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Abstract—In this paper, the development and test of signal-
oriented driver are studied. Firstly, the signal and test 
model based on STD (Signal and Test Definition) standard 
are introduced. Signal models include static signal model 
and dynamic signal model. Test models include intrinsic 
measurement and generic measurement. Secondly, the 
developing process of signal-oriented driver is analyzed, 
including instruments analysis, instrument capability 
description file editing, driver framework determination, 
internal code compilation and driver debugging. At last the 
test programs for Ag34410A signal-oriented driver 
compiled by TPL (Test Procedure Language) are shown. 
The test results illuminate that the development and test of 
signal-oriented driver are reasonable, and the driver for 
Ag34410A is right, but there are also some other problems 
should be resolved for realizing signal-oriented test. 
Index Terms—STD, signal model, signal-oriented, TPL, 
ATS. 

I.  INTRODUCTION 

Since the function of connecting instrument with 
computer and intelligence device is supplied, RS232、
GPIB、USB and LAN interfaces have been developed 
by manufacturers one after another. In that case, the 
instrument driver is generated to unify the method of 
using and controlling the instrument. The essence of 
instrument driver is a set of subroutines which can be 
invoked by users. By using it, various functions of 
instrument can be completed even without knowing the 
programming protocol and steps of each instrument. In 
order to ensure that the instrument control commands or 
language has good consistency and achieve the goal of 
instrument interchangeable and TPS portable, series of 
software technical specifications and standards are 
launched [1,2]. 

As a result of different objects, test technologies are 
divided into two categories: instrument-oriented test and 
signal-oriented test. Software technical specifications and 
standards of instrument-oriented test mainly include 
IEEE-488、SCPI (standard command for programming 
instrument) and VPP (VXI plug & play). The software 
technical specifications and standards of signal-oriented 
test mainly include ATLAS (Abbreviated Test language 
for All System), IVI-Signal and STD [3]. The development 
course of them is depicted in Fig. 1. 

 
IEEE-488.2 defines the encoding, syntax format, 

information exchange control protocol and public remote 
command statement of using GPIB bus, but doesn’t 
define the instrument-related command. To a certain 
extent, it has achieved GPIB bus-based instrument of the 
same manufacturer interchangeable. SCPI which is on the 
basis of IEEE-488.2 and IEEE-754 is a set of common 
commands. It can control many types of instrument in the 
same way but also limit the expansion of instrument 
function at the same time, so it can be said that it 
achieves part of instrument interchangeable whose 
function is strictly matched. VPP specification unifies the 
software control interface of various instruments by 
defining VISA (Virtual Instrument Software Architecture) 
library. However, there is no strict semantics definition, 
so it can only achieve the same type instrument of the 
same manufacturer interchangeable. IVI model is a driver 
design standard which is defined on the basis of VPP 
specification by IVI foundation. It achieves the same type 
instrument interchangeable by defining class driver and 
physical driver, but it has many disadvantages, such as 
the useful standard is little, the openness of standard is 
low and only 80% function of the same type instrument 
can be interchangeable. 

Instrument-oriented test is disadvantage to implement 
instrument interchangeable, so signal-oriented test on 
which expectations are centered. ATLAS is a special test 
language which has complete syntax structure and 
semantics definition, but there are many problems arising 
from lack of expansion capability and rigorous 
mathematical definition. IVI-Signal defines the method 
of how to convert the instrument control command into 
the test signal description and achieves a high level 

 
Figure 1 The development of software technical 

specifications and standards 
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instrument interchangeable. But the instrument driver 
takes the form of instrument-oriented COM components, 
so the really instrument interchangeable isn’t achieved. 
STD standard provides the means to define and 
describe signals used in testing. It includes SML (Signal 
Model Language) layer, BSC (Basic Signal Component) 
layer, TSF (Test Signal Framework) layer and Test 
Requirement layer. According to it, users are allowed to 
choose the operating environment and even the 
programming languages. So it can resolve the problems 
which we encountered before and achieve the goal of 
instrument interchangeable and TPS portable. 

