
Energy Optimization on OpenMP Loop
Scheduling

Yong Dong

National University of Defense Technology, Changsha, 410073,China
Email: yongdong@nudt.edu.cn

Juan Chen

National University of Defense Technology, Changsha, 410073,China
Email: juanchen@nudt.edu.cn

Abstract—Energy consumption has become a serious
problem in high-performance computing (HPC) systems.
Parallel loops often occupy a significant part of the
execution time of overall parallel programs. Thus, reducing
their energy consumption is the key to the reduction in
energy consumption of the program. This paper discusses
energy optimization in OpenMP loop scheduling, which is a
method of optimizing energy consumption of parallel loops
within a certain performance loss. OpenMP programming
includes Uniform-Sized scheduling unit (US)-based Energy-
saving Optimal Static Scheduling algorithm (EOSS),
UnUniform-Sized scheduling unit (UUS)-based Energy-
oriented Static Scheduling algorithm (ESS). EOSS obtains
the maximum energy savings under the ideal condition (US)
by combining loop rescheduling and voltage/frequency
scaling. ESS optimizes energy consumption under the non-
ideal condition (UUS). We evaluate these energy-oriented
loop scheduling algorithms through simulations on a
multiprocessor system. Taking 160 processors as example,
five NPB programs with EOSS can reduce 43.5% energy
consumption on the average, which is 2.1% more energy
saved than the DVFS-only method. ESS can achieve 54%
energy savings with the example code we use.

Index Terms—OpenMP loop scheduling, dynamic voltage
frequency scaling, processor shutdown, energy optimization

I. INTRODUCTION

As high performance computing (HPC) systems
become more powerful, their energy consumption
continues to increase as well. For instance, the average
power consumption of the Top 10 systems in the TOP500
list is nearly 2000 KW [1] among which the power
consumption of the Jaguar system is nearly 7000 KW.
The power of HPC system is expected to further grow to
100 MW [2] in the next few years. High energy
consumption results in many problems to HPC systems,
such as low reliability, bad stability, and high costs. Thus,
energy saving in parallel computing has become an
important issue. For a large number of parallel scientific
programs, parallel loops often account for majority of the
entire execution time. As energy is the product of power
and time, reducing the energy of parallel loops is the key
to reducing the energy of the whole program as well.

OpenMP [3] is a popular shared-memory parallel
programming interface. With the increasing number of

cores in a processor chip, the natural parallelism of
OpenMP makes it more widely used in HPC systems, and
makes it one of the most indispensable multithread
programming models. Thus, optimizing the energy
consumption of OpenMP loops is important. Our
optimization goal is to implement user-transparent
OpenMP loop scheduling with energy optimization
processor dynamic voltage/frequency scaling (DVFS).
There is no doubt that such energy-oriented OpenMP
loop scheduling algorithm is very attractive for users. In
this paper, we focus on the obtainment of as much energy
saving as possible in theory, or what is termed as the
upper bound of energy saving.

OpenMP loop scheduling is different from ordinary
parallel nested loop scheduling in many aspects. Loop-
carried dependences generally exist in parallel nested
loops, which increase the complexity of loop
parallelization. Thus, estimating statically the execution
time of each processor is difficult, which in turn results in
problems in the use of energy optimization methods such
as dynamic voltage/frequency scaling. Profiling can
effectively obtain the run time characteristic of a program,
but its usability is limited. In comparison, in OpenMP
loop scheduling, the dependence among loop iterations
does need not to be considered. Programmers guarantee
the correctness of loop scheduling. Scheduling strategy
and chunk size are the key factors that influence loop
performance. An oversized chunk leads to load imbalance,
whereas a smaller chunk reduces performance and
destroys data locality. These two factors are also
important for the optimization of energy consumption.

DVFS is an effective low-power technique that clearly
balances energy savings and performance loss of the
processor. It has been applied in some high-performance
processors, such as Intel Xeon processor (Enhanced Intel
SpeedStep® Technology) [4] and AMD Opteron
processor (Enhanced AMD PowerNow!™ Technology)
[5]. Such DVFS-capable processors provide hardware
support to research on low-power software.

In massively parallel systems with multiprocessors, the
speed of processors assigned with less workload can be
decreased by DVFS. Therefore, their execution time of a
task remains the same with the processors assigned with
the maximum workload. As a result, the energy
consumption of all processors is reduced. This DVFS
policy can also be used in OpenMP loop scheduling.

1694 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1694-1705

However, is DVFS the only way to save energy? Should
more opportunities be explored to maximize energy
saving, such as changing the loop scheduling algorithm
itself?

To answer the above questions, we examine the
optimal energy saving of OpenMP static loop scheduling.
We focus on the impact of different scheduling policies
on DVFS, and take both scheduling policies and DVFS
into consideration. We also use the processor shutdown
technique to optimize the energy consumption of
OpenMP dynamic loop scheduling.

In this paper, energy consumption refers to the energy
of processors needed to complete a parallel loop,
excluding the energy required of other components such
as storage system, network, and so on. Energy
optimization is the improvement in energy consumption
under a certain performance loss. Performance is the
execution time of OpenMP loop. Performance loss is the
delay arising from DVFS or processor shutdown.
Generally, the more performance loss is allowed, the
more opportunities are given to DVFS, and the greater
the amount of energy savings that can be achieved. With
a given performance loss, energy saving has its upper
bound in theory. We want to build a model to maximize
the energy saving of OpenMP loop scheduling under
some assumptions, which is briefly expressed as energy
optimization with the given performance constraint.

In this paper, the energy optimization problem is
divided into two types according to whether the execution
time of each outermost loop is the same or not. If the
execution time of each outermost loop is the same (called
US), a US-based Energy-saving Optimal Static
Scheduling algorithm (EOSS) is derived. EOSS
combines scheduling chunk size scaling and DVFS for
maximum energy saving, and its optimality is proven.
When the execution time of each outermost loop is not
the same (called UUS), an energy-oriented algorithm—
the UUS-based Energy-oriented Static Scheduling
algorithm (ESS)—is proposed.

The optimal solution only exists under some given
hypothetical conditions. The optimal solution of EOSS is
the upper bound in theory, and it is not exactly the same
as the actual solution. When other factors like data
locality and synchronization are taken into account, the
solution proposed by EOSS should be reconsidered.
Although some given hypothetical conditions in this
article sound ideal and are better than actual cases, they
are helpful for research on optimality. Thus, such kind of
optimistic hypothesizing is acceptable. Prospective
research on energy-saving optimality provides a
theoretical upper bound as well as the basis for energy
optimization in the future. Therefore, from this point of
view, our theoretical research has much practical
significance.

