
Energy Optimization on OpenMP Loop 
Scheduling 

 
Yong Dong 

National University of Defense Technology, Changsha, 410073,China 
Email: yongdong@nudt.edu.cn 

 
Juan Chen 

National University of Defense Technology, Changsha, 410073,China  
Email: juanchen@nudt.edu.cn 

 
 

Abstract—Energy consumption has become a serious 
problem in high-performance computing (HPC) systems. 
Parallel loops often occupy a significant part of the 
execution time of overall parallel programs. Thus, reducing 
their energy consumption is the key to the reduction in 
energy consumption of the program. This paper discusses 
energy optimization in OpenMP loop scheduling, which is a 
method of optimizing energy consumption of parallel loops 
within a certain performance loss. OpenMP programming 
includes Uniform-Sized scheduling unit (US)-based Energy-
saving Optimal Static Scheduling algorithm (EOSS), 
UnUniform-Sized scheduling unit (UUS)-based Energy-
oriented Static Scheduling algorithm (ESS). EOSS obtains 
the maximum energy savings under the ideal condition (US) 
by combining loop rescheduling and voltage/frequency 
scaling. ESS optimizes energy consumption under the non-
ideal condition (UUS). We evaluate these energy-oriented 
loop scheduling algorithms through simulations on a 
multiprocessor system. Taking 160 processors as example, 
five NPB programs with EOSS can reduce 43.5% energy 
consumption on the average, which is 2.1% more energy 
saved than the DVFS-only method. ESS can achieve 54% 
energy savings with the example code we use. 
 
Index Terms—OpenMP loop scheduling, dynamic voltage 
frequency scaling, processor shutdown, energy optimization 

I.  INTRODUCTION 

As high performance computing (HPC) systems 
become more powerful, their energy consumption 
continues to increase as well. For instance, the average 
power consumption of the Top 10 systems in the TOP500 
list is nearly 2000 KW [1] among which the power 
consumption of the Jaguar system is nearly 7000 KW. 
The power of HPC system is expected to further grow to 
100 MW [2] in the next few years. High energy 
consumption results in many problems to HPC systems, 
such as low reliability, bad stability, and high costs. Thus, 
energy saving in parallel computing has become an 
important issue. For a large number of parallel scientific 
programs, parallel loops often account for majority of the 
entire execution time. As energy is the product of power 
and time, reducing the energy of parallel loops is the key 
to reducing the energy of the whole program as well. 

OpenMP [3] is a popular shared-memory parallel 
programming interface. With the increasing number of 

cores in a processor chip, the natural parallelism of 
OpenMP makes it more widely used in HPC systems, and 
makes it one of the most indispensable multithread 
programming models. Thus, optimizing the energy 
consumption of OpenMP loops is important. Our 
optimization goal is to implement user-transparent 
OpenMP loop scheduling with energy optimization 
processor dynamic voltage/frequency scaling (DVFS). 
There is no doubt that such energy-oriented OpenMP 
loop scheduling algorithm is very attractive for users. In 
this paper, we focus on the obtainment of as much energy 
saving as possible in theory, or what is termed as the 
upper bound of energy saving. 

OpenMP loop scheduling is different from ordinary 
parallel nested loop scheduling in many aspects. Loop-
carried dependences generally exist in parallel nested 
loops, which increase the complexity of loop 
parallelization. Thus, estimating statically the execution 
time of each processor is difficult, which in turn results in 
problems in the use of energy optimization methods such 
as dynamic voltage/frequency scaling. Profiling can 
effectively obtain the run time characteristic of a program, 
but its usability is limited. In comparison, in OpenMP 
loop scheduling, the dependence among loop iterations 
does need not to be considered. Programmers guarantee 
the correctness of loop scheduling. Scheduling strategy 
and chunk size are the key factors that influence loop 
performance. An oversized chunk leads to load imbalance, 
whereas a smaller chunk reduces performance and 
destroys data locality. These two factors are also 
important for the optimization of energy consumption. 

DVFS is an effective low-power technique that clearly 
balances energy savings and performance loss of the 
processor. It has been applied in some high-performance 
processors, such as Intel Xeon processor (Enhanced Intel 
SpeedStep® Technology) [4] and AMD Opteron 
processor (Enhanced AMD PowerNow!™ Technology) 
[5]. Such DVFS-capable processors provide hardware 
support to research on low-power software. 

In massively parallel systems with multiprocessors, the 
speed of processors assigned with less workload can be 
decreased by DVFS. Therefore, their execution time of a 
task remains the same with the processors assigned with 
the maximum workload. As a result, the energy 
consumption of all processors is reduced. This DVFS 
policy can also be used in OpenMP loop scheduling. 

1694 JOURNAL OF SOFTWARE, VOL. 7, NO. 8, AUGUST 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.8.1694-1705



However, is DVFS the only way to save energy? Should 
more opportunities be explored to maximize energy 
saving, such as changing the loop scheduling algorithm 
itself? 

To answer the above questions, we examine the 
optimal energy saving of OpenMP static loop scheduling. 
We focus on the impact of different scheduling policies 
on DVFS, and take both scheduling policies and DVFS 
into consideration. We also use the processor shutdown 
technique to optimize the energy consumption of 
OpenMP dynamic loop scheduling. 

In this paper, energy consumption refers to the energy 
of processors needed to complete a parallel loop, 
excluding the energy required of other components such 
as storage system, network, and so on. Energy 
optimization is the improvement in energy consumption 
under a certain performance loss. Performance is the 
execution time of OpenMP loop. Performance loss is the 
delay arising from DVFS or processor shutdown. 
Generally, the more performance loss is allowed, the 
more opportunities are given to DVFS, and the greater 
the amount of energy savings that can be achieved. With 
a given performance loss, energy saving has its upper 
bound in theory. We want to build a model to maximize 
the energy saving of OpenMP loop scheduling under 
some assumptions, which is briefly expressed as energy 
optimization with the given performance constraint. 