The study described in this paper consists of the 
development and test of signal-oriented instrument driver 
which are based on STD standard. The organization of 
this paper is as follow. Section II introduces signal and 
test model based on STD standard. In section III, the 
model of signal-oriented driver is shown, and the 
developing process of signal-oriented driver is analyzed. 
In addition, the Ag34401A driver is made as an example. 
In section IV, the method of test signal-oriented driver 
and the TPL of test Ag34401A driver are given. Finally, 
future work for the further development of this system is 
proposed.  

II.  SIGNAL AND TEST MODEL 

The signal and test model should be first introduced 
before developing signal-oriented driver. Because it can 
be used to describe not only test requirement but also 
instrument. By citing a specific example, the way of 
building self-defined signal model based on BSCs and 
TSF signals in STD standard is analyzed, and the test 
block diagram based on both test models are given. 

A. Signal Model 

Signal includes static signal and dynamic signal in STD 
standard. Static signal is a signal whose definition does 
not change over time. All basic signal components (BSCs) 
and test signal framework (TSF) models are static signals. 
Dynamic signal is a signal whose definition changes over 
time, by use of the control interface. These changes must 
be initiated with one of the signal method calls or by 
changing the interconnections of a signal model [4]. 

1) Static signal model 
BSCs, the fundamental components of STD standard, 

play the role of building blocks which can be used to 
define more complex signals but can’t be decomposed 
into simpler components. Fig. 2 represents a generalized 
form of a BSC and shows all possible interfaces and 
properties. 

In the BSC model shows in Fig. 2, Class Name is the 
name of the BSC subclasses, e.g., Sinusoid. Signal Name 
is the name of the specific signal being modeled e.g., 
Phase A. BSC provides the signal interface that transfers a 
signal, its attributes, and its values to other BSCs. In is the 
reference of input signal. Out is the output signal. Sync 
and Gate are events which decided the behavior of BSC. 

 

 
2) Dynamic signal model 
Dynamic signal model reflects the changes of signal 

states and the interaction between the interfaces of all the 
BSCs in signal model.  

The states of signal defined in STD standard contain 
stopped, paused and running [4]. 

Stopped—The Stopped state indicates that the signal is 
in a generalized reset condition, i.e., no signal activity is 
present. Thus a Stopped Signal can represent either no 
signal at all or a signal from an allocated resource that has 
not been activated or triggered. All Signals initiate to the 
Stopped state. 

Paused—The Paused signal is waiting to be triggered 
into the Running state by an external event. A Paused 
signal does not yet exist, but all the necessary resources 
have been acquired and prepared and are awaiting the 
final on or go event. 

Running—The Running signal is active and exists as a 
signal or gated event stream. A Running Signal is 
measurable and available for use. 

The methods defined in STD standard contain stop, run 
and change. 

Stop ([timeout=0])—The Stop method resets, 
disconnects, or turns off any Paused or Running Signal 
and frees any associated signal resources. Following a 
successful Stop, the state of the Signal will become 
Stopped. 

Run ([timeout=0])—The Run method sets up, starts, 
connects, or turns on a Stopped signal. Following a 
successful Run, the state of the Signal is Paused and 
subsequently becomes Running. The Run method on a 
Running or Paused Signal will reinitialize the Signal to its 
value at time t = 0. 

Change ([timeout=0])—The Change method initiates 
the Signal to its next setting. If no further settings are 
pending, Change () indicates that the current Signal is 
finished and no longer needed. This knowledge allows the 
source BSCs to change the signal to the next available 
setup. If no further signal conditions are available, Change 
() resets the signal to the Stopped state. 

Methods and states are interdependent. Calling a 
method indicates an intention for a state to change. See 
Fig. 3. 

 
Figure 2 BSC diagram 
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B. Measurenment Model 

The STD standard provide for two methods with which 
measurement values (and test) can be specified. One is 
intrinsic measurement (e.g., RMS, Instantaneous) and the 
other is generic measurement (Measure As) [5, 6]. 