We extend the previous work [19] about EOSS
algorithm, and propose two energy optimization
algorithms for OpenMP loop scheduling:

 US-based Energy-saving Optimal Static Scheduling
algorithm (EOSS)

 UUS-based Energy-oriented Static Scheduling
algorithm (ESS)

The rest of this paper is organized as follows. Section 2
reviews the related literature. Section 3 gives the detailed

description of the two algorithms. Section 4 gives the
experimental results and the evaluation of the proposed
algorithms. Section 5 concludes this paper.

II. RELATED WORK

The power consumption of processors encompasses
dynamic power, short circuit power, and leakage power
[6], among which dynamic power accounts for a major
fraction. Energy is considered the accumulation of power
over time. In this article, we focus on reducing the
dynamic energy consumption of processors. Related
studies, on the other hand, are limited to optimizing
dynamic energy consumption.

In multiprocessor systems, the dynamic energy
consumption of processors is influenced primarily by the
number of running processors and the power state of each
processor. A large number of related studies on
effectively optimizing the energy consumption of
multiprocessors exist. Adaptively adjusting the number of
processor cores as the program runs is an important
energy optimization policy. Kadayif et al. [7] proposed an
adaptive parallel loop policy for on-chip multiprocessor
(CMP) architectures. During the running process of
nested loops, using a portion of processor cores is more
efficient than employing all of them because of loop-
carried dependencies. Too many processor cores result in
an increase in communication time generated by them
and growth of barrier overhead among processor cores.
Furthermore, an excessive number of processor cores also
cause wastage from unnecessary energy consumption.
The adaptive parallel loop policy allows each nested loop
to choose an individual number of processor cores while
shutting down unused ones during program runs. Kadayif
et al. found that the number of processor cores that yields
the best results is usually much smaller than the total
number. Furthermore, the authors [8] derived an ILP
formulation to describe the foregoing problem, and
obtained the optimal number of processor cores by
solving this ILP formulation.

Aside from adjusting the number of processor cores,
scaling down the voltage/frequency of processors is
another common method for reducing the energy
consumption of processors. In practical applications,
maximizing the computing ability of processors is
sometimes unnecessary. Allotting more computing power
than what the program requires leads to energy wastage.
Using multi-level voltage/frequency scaling as basis,
Kadayif et al. [9] developed a tradeoff between
performance and energy consumption, and set each
processor with the appropriate voltage/frequency—
instead of the highest—to save energy. They adopted
compiler analysis techniques to exploit the load
imbalance between processor cores. The differences in
energy optimization between nested loops and OpenMP
loop scheduling lie in different parallelization problems
and different low-power methods. Kadayif et al. were
interested in the parallel nested loops of data-intensive
applications in on-chip multiprocessors. For these kinds
of programs, data locality is sensitive to loop iteration
assignment. Nested loops usually include loop-carried

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1695

© 2012 ACADEMY PUBLISHER

dependencies. During the process of assigning loop
iterations to multiprocessors, the effect of loop-carried
dependencies must be considered. We allow the scaling
down of each processor’s voltage/frequency according to
its individual busy/idle state, and we cannot easily
estimate the delay because of dependencies and other
factors. At this point, adopting an actual test to obtain the
appropriate voltage/frequency for each processor is a
better choice. For OpenMP loop scheduling, however,
considering loop-carried dependence presents no
problems. Programmers are in charge of eliminating
loop-carried dependencies. When it comes to different
low-power methods, Kadayif only use DVFS to save
energy. However, our interest is focused not only on the
DVFS technique, but also on scheduling the algorithm
itself, especially the scheduling chunk size and
scheduling policy. We study the effect of OpenMP
scheduling chunk size on DVFS of processors. To the
best of our knowledge, there are few related studies on
energy-oriented OpenMP loop scheduling.

The processor shutdown technique and the DVFS
approach can be used in combination for more efficient
energy consumption. Li et al. [10] proposed a two-
dimensional optimization method, in which one
dimension involves changing the active number of
processors, and the other entails scaling the
voltage/frequency of processors. Their idea is similar to
that in our previous work [11], but differs from the
present work in a number of aspects. Their platform is
CMP architecture, whereas ours is large-scale shared
memory multi-core architecture. Although both our
efforts focus on the energy optimization of parallel
regions, an obvious difference is that the granularity
adopted by Li et al. is a loop region, which ignores the
discrepancy of processors. They set a uniform voltage
level for each parallel region and chose an optimal
number of processors. The granularity that we chose is
loop iteration, a finer-grained type.

Teodorescu et al. [12] proposed variation-aware
scheduling algorithms to save power or improve
throughput. They also proposed variation-aware power
management. They proposed an algorithm called LinOpt,
which uses linear programming to find the best voltage
and frequency level for each core in the CMP.

Bhattacharjee et al. [13] proposed and evaluated thread
criticality predictors for parallel applications, which can
guide Intel Threading Building Blocks (TBB) task
stealing decisions to improve performance. It can also
guide dynamic energy optimizations in barrier-based
applications.

Wang et al. [14] proposed a chip-level power control
algorithm that is systematically designed based on
optimal control theory. Rangan et al. [15], on the other
hand, proposed thread motion (TM), a fine-grained
power-management scheme for CMPs. TM enables rapid
movement of threads to facilitate adaptation of the time-
varying computing needs of running applications to a
mixture of cores with fixed but different power or
performance levels.

MPI is a widely used parallel programming interface.
Representative studies on low-power MPI optimization

are as follows. Kappiah et al. [16] presented a system
called Jitter, which exploits node slack time to scale
down node frequency for energy conservation. Freeh et al.
[17] focused on low-power and high-performance
clusters, divided programs into phases, and chose a
suitable frequency for each phase. Lim et al. [18]
identified communication phases and reduced the
voltage/frequency of processors in communication phases.
MPI-based DVFS algorithms cannot be directly applied
to OpenMP programs because they are distinctly different
in implementation schemes. OpenMP loop scheduling
utilizes compiler-directed methods to achieve energy
optimization. For MPI programs, however, energy
optimization is implemented by MPI libraries. The
processes of MPI send and receive messages to and from
others, and the computation of each process are decided
by programmers. There is no scheduling problem among
them. The energy optimization of the MPI program is
primarily focused on energy reduction of processors
when processes are changing messages.

