
Setup sensor
Setup signal-based event
Setup event-based event
Setup time-based event
Setup clock
Setup time interval measurement
Setup event counter
Setup sensor(for undefined signal)
Setup signal

Reset Reset

Connect
Connect source
Connect sensor
Connect pin to pin

Disconnect Disconnect

Enable Enable(general case)
Enable signal-based event

Disable Disable
Read Read
Change Change
Compare Compare
Wait_For Wait_For

Figure 13 Driver test interface

Figure 11 Architecture of instrument capability file

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1813

© 2012 ACADEMY PUBLISHER

C. Test Requirement in TPL
Test requirements can be written in a text format by

TPL. And different from using ATLAS, TPL can be
embedded into any carrier language, so the user can adopt
their own preferred programming language [8, 9]. For
example, when test the driver of Ag34410, the DC
voltage signal, DC current signal, AC voltage signal, AC
current signal and load signal are all needed. Those signal
requirements can be written by TPL. In the following, the
“snr” indicates the handle of sensor signal.

1) Require a signal
Require a DC voltage signal and measure its amplitude

whose range is from -5V to 5V can be written as:
Setup DC_SIGNAL dc_ampl range -5 V to 5 V as

sensor snr;
Require a DC current signal and measure its amplitude

which range is from -0A to 3A can be written as:
Setup DC_SIGNAL(Current) dc_ampl range 0 A to 3

A as sensor snr;
Require an AC voltage signal and measure its

amplitude whose maximum value is 300 V can be written
as:

Setup AC_SIGNAL ac_ampl range Max 300 V as
sensor snr;

Require an AC current signal and measure its
amplitude whose range is from 0A to 1A can be written
as:

Setup AC_SIGNAL(Current) ac_ampl range 0 A to 1 A
as sensor snr;

Require an AC voltage signal and measure its
frequency whose range is from 0 Hz to 400 Hz can be
written as:

Setup AC_SIGNAL freq range 0 Hz to 400 Hz as
sensor snr;

Require a load signal and measure its resistance whose
range is from 0 Ohm to 200 M Ohm can be written as:

Setup Load resistance range 0 Ohm to 200 M Ohm as
sensor snr;

2) Connect signal
Connect voltage signal and load signal to the ports of

instrument can be written as:
Connect hi INS_DMM::INPUT_HI lo

INS_DMM::INPUT_LO to snr;
Connect current signal to the ports of instrument can

be written as:
Connect hi INS_DMM::CURR_HI lo

INS_DMM::INPUT_LO to snr;
3) Read measurement results
Read the measurement results can be written as:
Read snr into testResult;
4) Disconnect signal
After measurement, disconnect signal from ports can

be written as:
Disconnect snr;
5) Reset signal
At last the signal should be released, which can be

written as;
Reset snr;

D. Test Results
The nominal value and measured value of DC voltage,

DC current, AC voltage, AC current, frequency and
resistance are shown in TABLE V

V. CONCLUSION

In this paper the development and test of signal-
oriented driver based on STD standard are studied. The
signal and test model are introduced to describe
instrument. The developing process and testing approach
of signal-oriented driver are given. The model of tree-
phase AC signal is built to illuminate how to built self-
defined signal, and two different kinds of measurement
methods are used to attest the validity of this model. The
model of drive for Ag4410A DC voltage physical
resource is shown, and the corresponding test program is
compiled by TPL. However, there are also many
problems needed to study such as signal matching, path
searching and TPL complier.

REFERENCES

[1] Ashley Hulme, Keri Nash. Implementing IEEE 1641 –
Using a complete system [C]. IEEE AUTOTESTCON
2008 PROCEEDINGS. US: IEEE, 2008:282-288

[2] Qiao Liyan, Liu Zhaoqing, Peng Yu, Peng Xiyuan. A TPS
Integrated Development Environment Implementing
IEEE1641 and ATML [C]. IEEE AUTOTESTCON 2009
PROCEEDINGS. US: IEEE, 2009:246-250

[3] Ashley M B Hulme. Physical signals, events and digital
streams Their relationship and how they affect
SignalFunctions in IEEE 1641 [C]. IEEE
AUTOTESTCON 2009 PROCEEDINGS. US: IEEE,
2009:205-310

[4] IEEE Std 1641™-2010, IEEE Standard for Signal and Test
Definition[S]. Institute of Electrical and Electronics
Engineers, Inc.,2010

[5] IEEE Std 1641.1™-2006, IEEE Guide for the Use of IEEE
Std 1641, Standard for Signal and Test Definition[S].
Institute of Electrical and Electronics Engineers, Inc, 2006.

[6] Ashley M B Hulme. Measurement in IEEE 1641 and its
application in a CASS TSF Library [C]. IEEE
AUTOTESTCON 2010 PROCEEDINGS. US: IEEE,
2010:174-179

[7] Ron Taylor. Test Diagram Generation: A Practical
Application of the ATML Standards [C]. IEEE
AUTOTESTCON 2009 PROCEEDINGS. US: IEEE,
2009:322-326

[8] Christophe Grard. A practical usage of the 1641 signal
definition using the Test Procedure Language(TPL) and a
Carrier Language (CL) [C]. IEEE AUTOTESTCON 2008
PROCEEDINGS. US: IEEE, 2008:295-299

TABLE V.
TEST RESULTS

Test item Nominal value Measured value
DC voltage 5 V 4.99V
DC current 0.1 A 0.10 A
AC voltage 115 V 114.99V
AC current 1 A 1.00 A
frequency 400 Hz 399.98 Hz
resistance 100 MΩ 101.05 MΩ

1814 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

[9] Ashley M B Hulme. Managing the transition to IEEE 1641,
via ATLAS based test systems [C]. IEEE
AUTOTESTCON 2009 PROCEEDINGS. US: IEEE,
2009:251-255

Yiping Wang was born in Taidong, China, in 1975. He
received MS from Naval Aeronautical and Astronautical
University in 2003. Now she is a PhD candidate in Naval
Aeronautical and Astronautical University. Her research
interests include parallel test and signal-oriented ATS.

Tianzhu Wen was born in Changchun, China, in 1987. He
received MS from Naval Aeronautical and Astronautical
University in 2011. Now he is a PhD candidate in Naval
Aeronautical and Astronautical University. His research
interests include parallel test and signal-oriented ATS.

Yongshuang Shang was born in Liaoyuan, China, in 1981. He
received MS from Aviation University of Air Force in 2007.
Now he is a PhD candidate in Naval Aeronautical and
Astronautical University. His research interests include
Prognostic and Health Management and ATS.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1815

© 2012 ACADEMY PUBLISHER