1) Intrinsic Measurement 
Intrinsic measurement defines methods or techniques 

which are signal type independent, including 
Counter: counts when a measurement would be taken, 

but does not take any specific measurement. 
Interval: measures the interval between the In/Sync 

event going active and the Gate event going active. 
Instantaneous: measures the amplitude of the signal in 

the dimension “type” at specified instances in time. 
RMS: measures the root-mean-square (rms) value of a 

signal. 
Average: is the arithmetic mean of all the signal values 

during the gate time. 
PeakToPeak: is the difference between the highest 

value and the lowest value during the gate time. 
Peak: is the measured value that is furthest away from 

the mean value. 
PeakPos: is the value obtained by subtracting the mean 

value from the maximum measurement of the signal 
during the gate time. 

PeakNeg: is the value obtained by subtracting the 
mean value from the minimum measurement of the signal 
during the gate time. 

MaxInstantaneous: is the maximum measurement of 
the signal during the gate time. 

MinInstantaneous: is the minimum measurement of the 
signal during the gate time. 

2) Generic Measurement 
Fig. 4 is used to explain the principle of generic 

measurement, the red broken line indicate the AC signal 
to be measured, and the test parameter is frequency, in 
which XML static signal description is <Measure As="tsf: 
AC_SIGNAL" attribute="freq" nominal=" 120 V"/>. 
Because of the reference signal is AC_SIGNAL whose 
voltage is 120 V, changed the frequency of reference 
signal until the minimum rms value is gotten, and the 
value of that reference signal frequency is the test result. 

 
C. Example 

In this example, the UUT test requirements are defined 
as follow 

Input a 120V, 50Hz three-phase ac signal with 1A 
current limit o the UUT. 

Assuming the output signal is ac signal, measure the 
RMS voltage. 

Assuming the type of output signal is unknown, 
measure the RMS voltage. 

1) signal modeling  
According to the test requirement, the three-phase ac 

signal which has current limit attribute is needed to build. 
It should have seven BSCs. The interface properties and 
model description of AC3PHASE_POWER are shown in 
Table Ⅰ and Table Ⅱ respectively. 

 

TABLE I.   
AC3PHASE_POWER INTERFACE PROPERTIES 

Description Name Type Default Range 
AC3PHASE_POWER Signal amplitude ampl Physical — — 
AC3PHASE_POWER Signal frequency freq Physical — — 
AC3PHASE_POWER Signal Current limit curr_limit Physical — — 

Stopped

Paused

Running

Stop()

Run()

Change() Run()

Change()

Change()
Stop()

Run()

Stop()

start event

 
Figure 3 Signal state changes 
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Figure 4 Generic measure best match example 
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The equation of Phase A, Phase B and Phase C in 
AC3PHASE are： 

Phase A：
2cos(2 )
3aY A ftπ π= −  

Phase B： cos(2 )bY A ftπ=  

Phase C：
2cos(2 )
3cY A ftπ π= +  

Where A  is the amplitude, f  is the frequency.  
XML static signal description of 

AC3PHASE_POWER is < AC3PHASE_POWER name 
= "AC3P1" ampl = "120 V" freq = "50 Hz" curr_limit = 
"2 A" / >, and the waveform is shown in Fig. 5. 

 
The signal model of AC3PHASE_POWER is shown in 

Fig.6. 

 
2) Signal testing  
According to the test requirement, the three-phase ac 

signal should be supplied to the UUT. If the output signal 
is ac signal, the generic measurement will be taken. Else if 
the output signal is unknown, the intrinsic measurement 
will be taken. UUT test block diagram is shown in Fig. 7[7]. 