In our previous work [19], we presented some studies
on energy-saving optimal static scheduling (EOSS)
algorithm. However, EOSS is limited in that it assumes
that ideal conditions are satisfied. The same scheduling
chunk, instead of ununiform-sized scheduling chunk, is
assumed. In other words, the more general cases are
ignored. In this paper, we provide a more detailed
illustration of EOSS, including the determination of the
chunk size of two-phase scheduling. More important, we
extend the assumption and discuss the energy
consumption optimization of OpenMP loop scheduling
with ununiform-sized scheduling chunks. We propose
energy-oriented static scheduling algorithm (ESS), which
enriches earlier studies.

III ENERGY OPTIMIZATION ALGORITHMS FOR OPENMP
LOOP SCHEDULING

A. Introduction
DOALL i=1, 37
 { block }
END DOALL

Figure 1. A simple DOALL loop

In this paper, we assume that the number of outermost
iterations in one OpenMP loop is N, and the number of
processors for executing OpenMP loop is p. We take the
DOALL loop shown in Figure. 1 as an example (N =37, p
=5).

Taking each outermost iteration as a scheduling unit,
OpenMP static scheduling distributes all loop iterations to
available processors. The given chunk of iterations is
defined as scheduling chunk size (S), which refers to the
number of outermost loop iterations in one schedule. S is
statically determined by an OpenMP compiler. Static
scheduling has very little scheduling overhead, but load
imbalance occurs among multiprocessors. Based on
varying chunk sizes, static scheduling is divided into
three types: block assignment, block cyclic assignment,
and cyclic assignment. As shown in Figure. 2(a), block
assignment divides the workload into blocks of iterations

1696 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

that are as equal as possible. Chunk size is obtained
through the number of iterations divided by the number
of processors. However, most of the time, the number of
iterations is not divided exactly by the number of
processors. Each processor is assigned with a group of
consecutive loop iterations and scheduled only once. In
the example shown in Figure. 2(a), the scheduling chunk
size is eight. Block cyclic assignment allows loop
assignments to be interleaved using some stride,
assigning iterations by round-robin to each processor.
Each processor can be scheduled multiple times. Figure.
2(b) shows a scheduling chunk size of three. Figure. 2(c)
describes cyclic assignment, which is a special case with
a chunk size of one. Each processor is scheduled
numerous times. On the same processor, data in two
consecutive schedules are discontinuous, leading to poor
data locality.

!$OMP PARALLEL DO
!$OMP SCHEDULE (STATIC)
 DO i=1, 37
 block

ENDDO

!$OMP PARALLEL DO
!$OMP SCHEDULE (STATIC,3)
 DO i=1, 37
 block

ENDDO

!$OMP PARALLEL DO
!$OMP SCHEDULE (STATIC,1)
 DO i=1, 37
 block

ENDDO

P1 P2 P3 P4 P5

P1 P2 P3 P4 P5

P1 P2 P3 P4 P5

(a) block (b) block cyclic (c) cyclic

 busy idle

Figure 2. Results of OpenMP static loop scheduling

We disregard synchronization overhead and data
locality discrepancy because of the different chunk sizes,
and measure load balancing only in terms of the number
of iterations assigned by each processor. Thereafter, we
conclude that block assignment most easily causes load
imbalance. If |p N/ , the last processor is assigned with
the remaining iterations.

OpenMP loop scheduling can be divided into two types
in terms of the characteristics of the scheduling unit
(outermost iteration).

1) Uniform-sized scheduling unit (US): The execution
time of each outermost loop iteration is always the same.
EOSS is based on this assumption.

2) Ununiform-sized scheduling unit (UUS): The
execution time of each the outermost loop iteration is not
always the same. ESS is based on this assumption.

Before discussing the algorithms in detail, we provide
basic definitions of processor power and energy
consumption.

According to CMOS power equations,
Power DynamicPower ShortCircuit Power

LeakagePower
= +
+

 (1)

Among the sources of power consumption, we focus on
dynamic power because it accounts for a big fraction of
total power. Dynamic power P is calculated according to
the following equation [6]:

2P CV fα= (2)
where α refers to the switching activity factor, 0<α<1, C
is the total capacitance driven by all the gate output, V is
the operating voltage, and f denotes the clock frequency.
P is proportional to the square of V and f. Furthermore,
voltage and frequency must be adjusted together while
satisfying the following relationship:

()thV Vf
V

τ−∝ (3)

where Vth is the threshold voltage and is a constant, τ is a
proportional factor, and 1≤τ≤2. When τ=2, f is
proportional to V, so that (2) can be replaced by

3P f∝ (4)
Hence, we can conclude that scaling the

voltage/frequency of the processor can result in cubic
power savings. Delay is inversely proportional to
frequency; thus, energy is proportional to the square of
the voltage.

 2E f∝ (5)
Equation (3) shows that voltage and frequency have to

be scaled simultaneously, and satisfy a certain
relationship. We can only use the term frequency scaling
instead of voltage/frequency scaling. Hence, the value of
the voltage can be calculated in terms of the value of the
frequency.

B. EOSS
Table 1 shows some symbol descriptions used in this

article. In OpenMP scheduling, the workload and
frequency of each processor form a pair (ai,fi). Scheduling
Γ is composed by p pairs of (ai,fi), where p represents the
number of processors. Γ-based λ scheduling is a new
scheduling derived from Γ in terms of certain rules. As
much as possible, Γ-based λ scheduling is obtained by
scaling down the frequency of each processor under
certain performance conditions. The detailed rules that Γ-
based λ scheduling follows are: (1) the frequency of each
processor in Γ-based λ scheduling must be lower than
that in Γ; and (2) the parallel time of Γ-based λ
scheduling is given by users, equal to T, which is no less
than the time of Γ. Γ-based λ scheduling is used in the
following proof of optimality.

First, as Figure. 3 shows, we can directly apply DVFS
to multiprocessors where light-load processors can run at
lower speeds to save energy; meanwhile, the deadline of
the loop is satisfied. Figure. 3(a) is identical to Figure.
2(b), in which the parallel time is determined by
processors P1 and P2. In Figure. 3(b), we prolong the
execution time of P3–P5 to reach the parallel time by
scaling down the voltage/frequency of P3–P5. As a result,
DVFS saves energy without performance loss.

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1697

© 2012 ACADEMY PUBLISHER

TABLE I.
SYMBOL DESCRIPTIONS

Symbol Meaning

1 1 2 2{(,),(,),...,(,)}p pa f a f a fΓ = Static scheduling sequence Γ . Each pair of (,)i ia f represents the number
of iterations ia and the frequency if for processor Pi

()T Γ Parallel execution time of Γ
()E Γ The energy consumption of Γ

(,)w
iT a f Busy time of processor Pi under (,)a f

1 1(,) {(, ()),..., (, ())}p pT a f a fλ λ λΓ = Γ -based λ scheduling. It is based on 1 1{(,),...,(,)}p pa f a fΓ = . Frequency

()ifλ for Pi meets: {1,..., }, ()i ii p f fλ∀ ∈ ≤ and
i

, 0
(, ())

0, 0
iw

i i i

T a
T a f

a
λ

>⎧⎪= ⎨ =⎪⎩

where ()T T≥ Γ .