In this paper, the energy optimization problem is 
divided into two types according to whether the execution 
time of each outermost loop is the same or not. If the 
execution time of each outermost loop is the same (called 
US), a US-based Energy-saving Optimal Static 
Scheduling algorithm (EOSS) is derived. EOSS 
combines scheduling chunk size scaling and DVFS for 
maximum energy saving, and its optimality is proven. 
When the execution time of each outermost loop is not 
the same (called UUS), an energy-oriented algorithm—
the UUS-based Energy-oriented Static Scheduling 
algorithm (ESS)—is proposed.  

The optimal solution only exists under some given 
hypothetical conditions. The optimal solution of EOSS is 
the upper bound in theory, and it is not exactly the same 
as the actual solution. When other factors like data 
locality and synchronization are taken into account, the 
solution proposed by EOSS should be reconsidered. 
Although some given hypothetical conditions in this 
article sound ideal and are better than actual cases, they 
are helpful for research on optimality. Thus, such kind of 
optimistic hypothesizing is acceptable. Prospective 
research on energy-saving optimality provides a 
theoretical upper bound as well as the basis for energy 
optimization in the future. Therefore, from this point of 
view, our theoretical research has much practical 
significance. 

We extend the previous work [19] about EOSS 
algorithm, and propose two energy optimization 
algorithms for OpenMP loop scheduling: 

 US-based Energy-saving Optimal Static Scheduling 
algorithm (EOSS) 

 UUS-based Energy-oriented Static Scheduling 
algorithm (ESS) 

The rest of this paper is organized as follows. Section 2 
reviews the related literature. Section 3 gives the detailed 

description of the two algorithms. Section 4 gives the 
experimental results and the evaluation of the proposed 
algorithms. Section 5 concludes this paper. 

II. RELATED WORK 

The power consumption of processors encompasses 
dynamic power, short circuit power, and leakage power 
[6], among which dynamic power accounts for a major 
fraction. Energy is considered the accumulation of power 
over time. In this article, we focus on reducing the 
dynamic energy consumption of processors. Related 
studies, on the other hand, are limited to optimizing 
dynamic energy consumption.  

In multiprocessor systems, the dynamic energy 
consumption of processors is influenced primarily by the 
number of running processors and the power state of each 
processor. A large number of related studies on 
effectively optimizing the energy consumption of 
multiprocessors exist. Adaptively adjusting the number of 
processor cores as the program runs is an important 
energy optimization policy. Kadayif et al. [7] proposed an 
adaptive parallel loop policy for on-chip multiprocessor 
(CMP) architectures. During the running process of 
nested loops, using a portion of processor cores is more 
efficient than employing all of them because of loop-
carried dependencies. Too many processor cores result in 
an increase in communication time generated by them 
and growth of barrier overhead among processor cores. 
Furthermore, an excessive number of processor cores also 
cause wastage from unnecessary energy consumption. 
The adaptive parallel loop policy allows each nested loop 
to choose an individual number of processor cores while 
shutting down unused ones during program runs. Kadayif 
et al. found that the number of processor cores that yields 
the best results is usually much smaller than the total 
number. Furthermore, the authors [8] derived an ILP 
formulation to describe the foregoing problem, and 
obtained the optimal number of processor cores by 
solving this ILP formulation. 

Aside from adjusting the number of processor cores, 
scaling down the voltage/frequency of processors is 
another common method for reducing the energy 
consumption of processors. In practical applications, 
maximizing the computing ability of processors is 
sometimes unnecessary. Allotting more computing power 
than what the program requires leads to energy wastage. 
Using multi-level voltage/frequency scaling as basis, 
Kadayif et al. [9] developed a tradeoff between 
performance and energy consumption, and set each 
processor with the appropriate voltage/frequency—
instead of the highest—to save energy. They adopted 
compiler analysis techniques to exploit the load 
imbalance between processor cores. The differences in 
energy optimization between nested loops and OpenMP 
loop scheduling lie in different parallelization problems 
and different low-power methods. Kadayif et al. were 
interested in the parallel nested loops of data-intensive 
applications in on-chip multiprocessors. For these kinds 
of programs, data locality is sensitive to loop iteration 
assignment. Nested loops usually include loop-carried 
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dependencies. During the process of assigning loop 
iterations to multiprocessors, the effect of loop-carried 
dependencies must be considered. We allow the scaling 
down of each processor’s voltage/frequency according to 
its individual busy/idle state, and we cannot easily 
estimate the delay because of dependencies and other 
factors. At this point, adopting an actual test to obtain the 
appropriate voltage/frequency for each processor is a 
better choice. For OpenMP loop scheduling, however, 
considering loop-carried dependence presents no 
problems. Programmers are in charge of eliminating 
loop-carried dependencies. When it comes to different 
low-power methods, Kadayif only use DVFS to save 
energy. However, our interest is focused not only on the 
DVFS technique, but also on scheduling the algorithm 
itself, especially the scheduling chunk size and 
scheduling policy. We study the effect of OpenMP 
scheduling chunk size on DVFS of processors. To the 
best of our knowledge, there are few related studies on 
energy-oriented OpenMP loop scheduling. 

The processor shutdown technique and the DVFS 
approach can be used in combination for more efficient 
energy consumption. Li et al. [10] proposed a two-
dimensional optimization method, in which one 
dimension involves changing the active number of 
processors, and the other entails scaling the 
voltage/frequency of processors. Their idea is similar to 
that in our previous work [11], but differs from the 
present work in a number of aspects. Their platform is 
CMP architecture, whereas ours is large-scale shared 
memory multi-core architecture. Although both our 
efforts focus on the energy optimization of parallel 
regions, an obvious difference is that the granularity 
adopted by Li et al. is a loop region, which ignores the 
discrepancy of processors. They set a uniform voltage 
level for each parallel region and chose an optimal 
number of processors. The granularity that we chose is 
loop iteration, a finer-grained type. 