TABLE II.   
AC3PHASE_POWER MODEL DESCRIPTION 

Name Type Terminal Input Output Formula 

Three Phase Wye ThreePhaseWye 

Signal[Out] — AC3PHASE_POWER — 
channelWidth — — 3 
Signal[In] Current Limit A — — 
Signal[In] Current Limit B — — 
Signal[In] Current Limit C — — 

Current Limit A Limit 
Signal[Out] — Three Phase Wye — 
limit curr_limit — — 
Signal[In] Phase A — — 

Current Limit B Limit 
Signal[Out] — Three Phase Wye — 
limit curr_limit — — 
Signal[In] Phase B — — 

Current Limit C Limit 
Signal[Out] — Three Phase Wye — 
limit curr_limit — — 
Signal[In] Phase C — — 

Phase A Sinusoid 

Signal[Out] — Current Limit A — 
amplitude ampl — — 
frequency freq — — 
phase — — -2/3π 

Phase B Sinusoid 

Signal[Out] — Current Limit B — 
amplitude ampl — — 
frequency freq — — 
phase — — 0 

Phase C Sinusoid 

Signal[Out] — Current Limit C — 
amplitude ampl — — 
frequency freq — — 
phase — — 2/3π 
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Figure 5 AC3PHASE_POWER example 

Figure 6 AC3PHASE POWER signal model
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In Fig. 7 red block indicates the source who supplies 

the tree-phase ac signal, green block indicates the generic 
measurement sensor, yellow block indicates the intrinsic 
measurement sensor and blue block indicates the 
connection between BSCs and UUT. Broken lines indicate 
that the two measurement models can’t run at the same 
time. 

III.  SIGNAL-ORIENTED DREIVER DEVELOPMENT 

Signal-oriented test process is shown in Fig.8. When 
the test requirement and instrument are described in 
signals, virtual resources and physical resources are 
generated in turn. Then Run time system completes the 
resources matching and path searching according to test 
information, path information and instrument capability, 
and calls appropriate signal-oriented driver to perform the 
test. Signal-oriented model is in the  

 
Driver development, in essence, is using SCPI 

command and manufactures’ driver to compile 
instrument common functions and physical resource 
interface functions. The development of signal-oriented 

driver includes five steps, namely instrument analysis, 
instrument capability description file editing, driver 
framework determination, internal code compilation and 
driver debugging. Flowchart of driver development is 
shown in Fig. 9. 

 
A. Insreumen Analysis 

Instrument analysis is the first step in driver 
development. The basic information of instrument such 
as bus type, model and address can be got after analysis. 
Then manual and program control of instrument are 
needed. With instrument manual control, not only the 
results of instrument single function test can be validated, 
but also the logic and rigor of program will be enhanced. 
With instrument program control, the usage of 
programmed instructions and manufactures’ drivers can 
be learned. 

For example, analyze Ag34410A which is produced by 
Agilent. It is a digital multimeter which contains six 
physical resources, including DC voltage, DC current, 
AC voltage, AC current, frequency and resistance 
physical resource. The bus type of it is GPIB, and the 
four ports of it are INPUT_HI, INPUT_LO, CURR_HI 
and CURR_LO. 

B. Instrument Capability Description File Editing 
Driver development is based on instrument capability 

description file, in which the role, signal and ports of 
instrument physical resource are described. The role of 
instrument physical resource can be categorized into five 
groups: source, sensor, terminal, event and switch. 
Source is used to supply the signal to UUT. Sensor is 
used to measure the signal from UUT. Terminal is used 
to both supply and measure the signal from the UUT. 
Event is used to supply the sync signal and trigger signal. 
Switch is used to connect and disconnect the signal. The 
architecture of instrument capability description file is 
shown in Fig. 10. 

Sensor

Event

Term
inal

Sw
itch

Source

Figure 8 Signal-oriented test process  

AC_SIGNAL

Voltage 135 V 
MAX

AC3PHASE

115 V
400 Hz

2 A
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Input to UUT
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X1_2
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MAXsource

Generic measurement

Intrinsic measurement
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Figure 7 UUT test block diagram 
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Figure 9 Flowchart of driver development 
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C. Driver Framework Determination 
There are common functions and interface functions in 

the driver. The common functions contain setup function, 
close function, reset function and self test function. And 
the interface functions are depended on the role of 
instrument physical resource, which the mapping relation 
between interface functions and the role of instrument 
physical resource is shown in TableⅢ. 