P1 P2 P3 P4 P5

P1 P2 P3 P4 P5

(a) before DVFS

(b) after DVFS

 max frequency low frequency idle

Figure 3. DVFS of OpenMP static loop scheduling

The DVFS policy in Figure. 3 is straightforward. It
does not change scheduling policy; rather, it only scales
down the frequency of each processor according to the
load. If we modify scheduling policy by adjusting chunk
size, is there any possibility of more energy savings?

The basic idea of the improved algorithm is described
as follows. Before DVFS is carried out, we change the
loop scheduling policy. The key to the algorithm is
rescheduling the loops with the principle that the
workload of all the processors should, as much as
possible, stay balanced. Loop rescheduling combined
with DVFS results in more energy savings than DVFS
alone (Figure. 4). Therefore, we propose US-based EOSS
algorithm.

Figure. 4 describes the two steps of EOSS. The first
step is loop rescheduling intended to obtain more load
balance, and the second step is DVFS. Figure. 4(a) is the
initial OpenMP static scheduling paradigm, and it can be
any of the static schedulings shown in Figure. 2. We
assume that the chunk size of initial scheduling Γ0 is S,
and the parallel time of the initial scheduling is T(Γ0).
These values are known before EOSS is applied. The
optimization of EOSS is based on fixed scheduling
chunks, and choosing different chunk sizes leads to
different EOSS energy optimization results. T(Γ0)
determines the parallel time of EOSS. Under the
performance loss of β, the parallel execution time after
EOSS optimization is T(Γ0) ×(1+β). In the initial
scheduling, processors P3–P5 are idle in the last round of
scheduling, while P1 and P2 are constantly busy.
According to (5), scaling down the frequency of

processors P3–P5 brings forth energy savings of square
stage.

P1 P2 P3 P4 P5

P1 P2 P3 P4 P5

(a) initial
scheduling

(b) load rescheduling (c) DVFS

 max frequency low frequency idle

T t

P1 P2 P3 P4 P5

Figure 4. Two-phase illustration of EOSS

To obtain more opportunities to save energy, loads on
multiprocessors must be as balanced as possible. Even if
the loads of each processor cannot be exactly the same,
the discrepancy between multiprocessors must be
minimized. Block cyclic assignment with a chunk size of
one has the best load balance, but it leads to poor data
locality because of discontinuous iterations in two
adjacent scheduling rounds on the same processor. To
compensate for this defect and minimize the load
imbalance, we propose two-phase scheduling, which
keeps the most rounds of iteration assignment unchanged,
and only changes the chunk size in the last round of the
iteration assignment. Consequently, load differences
between any two processors are no more than one. Let

*
ia represent the number of iterations assigned to

processor Pi, , 1, 2,...,i j p= . That is,
* *, , 1i ji j a a∀ − ≤ (6)

In the first phase of EOSS, the chunk size is
unchanged and equal to S. Each processor is scheduled

N
p S

⎢ ⎥
⎢ ⎥×⎣ ⎦

 times. In the second phase, each processor is

scheduled once. To satisfy (6), the chunk size is changed
to

iS from S ;
iS refers to the chunk size of processor Pi

during the second phase, and it is calculated by

1698 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

()

()

1 1, 2,..., mod

mod 1,...,
i

N i N p
p

S
N i N p p
p

⎧⎢ ⎥
+ =⎪⎢ ⎥

⎪⎣ ⎦= ⎨
⎢ ⎥⎪ = +⎢ ⎥⎪
⎣ ⎦⎩

 (7)

where N is the total number of all iterations scheduled in
the second phase, which satisfies (8).

NN N p S
p S

⎢ ⎥
= − × ×⎢ ⎥×⎣ ⎦

 (8)

If ()p S N× and 0N = , each processor has equal workload,
and (6) is satisfied. At this time, two-phase scheduling is
degraded to the DVFS method (Figure. 3).

In the second phase, taking T(Γ0)×(1+β) as the
deadline, we scale down each processor’s
voltage/frequency, which extends the busy time of each
processor from 0

*
it a⋅ to T(Γ0)×(1+β), where t0 refers to

the execution time of one iteration at the maximum
frequency. The frequency of processor Pi is changed from

maxf to *
if , expressed as

() ()
*

* 0

0 1
i

i
t af

T β
×

=
Γ × +

 (9)

where *
ia can be calculated by

*
i i

Na S S
p S

⎢ ⎥
= × +⎢ ⎥×⎣ ⎦

 (10)

We use the example shown in Figure. 4(a) to explain
that EOSS in Figures. 4(b)–(c) can generate more energy
savings than DVFS in Figure. 3(b). We assume that the
frequency of processor Pi in Figure. 3(b) is scaled to if ,
and the frequency of processor Pi in Figure. 4(c) is scaled
to *

if ; then we have
1 2 maxf f f= = ,

3 max
7
9

f f= ,
4 5 max

2
3

f f f= = ,

* *
1 2 max

8
9

f f f= = , and * * *
3 4 5 max

7
9

f f f f= = = . Thus, we

have ()2* 2

1 1

p p

i i
i i

f f
= =

<∑ ∑ . Figure. 5 shows the detailed

description of EOSS.
In this section, we prove that EOSS can obtain

maximum energy savings.
The energy-saving optimal problem is described as

follows: Given p processors, a DOALL loop L has N
outermost loop iterations, initial OpenMP static loop
scheduling Γ0 has a chunk size of S, and β is performance
loss. Under the condition of US scheduling unit, we find
energy-saving optimal scheduling Γ* to reach the
maximum energy savings while satisfying
T(Γ*)=T(Γ0)×(1+β).

The following lemma and theorems prove that EOSS
can yield maximum energy savings. The proof is detailed
in the Appendix. Lemma 1 and Theorem 1 are the bases
of Theorem 2. Lemma 1 proves that the energy of Γ-
based λ scheduling is no more than that of Γ. In other
words, Γ-based λ scheduling is better than Γ from the
angle of energy. This conclusion is easy to understand
because Γ-based λ scheduling does not change the load
and merely scales down the frequency of each processor,

so that the energy of Γ-based λ scheduling is no higher
than that of Γ scheduling.