Teodorescu et al. [12] proposed variation-aware 
scheduling algorithms to save power or improve 
throughput. They also proposed variation-aware power 
management. They proposed an algorithm called LinOpt, 
which uses linear programming to find the best voltage 
and frequency level for each core in the CMP.  

Bhattacharjee et al. [13] proposed and evaluated thread 
criticality predictors for parallel applications, which can 
guide Intel Threading Building Blocks (TBB) task 
stealing decisions to improve performance. It can also 
guide dynamic energy optimizations in barrier-based 
applications. 

Wang et al. [14] proposed a chip-level power control 
algorithm that is systematically designed based on 
optimal control theory. Rangan et al. [15], on the other 
hand, proposed thread motion (TM), a fine-grained 
power-management scheme for CMPs. TM enables rapid 
movement of threads to facilitate adaptation of the time-
varying computing needs of running applications to a 
mixture of cores with fixed but different power or 
performance levels. 

MPI is a widely used parallel programming interface. 
Representative studies on low-power MPI optimization 

are as follows. Kappiah et al. [16] presented a system 
called Jitter, which exploits node slack time to scale 
down node frequency for energy conservation. Freeh et al. 
[17] focused on low-power and high-performance 
clusters, divided programs into phases, and chose a 
suitable frequency for each phase. Lim et al. [18] 
identified communication phases and reduced the 
voltage/frequency of processors in communication phases. 
MPI-based DVFS algorithms cannot be directly applied 
to OpenMP programs because they are distinctly different 
in implementation schemes. OpenMP loop scheduling 
utilizes compiler-directed methods to achieve energy 
optimization. For MPI programs, however, energy 
optimization is implemented by MPI libraries. The 
processes of MPI send and receive messages to and from 
others, and the computation of each process are decided 
by programmers. There is no scheduling problem among 
them. The energy optimization of the MPI program is 
primarily focused on energy reduction of processors 
when processes are changing messages.  

In our previous work [19], we presented some studies 
on energy-saving optimal static scheduling (EOSS) 
algorithm. However, EOSS is limited in that it assumes 
that ideal conditions are satisfied. The same scheduling 
chunk, instead of ununiform-sized scheduling chunk, is 
assumed. In other words, the more general cases are 
ignored. In this paper, we provide a more detailed 
illustration of EOSS, including the determination of the 
chunk size of two-phase scheduling. More important, we 
extend the assumption and discuss the energy 
consumption optimization of OpenMP loop scheduling 
with ununiform-sized scheduling chunks. We propose 
energy-oriented static scheduling algorithm (ESS), which 
enriches earlier studies. 

III ENERGY OPTIMIZATION ALGORITHMS FOR OPENMP 
LOOP SCHEDULING 

A. Introduction 
DOALL  i=1, 37 
   { block } 
END DOALL  

Figure 1.  A simple DOALL loop 

In this paper, we assume that the number of outermost 
iterations in one OpenMP loop is N, and the number of 
processors for executing OpenMP loop is p. We take the 
DOALL loop shown in Figure. 1 as an example (N =37, p 
=5). 

Taking each outermost iteration as a scheduling unit, 
OpenMP static scheduling distributes all loop iterations to 
available processors. The given chunk of iterations is 
defined as scheduling chunk size (S), which refers to the 
number of outermost loop iterations in one schedule. S is 
statically determined by an OpenMP compiler. Static 
scheduling has very little scheduling overhead, but load 
imbalance occurs among multiprocessors. Based on 
varying chunk sizes, static scheduling is divided into 
three types: block assignment, block cyclic assignment, 
and cyclic assignment. As shown in Figure. 2(a), block 
assignment divides the workload into blocks of iterations 
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that are as equal as possible. Chunk size is obtained 
through the number of iterations divided by the number 
of processors. However, most of the time, the number of 
iterations is not divided exactly by the number of 
processors. Each processor is assigned with a group of 
consecutive loop iterations and scheduled only once. In 
the example shown in Figure. 2(a), the scheduling chunk 
size is eight. Block cyclic assignment allows loop 
assignments to be interleaved using some stride, 
assigning iterations by round-robin to each processor. 
Each processor can be scheduled multiple times. Figure. 
2(b) shows a scheduling chunk size of three. Figure. 2(c) 
describes cyclic assignment, which is a special case with 
a chunk size of one. Each processor is scheduled 
numerous times. On the same processor, data in two 
consecutive schedules are discontinuous, leading to poor 
data locality. 

!$OMP PARALLEL DO 
!$OMP SCHEDULE (STATIC) 
    DO i=1, 37 
       block 

ENDDO 

!$OMP PARALLEL DO 
!$OMP SCHEDULE (STATIC,3) 
    DO i=1, 37 
       block 

ENDDO 

!$OMP PARALLEL DO
!$OMP SCHEDULE (STATIC,1)
    DO i=1, 37 
       block 

ENDDO 

 

P1  P2  P3  P4   P5 

 

P1  P2  P3  P4   P5 

 

P1   P2   P3   P4   P5

 
(a) block              (b) block cyclic             (c) cyclic 

 busy idle 
 

Figure 2.  Results of OpenMP static loop scheduling 

We disregard synchronization overhead and data 
locality discrepancy because of the different chunk sizes, 
and measure load balancing only in terms of the number 
of iterations assigned by each processor. Thereafter, we 
conclude that block assignment most easily causes load 
imbalance. If |p N/ , the last processor is assigned with 
the remaining iterations. 

OpenMP loop scheduling can be divided into two types 
in terms of the characteristics of the scheduling unit 
(outermost iteration). 

1) Uniform-sized scheduling unit (US): The execution 
time of each outermost loop iteration is always the same. 
EOSS is based on this assumption. 

2) Ununiform-sized scheduling unit (UUS): The 
execution time of each the outermost loop iteration is not 
always the same. ESS is based on this assumption. 

Before discussing the algorithms in detail, we provide 
basic definitions of processor power and energy 
consumption. 

