

MidWire: Middleware for Web Information Reuse

Nader Mohamed and Jameela Al-Jaroodi
The Faculty of Information Technology, UAEU

Al Ain, P.O. Box 17551, UAE
nader.m@uaeu.ac.ae and jaljaroodi@gmail.com

Abstract—Nowadays the World Wide Web (Web) is the
ultimate source of information. Everyone, regardless of
their backgrounds or computer experience rely on it to get
the information they need. However, most of the
information needed may not be readily accessible in the
huge row repository of data on the Web. This paper
introduces the concept of middleware for retrieving web
information. MidWire (MIDdleware for Web Informatio n
REuse) is developed to facilitate the use of public Web
information by other user applications. The Web provides
huge online and updated information related to different
aspects of businesses and environments such as stock prices,
currency exchange rates, interest rates, and weather
information. All this information can be reused for other
applications through the proposed middleware. MidWire
deals with different types of Web information sources to
provide the user applications’ input. It also provides
different advanced services such as caching and notification.
This paper covers the challenges, the architecture, the
services, and evaluation of MidWire.

Index Terms—Middleware, WWW, Web Information
Integration, Web scraping, Information Reuse, Information
Retrieval

I. INTRODUCTION

The Web carries a great wealth of information that has
become important for almost everyone. Peoples need for
Web information vary; some need static information
which can be easily found and used. However, many rely
on the real-time availability of dynamically and
frequently changing data. Getting this information,
filtering/analyzing it in real-time is very hard and time
consuming. The Web is full of such live and dynamic
information mostly provided as text such as news,
multimedia such as Internet TV, or numbers such as
stock, currency and weather information. This makes it
viewer-friendly, yet it becomes hard to capture and
manipulate that data automatically.

From the user perspective, the availability of live data
may be crucial for the success of their applications. For
example, the need to retrieve instant values in stock
markets to decide on trade or investment options [1].
Other examples also include web information monitoring
[2], for various needs such as online currency exchange
information and web-based news updates. These
applications cannot deliver the correct results without
such information being made available in real-time.
Much of this information is publicly available through
dynamic HTML documents, XML documents, web

services, and RSS feeds. A small portion of this
information is made available through XML documents
and web services. These can be easily integrated into
other applications due to their structured format and
available metadata. Various APIs are available to
integrate information from XML or web services with the
user applications. For example, a user interested in
currency exchange rates can integrate any of the available
web services like CurrencyConvertor [3] with his/her
own application to get the latest rates all the time.

Huge information is mainly available in dynamic
HTML documents. However, HTML documents are
geared for the human viewing and lack the structure and
the metadata that can help in automating their integration
with other applications. Some efforts were made to
facilitate using this type of information such as urlINFO
[4], a Java class that can be used by Java applications to
retrieve live information from HTML pages in real-time.
However, this is a single user model that requires the user
to have programming experience and cannot handle
multiple users or requests at the same time. In addition, it
does not provide advanced integration services such as
caching, notification, and fault tolerance.

As more tools pop up to help retrieve Web information
and help users integrate them into their own applications,
many challenges also arise. These challenges involve the
retrieval, organization and integration of the information
efficiently and in real time. One of the contributions of
this paper is to identify and discuss these challenges and
then introduce the middleware framework we designed to
facilitate Web information reuse. This middleware will
help enhance the development and operations for
utilizing the available public information for new
applications. As we will discuss in the design, the
framework, the features involved, focus mainly on
creating tools and methods to extract the useful and
required data and inform the users of the specified
changes when the occur. However the overall architecture
covers different types of data sources including XML
files and web services. This makes the framework more
generic and useful for any type of input.

In the rest of the paper, Section II provides background
information and related work on Web information
retrieval. Section III offers an overview of the Web
information reused model and Section IV discusses the
challenges of Web information reuse. Section V
discusses the MidWire services while Section VI
provides more details of the middleware architecture. A
prototype implementation is provided in Section VII.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1451

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.7.1451-1461

Section VIII provides some performance evaluations for
the proposed middleware. Finally, Section IX concludes
the paper and highlights some possible future work.

II. BACKGROUND ON RETREIVING WEB INFORMATION

The Web offers a multitude of public information in
various document formats and there exist several tools
and methods to access it. We can get the information
from web services [5], XML files [6] or HTML
documents [7]. Web services provide web APIs that can
be accessed over the Web, and executed on a remote
system hosting the requested services. These remote
systems provide different services that provide reusable
information about different aspects or products. For
example, some stock markets may provide web services
to supply current stock prices. Banks may provide web
services to supply information about loans or currency
exchange rates. If a specific piece of information is
needed by an application, the user can easily define a
variable and link it with the corresponding web service
which provides the required information using the
available API. The main problem with web services is
that their availability is still limited and not all types of
information are provided by them. Most of the useful
information on the Web is still available in HTML format
which cannot be easily retrieved and integrated with other
applications in real-time. When XML was introduced, the
use of self-defining structures promised an easy way to
deal with and retrieve content. However, XML
documents are not as common as, HTML documents and
thus most of the information is still inaccessible this way.
Unlike XML documents, HTML documents do not have
any semantics for their content. Thus, obtaining specific
data from a dynamic HTML document for reuse in other
applications is a complex task. It is very difficult to
identify the required parts of the data, retrieve it and then
dynamically integrated into a user application.