Algorithm: Energy-saving Optimal Static Scheduling
algorithm (EOSS)
Input: p processors, one DOALL nested

loop L , N outermost loop iterations, initial
OpenMP static loop scheduling with chunk size
of S , performance loss with β .

Output: energy-optimal scheduling *Γ , which satisfying
the maximum energy saving under performance
loss with β .

1. Set chunk size of each processor in the first phase to be
S ;

2. Set chunk size of processor Pi in the second phase to

be iS ,
()

()

1 1,2,..., mod

mod 1,...,
i

N i N p
p

S
N i N p p
p

⎧⎢ ⎥
+ =⎪⎢ ⎥

⎪⎣ ⎦= ⎨
⎢ ⎥⎪ = +⎢ ⎥⎪
⎣ ⎦⎩

where

NN N p S
p S

⎢ ⎥
= − × ×⎢ ⎥×⎣ ⎦

.

3. Calculate workload of each processor.

*
i i

Na S S
p S

⎢ ⎥
= × +⎢ ⎥×⎣ ⎦

.

4. Set processor Pi new frequency
*

0*

0 1
i

i
t af

T β⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=
×

Γ × +
,

1,...,i p= ;
5. New frequency sequence for this nested loop is

()* * *
1 2, ,..., pf f f ;

6. Output * * * * * *
1 1 2 2

* , , , ,... ,p pa f a f a f⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎬
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Γ = ;

7. End.

Figure 5. Description of EOSS

Lemma 1. Given
1 1 2 2{(,), (,),..., (,)}p pa f a f a fΓ = ,

then ((,)) ()E T Eλ Γ ≤ Γ , where ()T T≥ Γ .
We assume that the sum of all the loads of the processors
(the outermost loop iterations) is N. Each assignment

()1 2, ,..., px x x satisfies
1

p

i
i

x N
=

=∑ . Set W comprises all the

assignments. Theorem 1 proves that one of the

assignments (*w W∈) exists, which drives 3

1

p

i
i

x
=
∑ to

reach the minimum value. In *w , the load difference
between any two processors is no more than one.

Theorem 1. Given a function () 3
1 2

1

, ,...,
p

p i
i

f x x x x
=

= ∑ , in

which ix +∀ ∈ ,
1

p

i
i

x N
=

=∑ . Here, N is a constant.

Given assignment
set (){ }1 2, ,..., pW x x x= .Let /x N p= ⎢ ⎥⎣ ⎦ . Assume that

()* * * *
1 2, ,..., pw x x x W= ∈ . If |p N ,

then * ,1ix x i p= ≤ ≤ ; otherwise,

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1699

© 2012 ACADEMY PUBLISHER

*, ii x x∀ = or * 1ix x= + . Hence,

() *
1 2m in , , ..., ()pf x x x f w= .

Based on Lemma 1 and Theorem 1, Theorem 2 proves
that EOSS generates maximum energy savings. The
energy consumption of any scheduling is not less than
that of EOSS. Optimal scheduling Γ* in EOSS is
obtained in two steps. Step one is rescheduling the initial
scheduling Γ to Γ’ as shown in Figure. 4(b). Step two is
DVFS, which is completed by generating Γ’-based λ
scheduling. We need to prove that for any scheduling Γ∆,
we can obtain E(Γ*)≤E(Γ∆).

Theorem 2.Given () () (){ }1 max 2 max max, , , ,..., ,pa f a f a fΓ =

in which
1

p

i
i

a N
=

=∑ , assume N p≥ , denote
0

Nb
p

⎢ ⎥
= ⎢ ⎥
⎣ ⎦

,

and let
() () (){ }'

1 max 2 max max, ,..., , , ,pb f b f b fΓ = where

1 1

p p

i i
i i

b a
= =

=∑ ∑ . If p N , then 0 , 1ib b i p= ≤ ≤ .

Otherwise, 0

0

1, 1
, 1i

b i b
b

b b i p
+ ≤ ≤ Δ⎧

= ⎨ Δ + ≤ ≤⎩
 where

modb N pΔ = . Let () ()()* ' , 1 Tλ βΓ = Γ + ⋅ Γ , in

which β is the performance loss. The randomly
given () () (){ }1 max 2 max max, , , ,..., ,pc f c f c fΔΓ = satisfies

()() 1 ()T TβΔΓ = + ⋅ Γ and
1 1

p p

i i
i i

c a
= =

=∑ ∑ .

Let ()(),Tγ λ Δ ΔΓ = Γ Γ , and we have () ()E Eγ ΔΓ ≤ Γ

in terms of Lemma 1. We prove
() () ()* 1E EβΓ ≤ + ⋅ Γ and () ()*E E γΓ ≤ Γ , that is,

() ()*E E ΔΓ ≤ Γ .

C. ESS
EOSS shows the process of obtaining the maximum

energy savings in the case of US. However, when the
execution time of the outermost loop iterations is not the
same, does the maximum energy-saving solution exist? If
not, how can we optimize the energy consumption? To
address this problem, we propose a UUS-based ESS
algorithm.

Figure. 6 shows four kinds of parallel loop scheduling.
In Figure. 6(b), the outermost loop iterations have
different execution time because of the branches in the
inner loops. In Figures. 6(c) and (d), the bound of inner
index j is decided by outer index i, which also leads to the
outermost loop iterations having different execution times.
Evenly assigning the outermost loops still causes heavy
load imbalance. The shapes of four subFigureures in
Figure. 6 are (a) rectangular, (b) trapezoidal, (c) right up-
triangular, and (d) left up-triangular.

The examples in Figure. 6 can be reduced to four
categories as shown in Figure. 7[20]. Horizontal axis i of
each subfigure represents the index of the outermost loop.
Vertical coordinates L(i) represent the workload of each
outermost loop. Figure. 7(a) shows the case of US.
Figures. 7(b)–(d) show the case of UUS, which can be
divided into two types: irregular varying case as Figure.
7(b) shows and regular varying case as Figures. 7(c)–(d)
show. The regular varying case includes monotonic
increasing and decreasing scheduling units. In this article,
we consider optimizing the energy only with a monotonic
increasing scheduling unit. Meanwhile, the same method
can be used for monotonically decreasing. For the
irregular varying case, presenting an effective energy
optimization method is difficult and goes beyond the
scope of this paper. Because of varying scheduling units,
providing an energy-saving optimal algorithm is
impossible. We combine loop rescheduling and DVFS to
discuss ESS algorithm for the UUS case.