According to CMOS power equations,  
Power DynamicPower ShortCircuit Power

LeakagePower
= +
+

           (1) 

Among the sources of power consumption, we focus on 
dynamic power because it accounts for a big fraction of 
total power. Dynamic power P is calculated according to 
the following equation [6]: 

2P CV fα=                                     (2) 
where α refers to the switching activity factor, 0<α<1, C 
is the total capacitance driven by all the gate output, V is 
the operating voltage, and f denotes the clock frequency. 
P is proportional to the square of V and f. Furthermore, 
voltage and frequency must be adjusted together while 
satisfying the following relationship: 

( )thV Vf
V

τ−∝                                     (3) 

where Vth is the threshold voltage and is a constant, τ is a 
proportional factor, and 1≤τ≤2. When τ=2, f is 
proportional to V, so that (2) can be replaced by 

3P f∝                                         (4) 
Hence, we can conclude that scaling the 

voltage/frequency of the processor can result in cubic 
power savings. Delay is inversely proportional to 
frequency; thus, energy is proportional to the square of 
the voltage. 

  2E f∝                                      (5) 
Equation (3) shows that voltage and frequency have to 

be scaled simultaneously, and satisfy a certain 
relationship. We can only use the term frequency scaling 
instead of voltage/frequency scaling. Hence, the value of 
the voltage can be calculated in terms of the value of the 
frequency. 

B. EOSS 
Table 1 shows some symbol descriptions used in this 

article. In OpenMP scheduling, the workload and 
frequency of each processor form a pair (ai,fi). Scheduling 
Γ is composed by p pairs of (ai,fi), where p represents the 
number of processors. Γ-based λ scheduling is a new 
scheduling derived from Γ in terms of certain rules. As 
much as possible, Γ-based λ scheduling is obtained by 
scaling down the frequency of each processor under 
certain performance conditions. The detailed rules that Γ-
based λ scheduling follows are: (1) the frequency of each 
processor in Γ-based λ scheduling must be lower than 
that in Γ; and (2) the parallel time of Γ-based λ 
scheduling is given by users, equal to T, which is no less 
than the time of Γ. Γ-based λ scheduling is used in the 
following proof of optimality. 

First, as Figure. 3 shows, we can directly apply DVFS 
to multiprocessors where light-load processors can run at 
lower speeds to save energy; meanwhile, the deadline of 
the loop is satisfied. Figure. 3(a) is identical to Figure. 
2(b), in which the parallel time is determined by 
processors P1 and P2. In Figure. 3(b), we prolong the 
execution time of P3–P5 to reach the parallel time by 
scaling down the voltage/frequency of P3–P5. As a result, 
DVFS saves energy without performance loss. 
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TABLE I.   
SYMBOL DESCRIPTIONS 

 
Symbol Meaning 

1 1 2 2{( , ),( , ),...,( , )}p pa f a f a fΓ =  Static scheduling sequence Γ . Each pair of ( , )i ia f represents the number 
of iterations ia  and the frequency if for processor Pi 

( )T Γ  Parallel execution time of Γ  
( )E Γ  The energy consumption of Γ  

( , )w
iT a f  Busy time of processor Pi under ( , )a f  

1 1( , ) {( , ( )),..., ( , ( ))}p pT a f a fλ λ λΓ =  Γ -based λ scheduling. It is based on 1 1{( , ),...,( , )}p pa f a fΓ = . Frequency 

( )ifλ  for Pi meets: {1,..., }, ( )i ii p f fλ∀ ∈ ≤ and 
i

, 0
( , ( ))

0, 0
iw

i i i

T a
T a f

a
λ

>⎧⎪= ⎨ =⎪⎩
 

where ( )T T≥ Γ . 

     

P1  P2  P3  P4   P5 

         

P1  P2  P3  P4   P5 

    
(a) before DVFS 

    
(b) after DVFS

  
 max frequency low frequency idle

 
Figure 3.  DVFS of OpenMP static loop scheduling 

The DVFS policy in Figure. 3 is straightforward. It 
does not change scheduling policy; rather, it only scales 
down the frequency of each processor according to the 
load. If we modify scheduling policy by adjusting chunk 
size, is there any possibility of more energy savings?  

The basic idea of the improved algorithm is described 
as follows. Before DVFS is carried out, we change the 
loop scheduling policy. The key to the algorithm is 
rescheduling the loops with the principle that the 
workload of all the processors should, as much as 
possible, stay balanced. Loop rescheduling combined 
with DVFS results in more energy savings than DVFS 
alone (Figure. 4). Therefore, we propose US-based EOSS 
algorithm. 

Figure. 4 describes the two steps of EOSS. The first 
step is loop rescheduling intended to obtain more load 
balance, and the second step is DVFS. Figure. 4(a) is the 
initial OpenMP static scheduling paradigm, and it can be 
any of the static schedulings shown in Figure. 2. We 
assume that the chunk size of initial scheduling Γ0 is S, 
and the parallel time of the initial scheduling is T(Γ0). 
These values are known before EOSS is applied. The 
optimization of EOSS is based on fixed scheduling 
chunks, and choosing different chunk sizes leads to 
different EOSS energy optimization results. T(Γ0) 
determines the parallel time of EOSS. Under the 
performance loss of β, the parallel execution time after 
EOSS optimization is T(Γ0) ×(1+β). In the initial 
scheduling, processors P3–P5 are idle in the last round of 
scheduling, while P1 and P2 are constantly busy. 
According to (5), scaling down the frequency of 

processors P3–P5 brings forth energy savings of square 
stage.  