According to the instrument capability description file, 
the functions’ name and type can be got, so the driver 
framework which contains all the source codes except 
programmed instructions and manufactures’ drivers can 
be generated automatically. 

 
 

D. Internal Code Compile 
When driver framework is established, only internal 

code is left to fill. The internal code is the secondary 
packaging of SCPI and manufacture’s drivers, which are 
learned in instrument analysis. So the signal-oriented 
driver will be completed, after internal code compilation. 

To take Ag34410A for an example, there are 7 parts of 
contents in the driver, including common, DC voltage, 
DC current, AC voltage, AC current, frequency and 
resistance. Each part has its own functions which are 
shown in Figure 11. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Instrument capability description file

Instrument basic information

Instrument ports information

Instrument physcal resources

source

sensor

term
inal

sw
itch

event

 
Figure 10 Architecture of instrument capability file 

TABLE III.   
ROLE AND INTERFACE FUNCTIONS MAPPING 

role Interface functions function 

source 

InstrmentPrefix_ResourcePrefix_Setup (SigPSource source, int TimeOutValue). Setup source  

InstrmentPrefix_ResourcePrefix_Run (SigPSource source, int TimeOutValue). Output source signal 

InstrmentPrefix_ResourcePrefix_Change (SigPSource source, int TimeOutValue). Change source attributes 

InstrmentPrefix_ResourcePrefix_Stop (SigPSource source, int TimeOutValue). Stop source signal output 

sensor 
InstrmentPrefix_ResourcePrefix_Setup (SigPSensor sensor, int TimeOutValue). Setup sensor 

InstrmentPrefix_ResourcePrefix_Run (SigPSensor sensor, int TimeOutValue). Measure input signal 

event 

InstrmentPrefix_ResourcePrefix_Setup (SigPEvent event, int TimeOutValue). Setup event 

InstrmentPrefix_ResourcePrefix_Run (SigPEvent event, int TimeOutValue). Enable event 

InstrmentPrefix_ResourcePrefix_Stop (SigPEvent event, int TimeOutValue). Disenable event 

terminal 

InstrmentPrefix_ResourcePrefix_Setup (SigPTerminal terminal, int TimeOutValue). Setup terminal 

InstrmentPrefix_ResourcePrefix_Transmit (SigPTerminal terminal, int length, int itemSize, int data 
[], int TimeOutValue). 

Transmit data  

InstrmentPrefix_ResourcePrefix_Receive (SigPTerminal terminal,  int length, int itemSize, int data 
[], int TimeOutValue). 

Receive data 

InstrmentPrefix_ResourcePrefix_Change (SigPTerminal terminal, int TimeOutValue). Change terminal attributes

InstrmentPrefix_ResourcePrefix_Stop (SigPTerminal terminal, int TimeOutValue). Stop terminal 

switch 

InstrmentPrefix_ResourcePrefix_Connect (SigPSwitch switch, int Pole,  int TimeOutValue). Connect switch 

InstrmentPrefix_ResourcePrefix_Connect (SigPSwitch mtx, int row, int col, int TimeOutValue). Connect matrix 

InstrmentPrefix_ResourcePrefix_Disconnect(SigPSwitch mtx, int row, int col,  int TimeOutValue). Disconnect matrix 
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E. Driver Debuging 

Driver debugging is a boring and tedious process, but 
very necessary. Through repeated testing an instrument, it 
can be make sure that whether the function of driver is 
complete, the operation of testing is reasonable, or the 
output and measurement results are correct. During the 
driver debugging, if any problem is found, the previous 
steps should be re-analyzed, and new driver will be 
generated. 

Three instruments are needed to debug the six physical 
resources of Ag34410A. DC power Ag6673 is supplied 
for debugging DC voltage and DC current physical 
resource. AC power Ci801RP is supplied for debugging 
AC voltage, AC current and frequency physical resource. 
Programmable resistance Ra4072A is supplied for 
debugging resistance physical resource. The driver 
debugging model of Ag34410A is shown in Fig 12. 