!$OMP PARALLEL DO
!$OMP SCHEDULE (STATIC)
 DO i=1, n
 DO j=1, m
 block
 END DO

END DO

P1 P2 P3 P4 P5

!$OMP PARALLEL DO
!$OMP SCHEDULE (STATIC)
 DO i=1, n
 DO j=1, m
 block;
 If (j>m/2)
 subblock;
 END DO

END DO

P1 P2 P3 P4 P5

(a) rectangular (b) trapezoid

!$OMP PARALLEL DO
!$OMP SCHEDULE (STATIC)
 DO i=1, n
 DO j=1, i
 block
 END DO

END DO

P1 P2 P3 P4 P5

!$OMP PARALLEL DO
!$OMP SCHEDULE (STATIC)
 DO i=1, n
 DO j=1, n-i
 block
 END DO

END DO

P1 P2 P3 P4 P5

(c) right up-triangle (d) left up-triangle

Figure 6. Four kinds of examples

1700 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

L(i)

i(a) constant i

L(i)

(b) random

(c) monotonic increasing i

L(i)

(d)monotonic decreasing i

L(i)

Figure 7. Four kinds of chunk shape

We assume that the chunk size of initial scheduling Γ0
is S, and the permitted performance loss is β. Taking
Figure. 8(a) as an example, we illustrate the idea of ESS.
Here, we assume that the number of outermost iterations
is 10, the number of processors is 5, and the block size is
2. Only DVFS brings about the result shown in Figure.
8(b). ESS improves the workload assignment. The
process of ESS consists of three steps as follows:

STEP 1: Adopting a round diverse cyclic scheduling
method. Based on cyclic assignment, we propose a round
diverse cyclic scheduling method that changes Γ0 to Γ∆. It
keeps the processor frequency unchanged (fmax) and only
scales the number of iterations assigned to each processor.
The detailed method involves scaling chunk size from S
(equal to two) to one. According to increasing or
decreasing sequence, we alternately change the order of
processor assignment for each round scheduling. For all
processors, completing one task assignment is called one
round scheduling. In Figure. 8(a), only one round
scheduling is applied in terms of a chunk size of two.
After applying the round diverse cyclic scheduling
method, the chunk size is changed to one, and two round
schedulings are applied. The sequences followed by the
processors in the first and second rounds of scheduling
are {P1, P2, P3, P4, P5} and {P5, P4, P3, P2, P1},
respectively. As Figure. 9 (b) shows, the iteration
numbers assigned to processors P1–P5 are(i=1, i=10),(i=2,
i=9), (i=3, i=8), (i=4, i=7) and (i=5, i=6), respectively.

STEP 2: Determining scheduling policy. If
() ()

()
0

0

T T

T
β

ΔΓ − Γ
>

Γ
 then Γ*=Γ0; otherwise, Γ*=Γ∆.

STEP 3: Applying DVFS to Γ*. We scale down each
processor’s voltage/frequency, which extends the busy
time of each processor to T(Γ0)×(1+β) as Figure. 9(c)
shows.

Figure. 10 presents the detailed description of ESS.

IV. EXPERIMENTAL EVALUATIONS

In this section, we evaluate our energy-oriented
OpenMP loop scheduling algorithms. Section 4.1
introduces the experimental environment, including the

simulation platform, methodology, and benchmark.
Section 4.2 presents the experimental results and detailed
analyses of each algorithm.

A. Experimental Environment
1) Simulation Platform and Methodology
To conduct our experiments, we extended Simplescalar

[21] to simulate shared-memory multiprocessor
architecture. Each processor has the same configuration,
including cache and memory. Memory access latency
includes local memory access latency and remote
memory access latency. Power simulation adopts Wattch
[22], which models the dynamic power dissipation of
each processor. We added the module implementation of
DVFS based on the Wattch power model. The range of
clock frequency scaling is 300 MHz–1 GHz. This
simulation platform provides a frequency scaling
interface for DVFS implementation, in which the
relationship of frequency and voltage satisfies (3). When
applying processor shutdown technology, the power of
processors in the shutdown state consumes 10% of the
power in the active state. To simplify the computation of
time and energy overhead, we adopted fixed
voltage/frequency switching overhead instead of (11) and
(12). We also adopted fixed reactivate overhead. Table 2
lists the relevant parameters.

P1 P2 P3 P4 P5

P1 P2 P3 P4 P5

max frequency low frequency

(a) initial scheduling (b) DVFS

Figure 8. Results of DVFS

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1701

© 2012 ACADEMY PUBLISHER

P1 P2 P3 P4 P5

P1 P2 P3 P4 P5

P1 P2 P3 P4 P5

 max frequency low frequency

(a) initial scheduling (b) task rescheduling (c) DVFS

Figure 9. Illustration of ESS

 Algorithm: UUS-based Energy-oriented Static
Scheduling algorithm (ESS)
Input: p processors, one DOALL nested

loop L , N outermost loop iterations, initial
OpenMP static loop scheduling with chunk size
of S , performance loss with β .

Output: energy-oriented scheduling *Γ , which satisfying
performance loss with β .

1. Obtaining new scheduling ∇Γ through round diverse
cyclic scheduling method;

2. if () ()
()

0

0

T T

T
β

∇Γ − Γ
>

Γ

3. then * 0=Γ Γ where max max max
* * *
1 2

* , , , ,... ,pa f a f a f⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎬
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Γ ;

4. else * ∇Γ =Γ where max max max
* * *
1 2

* , , , ,... ,pa f a f a f⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎬
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Γ ;

5. Set processor Pi new frequency
*

0*

0 1
i

i
t af

T β⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=
×

Γ × +
,

1,...,i p= ;
6. New frequency sequence for this nested loop is

()* * *
1 2, ,..., pf f f ;

7. Output * * * * * *
1 1 2 2

* , , , ,... ,p pa f a f a f⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎬
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Γ = ;

8. End.

Figure 10. Description of ESS

The loop scheduling results are based on the CCRG
OpenMP parallel compiler[23], which obeys OpenMP
API 2.0 standard and supports Fortran 77/90/95 C
language. As Figure. 11 shows, the CCRG OpenMP
parallel compiler consists of the OpenMP translator,
OpenMP run-time library, native compiler, and linker.
The OpenMP translator does the following work: (1)
identifying and processing OpenMP directives; and (2)
optimizing the OpenMP program, covering data locality
optimization, voltage scaling instruction insertion, and so
on.

Our experiment was accomplished through the
following steps: 1) the original program was simulated on
Simplescalar + Wattch environment, and performance
and energy results were obtained; 2) the program traces
generated by CCRG OpenMP were analyzed; 3)
frequency scaling clause was incorporated by hand; 4) the

program traces with “marks” were generated as input of
the simulation environment; and 5) the new binary code
was simulated again, new performance and energy results
were obtained and compared with those in 1).