 

P1  P2  P3  P4   P5

                

P1  P2  P3  P4   P5

(a) initial 
scheduling   

(b) load rescheduling (c) DVFS

 max frequency low frequency idle

T t 

P1 P2  P3  P4  P5 

 

Figure 4.  Two-phase illustration of EOSS 

To obtain more opportunities to save energy, loads on 
multiprocessors must be as balanced as possible. Even if 
the loads of each processor cannot be exactly the same, 
the discrepancy between multiprocessors must be 
minimized. Block cyclic assignment with a chunk size of 
one has the best load balance, but it leads to poor data 
locality because of discontinuous iterations in two 
adjacent scheduling rounds on the same processor. To 
compensate for this defect and minimize the load 
imbalance, we propose two-phase scheduling, which 
keeps the most rounds of iteration assignment unchanged, 
and only changes the chunk size in the last round of the 
iteration assignment. Consequently, load differences 
between any two processors are no more than one. Let 

*
ia  represent the number of iterations assigned to 

processor Pi, , 1, 2,...,i j p= . That is, 
* *, , 1i ji j a a∀ − ≤                               (6) 

In the first phase of EOSS, the chunk size is 
unchanged and equal to S. Each processor is scheduled 

N
p S

⎢ ⎥
⎢ ⎥×⎣ ⎦

 times. In the second phase, each processor is 

scheduled once. To satisfy (6), the chunk size is changed 
to 

iS  from S ; 
iS  refers to the chunk size of processor Pi 

during the second phase, and it is calculated by 
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( )

( )

1 1, 2,..., mod

mod 1,...,
i

N i N p
p

S
N i N p p
p

⎧⎢ ⎥
+ =⎪⎢ ⎥

⎪⎣ ⎦= ⎨
⎢ ⎥⎪ = +⎢ ⎥⎪
⎣ ⎦⎩

          (7) 

where N  is the total number of all iterations scheduled in 
the second phase, which satisfies (8).  

NN N p S
p S

⎢ ⎥
= − × ×⎢ ⎥×⎣ ⎦

                      (8) 

If ( )p S N×  and 0N = , each processor has equal workload, 
and (6) is satisfied. At this time, two-phase scheduling is 
degraded to the DVFS method (Figure. 3).  

In the second phase, taking T(Γ0)×(1+β) as the 
deadline, we scale down each processor’s 
voltage/frequency, which extends the busy time of each 
processor from 0

*
it a⋅  to T(Γ0)×(1+β), where t0 refers to 

the execution time of one iteration at the maximum 
frequency. The frequency of processor Pi is changed from 

maxf  to *
if , expressed as 

( ) ( )
*

* 0

0 1
i

i
t af

T β
×

=
Γ × +

                       (9) 

where *
ia  can be calculated by 

*
i i

Na S S
p S

⎢ ⎥
= × +⎢ ⎥×⎣ ⎦

                      (10) 

We use the example shown in Figure. 4(a) to explain 
that EOSS in Figures. 4(b)–(c) can generate more energy 
savings than DVFS in Figure. 3(b). We assume that the 
frequency of processor Pi in Figure. 3(b) is scaled to if , 
and the frequency of processor Pi in Figure. 4(c) is scaled 
to *

if ; then we have
1 2 maxf f f= = ,

3 max
7
9

f f= ,
4 5 max

2
3

f f f= = , 

* *
1 2 max

8
9

f f f= = , and * * *
3 4 5 max

7
9

f f f f= = = . Thus, we 

have ( )2* 2

1 1

p p

i i
i i

f f
= =

<∑ ∑ . Figure. 5 shows the detailed 

description of EOSS. 
In this section, we prove that EOSS can obtain 

maximum energy savings. 
The energy-saving optimal problem is described as 

follows: Given p processors, a DOALL loop L has N 
outermost loop iterations, initial OpenMP static loop 
scheduling Γ0 has a chunk size of S, and β is performance 
loss. Under the condition of US scheduling unit, we find 
energy-saving optimal scheduling Γ* to reach the 
maximum energy savings while satisfying 
T(Γ*)=T(Γ0)×(1+β). 

The following lemma and theorems prove that EOSS 
can yield maximum energy savings. The proof is detailed 
in the Appendix. Lemma 1 and Theorem 1 are the bases 
of Theorem 2. Lemma 1 proves that the energy of Γ-
based λ scheduling is no more than that of Γ. In other 
words, Γ-based λ scheduling is better than Γ from the 
angle of energy. This conclusion is easy to understand 
because Γ-based λ scheduling does not change the load 
and merely scales down the frequency of each processor, 

so that the energy of Γ-based λ scheduling is no higher 
than that of Γ scheduling. 

 
Algorithm: Energy-saving Optimal Static Scheduling 
algorithm (EOSS) 
Input: p processors, one DOALL nested 

loop L , N outermost loop iterations, initial 
OpenMP static loop scheduling with chunk size 
of S , performance loss with β . 

Output: energy-optimal scheduling *Γ , which satisfying 
the maximum energy saving under performance 
loss with β . 

1. Set chunk size of each processor in the first phase to be 
S ; 

2. Set chunk size of processor Pi in the second phase to 

be iS ,
( )

( )

1 1,2,..., mod

mod 1,...,
i

N i N p
p

S
N i N p p
p

⎧⎢ ⎥
+ =⎪⎢ ⎥

⎪⎣ ⎦= ⎨
⎢ ⎥⎪ = +⎢ ⎥⎪
⎣ ⎦⎩

where

NN N p S
p S

⎢ ⎥
= − × ×⎢ ⎥×⎣ ⎦

. 

3. Calculate workload of each processor. 

*
i i

Na S S
p S

⎢ ⎥
= × +⎢ ⎥×⎣ ⎦

. 

4. Set processor Pi new frequency
*

0*

0 1
i

i
t af

T β⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=
×

Γ × +
, 

1,...,i p= ; 
5. New frequency sequence for this nested loop is 

( )* * *
1 2, ,..., pf f f ; 

6. Output * * * * * *
1 1 2 2

* , , , ,... ,p pa f a f a f⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎬
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Γ = ; 

7. End.
 

Figure 5.   Description of EOSS 

Lemma 1. Given 
1 1 2 2{( , ), ( , ),..., ( , )}p pa f a f a fΓ = , 

then ( ( , )) ( )E T Eλ Γ ≤ Γ , where ( )T T≥ Γ . 
We assume that the sum of all the loads of the processors 
(the outermost loop iterations) is N. Each assignment 

( )1 2, ,..., px x x  satisfies 
1

p

i
i

x N
=

=∑ . Set W comprises all the 

assignments. Theorem 1 proves that one of the 

assignments ( *w W∈ ) exists, which drives 3

1

p

i
i

x
=
∑  to 

reach the minimum value. In *w , the load difference 
between any two processors is no more than one.  