 

 

IV.  SIGNAL-ORIENTED DREIVER TEST 

The signal-oriented driver needs to be tested, after its 
development. TPL is used to compile the test program of 
driver, for the reason that it can be embedded into any 
carrier language, and has good portability. 

A. TPL Statements 
TPL statements are focused on single actions. Single 

action test statements describe a critical testing action that 
can’t be further subdivided with respect to the UUT. TPL 
statements provided in STD are shown in Table Ⅳ. 

 
B. Test Program Interface 

The test program of driver is needed to testify whether 
the driver meet the requirement and is convenience to use. 
And it can control instrument directly. The interface of 
Ag34410A test program is shown in Fig 13. 
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Figure 12 driver debugging model of Ag34410A

TABLE IV.   
TPL STATEMENTS 

keywords TPL  

Setup 

Setup source 
Setup sensor 
Setup signal-based event 
Setup event-based event 
Setup time-based event 
Setup clock 
Setup time interval measurement 
Setup event counter 
Setup sensor(for undefined signal)
Setup signal 

Reset Reset 

Connect 
Connect source 
Connect sensor 
Connect pin to pin 

Disconnect Disconnect 

Enable Enable(general case) 
Enable signal-based event 

Disable Disable 
Read Read 
Change Change 
Compare Compare 
Wait_For Wait_For 

 
Figure 13 Driver test interface 

 
Figure 11 Architecture of instrument capability file
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C. Test Requirement in TPL 
Test requirements can be written in a text format by 

TPL. And different from using ATLAS, TPL can be 
embedded into any carrier language, so the user can adopt 
their own preferred programming language [8, 9]. For 
example, when test the driver of Ag34410, the DC 
voltage signal, DC current signal, AC voltage signal, AC 
current signal and load signal are all needed. Those signal 
requirements can be written by TPL. In the following, the 
“snr” indicates the handle of sensor signal.  

1) Require a signal 
Require a DC voltage signal and measure its amplitude 

whose range is from -5V to 5V can be written as: 
Setup DC_SIGNAL dc_ampl range -5 V to 5 V as 

sensor snr; 
Require a DC current signal and measure its amplitude 

which range is from -0A to 3A can be written as: 
Setup DC_SIGNAL(Current) dc_ampl range 0 A to 3 

A as sensor snr; 
Require an AC voltage signal and measure its 

amplitude whose maximum value is 300 V can be written 
as: 

Setup AC_SIGNAL ac_ampl range Max 300 V as 
sensor snr; 

Require an AC current signal and measure its 
amplitude whose range is from 0A to 1A can be written 
as: 

Setup AC_SIGNAL(Current) ac_ampl range 0 A to 1 A 
as sensor snr;  

Require an AC voltage signal and measure its 
frequency whose range is from 0 Hz to 400 Hz can be 
written as: 

Setup AC_SIGNAL freq range 0 Hz to 400 Hz as 
sensor snr; 

Require a load signal and measure its resistance whose 
range is from 0 Ohm to 200 M Ohm can be written as: 

Setup Load resistance range 0 Ohm to 200 M Ohm as 
sensor snr; 

2) Connect signal 
Connect voltage signal and load signal to the ports of 

instrument can be written as: 
Connect hi INS_DMM::INPUT_HI lo 

INS_DMM::INPUT_LO to snr; 
Connect current signal to the ports of instrument can 

be written as: 
Connect hi INS_DMM::CURR_HI lo 

INS_DMM::INPUT_LO to snr; 
3) Read measurement results 
Read the measurement results can be written as: 
Read snr into testResult; 
4) Disconnect signal 
After measurement, disconnect signal from ports can 

be written as: 
Disconnect snr; 
5) Reset signal 
At last the signal should be released, which can be 

written as; 
Reset snr; 

D. Test Results 
The nominal value and measured value of DC voltage, 

DC current, AC voltage, AC current, frequency and 
resistance are shown in TABLE V 

 

V.  CONCLUSION 

In this paper the development and test of signal-
oriented driver based on STD standard are studied. The 
signal and test model are introduced to describe 
instrument. The developing process and testing approach 
of signal-oriented driver are given. The model of tree-
phase AC signal is built to illuminate how to built self-
defined signal, and two different kinds of measurement 
methods are used to attest the validity of this model. The 
model of drive for Ag4410A DC voltage physical 
resource is shown, and the corresponding test program is 
compiled by TPL. However, there are also many 
problems needed to study such as signal matching, path 
searching and TPL complier. 