2) Benchmark
To evaluate the effectiveness of our energy-oriented

loop scheduling algorithms, we used five NPB3.2-OMP
[24] kernel programs: IS, EP, FT, CG, and MG. NPB is a
representative parallel benchmark, and NPB3.2-OMP is
the OpenMP implementation of NPB3.2. There are six
problem sizes for each program (i.e., S, W, A, B, C, and
D) from which we choose class C. In addition, we use a
code segment to verify the effectiveness of ESS, which is
shown in Figure. 12. In this code, A and B are double
type constants. The number of outermost loop is defined
as M, which is 10240.

file_omp.c

file.c

Syntax Parser
file.dep

Translator Translator

Native Compiler Executable

OpenMP
Runtime
Library

Figure 11. CCRG OpenMP parallel compiler

TABLE II. DEFAULT SIMULATION PARAMETERS IN THE
EXPERIMENTS

Parameter Default Value

Highest Frequency/Voltage 1 GHz / 1.9 V

Lowest Frequency 300 MHz

Voltage/Frequency Switching Penalty 2 us /2 uJ

Reactivate Switching Penalty 50 us / 50 uJ

L1 latency 1 cycle

L2 latency 4 cycles

Local memory access latency 100 cycles

Remote memory access latency 500 cycles

#define M 10240
double a[M][M];
double b[M][M];
double c[M][M];
for(i=0;i<M;i++)
 for(j=0;j<i;j++){
 c[i][j] = a[i][j]/A + b[i][j]/B;
 d[i][j] = a[i][j]/B + b[i][j]/A;
 e[i][j] = c[i][j]/B + d[i][j]/A;
 }

Figure 12. experiment code for ESS

1702 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

TABLE III. PROFILE DATA FOR EACH PROGRAM

Program
The number of

parallel
regions

The max
number of
iterations

The min number
of iterations

IS 24 268435456 134217728

EP 1 65536 65536

FT 38 1024 512

CG 2918 149907 149800

MG 770 139264 512

Table 3 provides all the profile data of the parallel loop

regions of each program, including the number of parallel
loop regions, as well as the maximum and minimum
number of outermost iterations for all the parallel regions.

B. Results
The energy results in this section pertain only to the

energy consumption of the parallel loop regions.

1) Results of EOSS
This section presents the experimental results of EOSS,

which are compared with the DVFS method.
First, we set the chunk size of each benchmark. Chunk

size refers to the number of outermost loop iterations in
one scheduling. IS, EP, FT, CG, and MG have chunk
sizes of 300000, 100, 3, 100, and 200, respectively. FT
chooses the least chunk size when considering both the
number of outermost loop iterations and number of
processors.Figure. 13 shows the experimental results of
EOSS. In this figure, the number of processors ranges
from 20–160, and performance loss β=5%. For these five
programs, when the numbers of processors are 20, 40, 60,
80, 100, 120, 140, and 160, the average energy savings
are 5.9%, 17.1%, 8.5%, 28.3%, 21.5%, 28.9%, 35.7%,
and 43.5%, respectively. From the perspective of energy
savings, a large-scale system can save more energy, and
energy optimization is more significant for larger
computing systems. We can also say that the larger the
system, the more energy is wasted.

IS

0%

10%

20%

30%

40%

50%

60%

20 40 60 80 100 120 140 160

the number of processors

En
er

gy
 S

av
in

g

EP

0%

10%

20%

30%

40%

50%

20 40 60 80 100 120 140 160
the number of processors

En
er

gy
 S

av
in

g

FT

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

20 40 60 80 100 120 140 160
the number of processors

En
er

gy
 S

av
in

g

CG

0%

5%

10%

15%

20%

20 40 60 80 100 120 140 160
the number of processors

En
er

gy
 S

av
in

g

MG

0%

10%

20%

30%

40%

50%

60%

20 40 60 80 100 120 140 160
the number of processors

En
er

gy
 S

av
in

g

Figure 13. Energy saving of EOSS

The EOSS uses DVFS as the major energy saving
method, but DVFS is not the major characteristic of this
algorithm. The most important characteristic of EOSS is
loop rescheduling that helps DVFS. Combining loop
rescheduling with DVFS can obtain more energy savings
than using DVFS method alone. This is the important
contribution of this article. To evaluate the advantage of
our algorithm over the DVFS method on energy savings,
we compare the results of EOSS to those of the DVFS
method. Here, the DVFS method refers to the method
shown in Figures. 3 and 8. Each subfigure in Figure. 14 is
obtained by subtracting the energy saving percentage of
DVFS only from that of EOSS. From this figure, we can
find that EOSS results in more energy savings than the
DVFS method alone. For example, in FT under 140

processors, the energy saved in EOSS is 12% larger than
that in DVFS.

2) Results of ESS
ESS determines different scheduling with a

performance loss of β 5%. For the code in Figure. 12, we
choose a chunk size of 20 for Г0. The energy savings in
the new scheduling compared with Г0 is shown in Figure.
15.

From this figure, we see that when the chunk size is
fixed, ESS achieves significant energy savings. This
result also confirms that with the increase in the number
of processors, the difference in each processor’s
workload of such a kind of loop becomes larger, which
yields more opportunities for saving energy. For example,
when the number of processors is 160, ESS has more

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1703

© 2012 ACADEMY PUBLISHER

than 50% energy savings compared with that of the original scheduling.

IS

0%

1%

2%

3%

4%

5%

20 40 60 80 100 120 140 160
the number of processors

En
er

gy
 S

av
in

g

EP

0%

1%

1%

2%

2%

3%

20 40 60 80 100 120 140 160
the number of processors

En
er

gy
 S

av
in

g

FT

0%
2%
4%
6%
8%

10%
12%
14%

20 40 60 80 100 120 140 160
the number of processors

En
er

gy
 S

av
in

g

CG

0%
0%
0%
1%
1%
1%
1%
1%

20 40 60 80 100 120 140 160
the number of processors

En
er

gy
 S

av
in

g

MG

0%
1%
1%
2%
2%
3%
3%
4%
4%
5%

20 40 60 80 100 120 140 160
the number of processors

En
er

gy
 S

av
in

g

Figure 14. Advantage of EOSS compared with DVFS method

0

20

40

60

20 40 60 80 100 120 140 160En
er

gy
 s

av
in

gs
 %

Number of processors

Figure 15. Energy savings of ESS

V. CONCLUSIONS

In this paper, we studied the energy optimization of
OpenMP static and dynamic scheduling, and proposed
two energy optimization algorithms for OpenMP static
and dynamic scheduling: US-based EOSS, UUS-based
ESS. EOSS obtains optimal energy saving effectiveness
under given assumptions.