Theorem 1. Given a function ( ) 3
1 2

1

, ,...,
p

p i
i

f x x x x
=

= ∑ , in 

which ix +∀ ∈ ,
1

p

i
i

x N
=

=∑ . Here, N is a constant. 

Given assignment 
set ( ){ }1 2, ,..., pW x x x= .Let /x N p= ⎢ ⎥⎣ ⎦ . Assume that 

( )* * * *
1 2, ,..., pw x x x W= ∈ . If |p N , 

then * ,1ix x i p= ≤ ≤ ; otherwise, 
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*, ii x x∀ = or * 1ix x= + . Hence, 

( ) *
1 2m in , , ..., ( )pf x x x f w= . 

Based on Lemma 1 and Theorem 1, Theorem 2 proves 
that EOSS generates maximum energy savings. The 
energy consumption of any scheduling is not less than 
that of EOSS. Optimal scheduling Γ* in EOSS is 
obtained in two steps. Step one is rescheduling the initial 
scheduling Γ to Γ’ as shown in Figure. 4(b). Step two is 
DVFS, which is completed by generating Γ’-based λ 
scheduling. We need to prove that for any scheduling Γ∆, 
we can obtain E(Γ*)≤E(Γ∆). 

Theorem 2.Given  ( ) ( ) ( ){ }1 max 2 max max, , , ,..., ,pa f a f a fΓ =  

in which 
1

p

i
i

a N
=

=∑ , assume N p≥ , denote
0

Nb
p

⎢ ⎥
= ⎢ ⎥
⎣ ⎦

, 

and let 
( ) ( ) ( ){ }'

1 max 2 max max, ,..., , , ,pb f b f b fΓ = where

1 1

p p

i i
i i

b a
= =

=∑ ∑ . If p N , then 0 , 1ib b i p= ≤ ≤ . 

Otherwise, 0

0

1, 1
, 1i

b i b
b

b b i p
+ ≤ ≤ Δ⎧

= ⎨ Δ + ≤ ≤⎩
 where 

modb N pΔ = . Let ( ) ( )( )* ' , 1 Tλ βΓ = Γ + ⋅ Γ , in 

which β  is the performance loss. The randomly 
given ( ) ( ) ( ){ }1 max 2 max max, , , ,..., ,pc f c f c fΔΓ = satisfies 

( )( ) 1 ( )T TβΔΓ = + ⋅ Γ  and
1 1

p p

i i
i i

c a
= =

=∑ ∑ . 

Let ( )( ),Tγ λ Δ ΔΓ = Γ Γ , and we have ( ) ( )E Eγ ΔΓ ≤ Γ  

in terms of Lemma 1. We prove 
( ) ( ) ( )* 1E EβΓ ≤ + ⋅ Γ and ( ) ( )*E E γΓ ≤ Γ , that is, 

( ) ( )*E E ΔΓ ≤ Γ . 

C. ESS 
EOSS shows the process of obtaining the maximum 

energy savings in the case of US. However, when the 
execution time of the outermost loop iterations is not the 
same, does the maximum energy-saving solution exist? If 
not, how can we optimize the energy consumption? To 
address this problem, we propose a UUS-based ESS 
algorithm. 

Figure. 6 shows four kinds of parallel loop scheduling. 
In Figure. 6(b), the outermost loop iterations have 
different execution time because of the branches in the 
inner loops. In Figures. 6(c) and (d), the bound of inner 
index j is decided by outer index i, which also leads to the 
outermost loop iterations having different execution times. 
Evenly assigning the outermost loops still causes heavy 
load imbalance. The shapes of four subFigureures in 
Figure. 6 are (a) rectangular, (b) trapezoidal, (c) right up-
triangular, and (d) left up-triangular. 

The examples in Figure. 6 can be reduced to four 
categories as shown in Figure. 7[20]. Horizontal axis i of 
each subfigure represents the index of the outermost loop. 
Vertical coordinates L(i) represent the workload of each 
outermost loop. Figure. 7(a) shows the case of US. 
Figures. 7(b)–(d) show the case of UUS, which can be 
divided into two types: irregular varying case as Figure. 
7(b) shows and regular varying case as Figures. 7(c)–(d) 
show. The regular varying case includes monotonic 
increasing and decreasing scheduling units. In this article, 
we consider optimizing the energy only with a monotonic 
increasing scheduling unit. Meanwhile, the same method 
can be used for monotonically decreasing. For the 
irregular varying case, presenting an effective energy 
optimization method is difficult and goes beyond the 
scope of this paper. Because of varying scheduling units, 
providing an energy-saving optimal algorithm is 
impossible. We combine loop rescheduling and DVFS to 
discuss ESS algorithm for the UUS case. 

 

 
 
 
!$OMP PARALLEL DO 
!$OMP SCHEDULE (STATIC) 
    DO i=1, n 
      DO j=1, m 
        block 
      END DO 

END DO 

 

P1  P2  P3  P4   P5

    

!$OMP PARALLEL DO 
!$OMP SCHEDULE (STATIC)
    DO i=1, n 
      DO j=1, m 
        block; 
        If (j>m/2) 
          subblock; 
      END DO 

END DO  

P1  P2  P3  P4   P5 

 

(a) rectangular                       (b) trapezoid 

!$OMP PARALLEL DO 
!$OMP SCHEDULE (STATIC) 
    DO i=1, n 
      DO j=1, i 
        block 
      END DO 

END DO 

P1  P2  P3  P4  P5

     

!$OMP PARALLEL DO 
!$OMP SCHEDULE (STATIC)
    DO i=1, n 
      DO j=1, n-i 
        block 
      END DO 

END DO  

P1  P2  P3  P4  P5 

 
(c) right up-triangle               (d) left up-triangle 

 
Figure 6.  Four kinds of examples 
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L(i) 

i(a) constant i

L(i)