REFERENCES 

[1] Ashley Hulme, Keri Nash. Implementing IEEE 1641 – 
Using a complete system [C]. IEEE AUTOTESTCON 
2008 PROCEEDINGS. US: IEEE, 2008:282-288 

[2] Qiao Liyan, Liu Zhaoqing, Peng Yu, Peng Xiyuan. A TPS 
Integrated Development Environment Implementing 
IEEE1641 and ATML [C]. IEEE AUTOTESTCON 2009 
PROCEEDINGS. US: IEEE, 2009:246-250 

[3] Ashley M B Hulme. Physical signals, events and digital 
streams Their relationship and how they affect 
SignalFunctions in IEEE 1641 [C]. IEEE 
AUTOTESTCON 2009 PROCEEDINGS. US: IEEE, 
2009:205-310 

[4] IEEE Std 1641™-2010, IEEE Standard for Signal and Test 
Definition[S]. Institute of Electrical and Electronics 
Engineers, Inc.,2010 

[5] IEEE Std 1641.1™-2006, IEEE Guide for the Use of IEEE 
Std 1641, Standard for Signal and Test Definition[S]. 
Institute of Electrical and Electronics Engineers, Inc, 2006. 

[6] Ashley M B Hulme. Measurement in IEEE 1641 and its 
application in a CASS TSF Library [C]. IEEE 
AUTOTESTCON 2010 PROCEEDINGS. US: IEEE, 
2010:174-179 

[7] Ron Taylor. Test Diagram Generation: A Practical 
Application of the ATML Standards [C]. IEEE 
AUTOTESTCON 2009 PROCEEDINGS. US: IEEE, 
2009:322-326 

[8] Christophe Grard. A practical usage of the 1641 signal 
definition using the Test Procedure Language(TPL) and a 
Carrier Language (CL) [C]. IEEE AUTOTESTCON 2008 
PROCEEDINGS. US: IEEE, 2008:295-299 

TABLE V.   
TEST RESULTS 

Test item Nominal value Measured value
DC voltage 5 V 4.99V 
DC current 0.1 A 0.10 A 
AC voltage 115 V 114.99V 
AC current 1 A 1.00 A 
frequency 400 Hz 399.98 Hz 
resistance 100 MΩ 101.05 MΩ 

 

1814 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER



 

[9] Ashley M B Hulme. Managing the transition to IEEE 1641, 
via ATLAS based test systems [C]. IEEE 
AUTOTESTCON 2009 PROCEEDINGS. US: IEEE, 
2009:251-255 

 
 
 
Yiping Wang was born in Taidong, China, in 1975. He 
received MS from Naval Aeronautical and Astronautical 
University in 2003. Now she is a PhD candidate in Naval 
Aeronautical and Astronautical University. Her research 
interests include parallel test and signal-oriented ATS. 
 
 
Tianzhu Wen was born in Changchun, China, in 1987. He 
received MS from Naval Aeronautical and Astronautical 
University in 2011. Now he is a PhD candidate in Naval 
Aeronautical and Astronautical University. His research 
interests include parallel test and signal-oriented ATS. 
 
 
Yongshuang Shang was born in Liaoyuan, China, in 1981. He 
received MS from Aviation University of Air Force in 2007. 
Now he is a PhD candidate in Naval Aeronautical and 
Astronautical University. His research interests include 
Prognostic and Health Management and ATS. 

 

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1815

© 2012 ACADEMY PUBLISHER