We built a simulation platform to evaluate the
effectiveness of our energy-oriented scheduling
algorithms. Experimental results show that our algorithms
can achieve energy savings under different scheduling
conditions. In the future, more practical conditions, such
as communication overhead and data locality, will be
considered to achieve further energy optimization of
OpenMP loop scheduling.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of china under grant No. 60903044.

REFERENCES

 [1] Top 500 list. 2010. http://www.top500.org/list/2010/06/10 0.
 [2] Katherine Yelick. Ten ways to waste a parallel computer. In

Proceedings of the the 36th annual international
symposium on Computer architecture. Austin, TX, USA:
ACM, 2009. 1-1.

 [3] The OpenMP API specification for parallel programming.
http://openmp.org.

 [4] intel website. www.intel.com.
 [5] AMD website. www.amd.com.
 [6] T. Burd, R. Brodersen. Energy efficient CMOS

microprocessor design. In Proceedings of the 28th Hawaii
International Conference on System Science (HICSS-
95)1995.

 [7] I. Kadayif, M. Kandemir, M. Karakoy. An Energy Saving
Strategy Based on Adaptive Loop Parallelization. In
Proceedings of Design Automation Conference (DAC'02).
New Orleans, Louisiana, USA: ACM, 2002. 195-200.

 [8] I. Kadayif, M. Kandemir, U. Sezer. An Integer Linear
Programming Based Approach for Parallelizing
Applications in On-Chip Multiprocessors. In Proceedings
of the 39th IEEE/ACM Design Automation Conference
(DAC'02). New Orleans, LA, USA: ACM, 2002. 703-708.

 [9] I. Kadayif, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, I.
Kolcu. Exploiting Processor Workload Heterogeneity for
Reducing Energy Consumption in Chip Multiprocessors.
In Proceedings of Design, Automation and Test in Europe
(DATE'04). Paris, France: IEEE Computer Society, 2004.
1158-1163.

[10] Jian Li, Jose F. Martinez. Dynamic Power-Performance
Adaptation of Parallel Computation on Chip
Multiprocessors. In Proceedings of the International

1704 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER

Symposium on High Performance Computer
Architecture(HPCA'06). Austin, Texas: IEEE Computer
Society, 2006. 77-87.

[11] Juan Chen, Yong Dong, Xuejun Yang, Dan Wu. A
Compiler-Directed Energy Saving Strategy for
Parallelizing Applications in On-chip Multiprocessors. In
Proceedings of the Fourth International Symposium on
Parallel and Distributed Computing (ISPDC-05). Lille,
France: IEEE Computer Society, 2005. p.147-154.

[12] Radu Teodorescu, Josep Torrellas. Variation-Aware
Application Scheduling and Power Management for Chip
Multiprocessors. In Proceedings of the 35th International
Symposium on Computer Architecture (ISCA 2008).
Beijing, China: IEEE, 2008. 363-374.

[13] Abhishek Bhattacharjee, Margaret Martonosi. Thread
criticality predictors for dynamic performance, power,and
resource management in chip multiprocessors. In
Proceedings of the 36th International Symposium on
Computer Architecture (ISCA 2009). Austin, TX, USA:
ACM, 2009. 290-301.

[14] Yefu Wang, Kai Ma, Xiaorui Wang. Temperature-
constrained power control for chip multiprocessors with
online model estimation. In Proceedings of the 36th
International Symposium on Computer Architecture (ISCA
2009). Austin, TX, USA: ACM, 2009. 314-324.

[15] Krishna K. Rangan, Gu-Yeon Wei, David Brooks. Thread
motion: fine-grained power management for multi-core
systems. In Proceedings of the 36th International
Symposium on Computer Architecture (ISCA 2009).
Austin, TX, USA: ACM, 2009. 302-313.

[16] Nandini Kappiah, Vincent W. Freeh, David K. Lowenthal.
Just In Time Dynamic Voltage Scaling: Exploiting Inter-
Node Slack to Save Energy in MPI Programs. In
Proceedings of the ACM/IEEE SC2005 Conference on
High Performance Networking and Computing, SC2005.
Seattle, WA, USA: IEEE Computer Society, 2005.

[17] Vincent W. Freeh, David K. Lowenthal. Using multiple
energy gears in MPI programs on a power-scalable cluster.
In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP
2005. Chicago, IL, USA: ACM, 2005. 164-173.

[18] Min Yeol Lim, Vincent W. Freeh, David K. Lowenthal.
MPI and communication - Adaptive, transparent frequency
and voltage scaling of communication phases in MPI
programs. In Proceedings of the ACM/IEEE SC2006
Conference on High Performance Networking and
Computing, SC 2006. Tampa, FL, USA: ACM, 2006.

[19] Yong Dong, Juan Chen, Xuejun Yang, Lin Deng,
Xuemeng Zhang. Energy-Oriented OpenMP Parallel Loop
Scheduling. In Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing with
Applications, ISPA 2008. Sydney, NSW, Australia: IEEE,
2008. 162-169.

[20] Teebu Philip. Increasing Chunk Size Loop Scheduling
Algorithems for Data Independent Loops. Master. The
Pennsylvania State University. Department of Computer
Science and Engineering. 1995.

 [21] Doug Burger, Todd M. Austin. The SimpleScalar tool set,
Version 2.0. Technical Report:CS-TR-1342. University of
Wisconsin-Madison, July 1997.

[22] D. Brooks, V. Tiwari, M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proceedings of 27th International
Symposium on Computer Architecture (ISCA)2000. 83-94.

[23] Chun Huang, Xuejun Yang. CCRG OpenMP: Experiments
and Improvements. In Proceedings of the 1st International
Workshop on OpenMP. Eugene, Oregon USA: Lecture
Notes in Computer Science 2690, 2005. 514-521.

[24] NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Resources/Software.

Yong Dong Shandong Province, China.
Birthdata: May 1980. He is now working in
Computer School, Nation University of
Defense Technology. His research interests
including: parallel computing, massive
storage system and energy optimization of
HPC system.

Juan Chen Jiangxi Province, China.
Birthdate: Feb, 1980. is Computer Science
Ph.D, graduated from Computer School,
Nation University of Defense Technology.
Her research interests including: compiling
technique and energy optimization of HPC
system

JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012 1705

© 2012 ACADEMY PUBLISHER