(b) random

(c) monotonic increasing i

L(i) 

(d)monotonic decreasing i

L(i)

 

Figure 7.  Four kinds of chunk shape 

We assume that the chunk size of initial scheduling Γ0 
is S, and the permitted performance loss is β. Taking 
Figure. 8(a) as an example, we illustrate the idea of ESS. 
Here, we assume that the number of outermost iterations 
is 10, the number of processors is 5, and the block size is 
2. Only DVFS brings about the result shown in Figure. 
8(b). ESS improves the workload assignment. The 
process of ESS consists of three steps as follows: 

STEP 1: Adopting a round diverse cyclic scheduling 
method. Based on cyclic assignment, we propose a round 
diverse cyclic scheduling method that changes Γ0 to Γ∆. It 
keeps the processor frequency unchanged (fmax) and only 
scales the number of iterations assigned to each processor. 
The detailed method involves scaling chunk size from S 
(equal to two) to one. According to increasing or 
decreasing sequence, we alternately change the order of 
processor assignment for each round scheduling. For all 
processors, completing one task assignment is called one 
round scheduling. In Figure. 8(a), only one round 
scheduling is applied in terms of a chunk size of two. 
After applying the round diverse cyclic scheduling 
method, the chunk size is changed to one, and two round 
schedulings are applied. The sequences followed by the 
processors in the first and second rounds of scheduling 
are {P1, P2, P3, P4, P5} and {P5, P4, P3, P2, P1}, 
respectively. As Figure. 9 (b) shows, the iteration 
numbers assigned to processors P1–P5 are(i=1, i=10),(i=2, 
i=9), (i=3, i=8), (i=4, i=7) and (i=5, i=6), respectively. 

STEP 2: Determining scheduling policy. If 
( ) ( )

( )
0

0

T T

T
β

ΔΓ − Γ
>

Γ
 then Γ*=Γ0; otherwise, Γ*=Γ∆. 

STEP 3: Applying DVFS to Γ*. We scale down each 
processor’s voltage/frequency, which extends the busy 
time of each processor to T(Γ0)×(1+β) as Figure. 9(c) 
shows. 

Figure. 10 presents the detailed description of ESS. 

IV. EXPERIMENTAL EVALUATIONS 

In this section, we evaluate our energy-oriented 
OpenMP loop scheduling algorithms. Section 4.1 
introduces the experimental environment, including the 

simulation platform, methodology, and benchmark. 
Section 4.2 presents the experimental results and detailed 
analyses of each algorithm. 

A. Experimental Environment 
1) Simulation Platform and Methodology 
To conduct our experiments, we extended Simplescalar 

[21] to simulate shared-memory multiprocessor 
architecture. Each processor has the same configuration, 
including cache and memory. Memory access latency 
includes local memory access latency and remote 
memory access latency. Power simulation adopts Wattch 
[22], which models the dynamic power dissipation of 
each processor. We added the module implementation of 
DVFS based on the Wattch power model. The range of 
clock frequency scaling is 300 MHz–1 GHz. This 
simulation platform provides a frequency scaling 
interface for DVFS implementation, in which the 
relationship of frequency and voltage satisfies (3). When 
applying processor shutdown technology, the power of 
processors in the shutdown state consumes 10% of the 
power in the active state. To simplify the computation of 
time and energy overhead, we adopted fixed 
voltage/frequency switching overhead instead of (11) and 
(12). We also adopted fixed reactivate overhead. Table 2 
lists the relevant parameters. 

 
P1  P2  P3  P4  P5 

      

P1  P2  P3  P4   P5 

 
 

max frequency low frequency 
 

(a) initial scheduling         (b) DVFS 

 

Figure 8.  Results of DVFS 
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P1  P2  P3  P4   P5 

  

   

P1  P2  P3  P4   P5 

 

  

P1  P2  P3  P4  P5 

 max frequency low frequency  

(a) initial scheduling    (b) task rescheduling  (c) DVFS 

 
Figure 9.  Illustration of ESS 

 Algorithm: UUS-based Energy-oriented Static 
Scheduling algorithm (ESS) 
Input: p processors, one DOALL nested 

loop L , N outermost loop iterations, initial 
OpenMP static loop scheduling with chunk size 
of S , performance loss with β . 

Output: energy-oriented scheduling *Γ , which satisfying 
performance loss with β . 

1. Obtaining new scheduling ∇Γ through round diverse 
cyclic scheduling method; 

2. if ( ) ( )
( )

0

0

T T

T
β

∇Γ − Γ
>

Γ
 

3. then * 0=Γ Γ where max max max
* * *
1 2

* , , , ,... ,pa f a f a f⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎬
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Γ ; 

4. else * ∇Γ =Γ where max max max
* * *
1 2

* , , , ,... ,pa f a f a f⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎬
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Γ ; 

5. Set processor Pi new frequency
*

0*

0 1
i

i
t af

T β⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=
×

Γ × +
, 

1,...,i p= ; 
6. New frequency sequence for this nested loop is 

( )* * *
1 2, ,..., pf f f ; 

7. Output * * * * * *
1 1 2 2

* , , , ,... ,p pa f a f a f⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎬
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Γ = ; 

8. End. 

 
Figure 10.  Description of ESS 

The loop scheduling results are based on the CCRG 
OpenMP parallel compiler[23], which obeys OpenMP 
API 2.0 standard and supports Fortran 77/90/95 C 
language. As Figure. 11 shows, the CCRG OpenMP 
parallel compiler consists of the OpenMP translator, 
OpenMP run-time library, native compiler, and linker. 
The OpenMP translator does the following work: (1) 
identifying and processing OpenMP directives; and (2) 
optimizing the OpenMP program, covering data locality 
optimization, voltage scaling instruction insertion, and so 
on. 

Our experiment was accomplished through the 
following steps: 1) the original program was simulated on 
Simplescalar + Wattch environment, and performance 
and energy results were obtained; 2) the program traces 
generated by CCRG OpenMP were analyzed; 3) 
frequency scaling clause was incorporated by hand; 4) the 

program traces with “marks” were generated as input of 
the simulation environment; and 5) the new binary code 
was simulated again, new performance and energy results 
were obtained and compared with those in 1). 

2) Benchmark 
To evaluate the effectiveness of our energy-oriented 

loop scheduling algorithms, we used five NPB3.2-OMP 
[24] kernel programs: IS, EP, FT, CG, and MG. NPB is a 
representative parallel benchmark, and NPB3.2-OMP is 
the OpenMP implementation of NPB3.2. There are six 
problem sizes for each program (i.e., S, W, A, B, C, and 
D) from which we choose class C. In addition, we use a 
code segment to verify the effectiveness of ESS, which is 
shown in Figure. 12. In this code, A and B are double 
type constants. The number of outermost loop is defined 
as M, which is 10240. 

file_omp.c 

file.c 

Syntax  Parser
file.dep 

Translator Translator 

Native Compiler Executable 

OpenMP 
Runtime 
Library 

 
Figure 11.  CCRG OpenMP parallel compiler 

TABLE II.  DEFAULT SIMULATION PARAMETERS IN THE 
EXPERIMENTS 

Parameter Default Value

Highest Frequency/Voltage 1 GHz / 1.9 V

Lowest Frequency 300 MHz 

Voltage/Frequency Switching Penalty 2 us /2 uJ 

Reactivate Switching Penalty 50 us / 50 uJ 

L1 latency 1 cycle 

L2 latency 4 cycles 

Local memory access latency 100 cycles 

Remote memory access latency 500 cycles 

#define M 10240
double a[M][M]; 
double b[M][M]; 
double c[M][M]; 
for(i=0;i<M;i++) 
     for(j=0;j<i;j++){ 
             c[i][j] = a[i][j]/A + b[i][j]/B; 
             d[i][j] = a[i][j]/B + b[i][j]/A; 
             e[i][j] = c[i][j]/B + d[i][j]/A; 
      } 

 
Figure 12.  experiment code for ESS 
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TABLE III.   PROFILE DATA FOR EACH PROGRAM 

Program 
The number of 

parallel 
regions 

The max 
number of 
iterations 

The min number 
of iterations 

IS 24 268435456 134217728 

EP 1 65536 65536 

FT 38 1024 512 

CG 2918 149907 149800 

MG 770 139264 512 

 
Table 3 provides all the profile data of the parallel loop 

regions of each program, including the number of parallel 
loop regions, as well as the maximum and minimum 
number of outermost iterations for all the parallel regions. 

B. Results 
The energy results in this section pertain only to the 

energy consumption of the parallel loop regions.  

1) Results of EOSS 
This section presents the experimental results of EOSS, 

which are compared with the DVFS method. 
First, we set the chunk size of each benchmark. Chunk 

size refers to the number of outermost loop iterations in 
one scheduling. IS, EP, FT, CG, and MG have chunk 
sizes of 300000, 100, 3, 100, and 200, respectively. FT 
chooses the least chunk size when considering both the 
number of outermost loop iterations and number of 
processors.Figure. 13 shows the experimental results of 
EOSS. In this figure, the number of processors ranges 
from 20–160, and performance loss β=5%. For these five 
programs, when the numbers of processors are 20, 40, 60, 
80, 100, 120, 140, and 160, the average energy savings 
are 5.9%, 17.1%, 8.5%, 28.3%, 21.5%, 28.9%, 35.7%, 
and 43.5%, respectively. From the perspective of energy 
savings, a large-scale system can save more energy, and 
energy optimization is more significant for larger 
computing systems. We can also say that the larger the 
system, the more energy is wasted. 
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Figure 13.  Energy saving of EOSS 

The EOSS uses DVFS as the major energy saving 
method, but DVFS is not the major characteristic of this 
algorithm. The most important characteristic of EOSS is 
loop rescheduling that helps DVFS. Combining loop 
rescheduling with DVFS can obtain more energy savings 
than using DVFS method alone. This is the important 
contribution of this article. To evaluate the advantage of 
our algorithm over the DVFS method on energy savings, 
we compare the results of EOSS to those of the DVFS 
method. Here, the DVFS method refers to the method 
shown in Figures. 3 and 8. Each subfigure in Figure. 14 is 
obtained by subtracting the energy saving percentage of 
DVFS only from that of EOSS. From this figure, we can 
find that EOSS results in more energy savings than the 
DVFS method alone. For example, in FT under 140 

processors, the energy saved in EOSS is 12% larger than 
that in DVFS. 

2) Results of ESS 
ESS determines different scheduling with a 

performance loss of β 5%. For the code in Figure. 12, we 
choose a chunk size of 20 for Г0. The energy savings in 
the new scheduling compared with Г0 is shown in Figure. 
15. 

From this figure, we see that when the chunk size is 
fixed, ESS achieves significant energy savings. This 
result also confirms that with the increase in the number 
of processors, the difference in each processor’s 
workload of such a kind of loop becomes larger, which 
yields more opportunities for saving energy. For example, 
when the number of processors is 160, ESS has more 
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than 50% energy savings compared with that of the original scheduling. 
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Figure 14.  Advantage of EOSS compared with DVFS method 
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Figure 15.  Energy savings of ESS 

V. CONCLUSIONS 

In this paper, we studied the energy optimization of 
OpenMP static and dynamic scheduling, and proposed 
two energy optimization algorithms for OpenMP static 
and dynamic scheduling: US-based EOSS, UUS-based 
ESS. EOSS obtains optimal energy saving effectiveness 
under given assumptions.  

We built a simulation platform to evaluate the 
effectiveness of our energy-oriented scheduling 
algorithms. Experimental results show that our algorithms 
can achieve energy savings under different scheduling 
conditions. In the future, more practical conditions, such 
as communication overhead and data locality, will be 
considered to achieve further energy optimization of 
OpenMP loop scheduling. 
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