Some work was done at different levels to try to
benefit from the Web HTML documents. One example is
developing an approach to link the large amount of data
that are currently available in HTML documents to the
Semantic Web ontology [8]. Another example is
developing an approach that automatically captures the
semantic hierarchies of HTML tables [9]. In addition
much of the work on information retrieval has been
applied on Web information to capture certain aspects
from HTML documents. The main goals of information
retrieval are efficiency, accuracy and ease of use [10] and
there are many ways to retrieve specific information from
HTML documents based on word, sentence or semantic
matching. In [11] the authors produce a learning
algorithm for retrieval based on previous experiences.
Terrier [12] is another example that offers a platform to
build and experiment with large-scale information
retrieval methods. It offers a predesigned indexing
architecture to help in the search and retrieval operations.
In addition, in [13] the authors offer a learning model to
pair usable wrappers with web pages to extract data from
the HTML documents. In this case, the learning program

is trained to identify page-independent characteristics that
help in the extractions. Also some work was done for
page summarization where important data is collected
and a summary of the page is presented to the user.
Temporal summarization [14] is an advanced model
where data changes in the pages of interest are also kept
in the summaries. Another approach is based on Web
data warehousing [15] where the proposed method
analyses websites and creates Web tables that keep track
of the important data and changes along with the URL
links for user reference. Most retrieval approaches
however, require highly complex models that may work
for some web pages and not others. In addition adapting
different models will result in different monitoring
systems and users will be more confused. Furthermore,
many of the approaches we mentioned do not offer
functionalities that could cater to multiple requests and/or
multiple simultaneous users. In addition, these
approaches do not incorporate user notification
mechanisms that will help inform the users of events of
interest when they occur. Thus users will still have to
continuously monitor the results produced by these
services for what they need.

In another approach researchers rely on collaborating
agents to monitor changes in web pages and notify
interested users of these changes [16]. More work on
multi-agent data Web information gathering was done
and several approaches were proposed such as the three-
tier architecture [17] where the middleware brokers offer
cooperation capabilities among multi user agents and
multi resource agents. Another example is the
autonomous methodology to obtain domain-specific
information that can be integrated together to form a
useful data repository matching the users’ needs [18].
The Do-I-Care agent [19] also provides a tool to monitor
page changes and classify them based on user
information to be of interest or not. Some other research
effort was focused on a different direction where attempts
to transform HTML documents to another format are
done to satisfy specific applications. One example of this
transformation is from HTML Product Catalogues source
code and images to RDF [20]. The multi-agent approach
and the middleware approaches will help further enhance
such systems by allowing for more modular design and
help accommodate more complex requirements. Yet
again many of these are still limited.

Further work also emerged in what is being known as
scraping (data, screen and web scraping) [21]. This relies
on creating techniques that will treat the data, screen or
web page as a source that is scanned then the information
registered is passed as input for other systems or services.
One example of currently available is ScraperWiki [22],
which uses programming models to help users write their
own scraping models to get their required data. Other
researchers also offered different approaches in Web
scraping such as those in [23] and [24]. Most scraping
techniques require the user to have programming
experience to gain high level benefits, yet there are some
efforts to offer simpler GUI models to help such as
Mozends [25], which offers point and click interface to

1452 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

select the web pages and data to extract, yet it cannot
handle complex choices and high detailed requirements.
Once more, the Web scraping approaches offer an
excellent start for building services to obtain user-defined
information from Web pages, yet again the available
approaches handle the service on an individual user basis.

In general, there are various issues to handle when
trying to extract Web data and integrate them with other
applications [26]. For example, the sources are constantly
changing, No clear semantics are available, varying
naming conventions and difficulty in extracting HTML
data. The approaches we discussed above try to solve
some of these issues; however, none of them can provide
a full usable solution. In our approach, MidWire, we try
to offer a generic middleware framework that will
support data extraction from multiple sources,
accommodate for dynamic changes and also work with
multiple users and requests efficiently.

III. WEB INFORMATION REUSE EARLY MODEL

As we discussed in Section II, Most useful information
is available in HTML documents and these do not offer
enough metadata to find and use the requires information.
As a result many models appeared to monitor web pages
and extract certain information as requested by the user.
However, many cannot handle dynamic information and
frequent changes. In addition, most provide the
information in its raw form thus it cannot be directly used
as part of other applications. Dealing with live data poses
more problems and issues.

We recently developed a simple and efficient approach
for retrieving live HTML-based Web information [4].
The main idea is based on finding fixed titles or headers
that appear in browsers for HTML documents directly or
semi-directly before the needed dynamic information.
These fixed titles or headers are used as reference points
to know the position of the required dynamic
information. The proposed approach is developed as a
Java class, urlINFO [4]. Multiple objects can be created
from this class for different Web HTML documents that
contain some of the required information. A number of
techniques were developed to find this information in any
HTML document. These techniques are implemented in a
set of methods listed in Table 1.

All these techniques can be used to retrieve Web
information for use in new applications. As soon as the
fields are identified the get or getWI methods with the
right arguments are used allowing the application to
retrieve the required information. Users can target any
HTML document on the Web to retrieve the information
they need.

The different methods are designed to cover all
possible access modes for the data. Using these methods,
we can identify the location of the data and retrieve it as
one or more variables. These variables are then made
available for reuse in other applications. As a result, it
will be possible to get the latest value available for the
applications.

TABLE 1.

METHODS TO RETRIEVE HTML-BASED INFORMATION.
Method Description
get(header) To return the next field directly after the defined

header. The search starts from the beginning of
the page.

get(n,header) To return the next field directly after the defined
header appears n times. The search starts from the
beginning of the page.

get(n,header, i) To return the field after skipping i fields after the
defined header appears n times. The search starts
from the beginning of the page.

getWI() To return the next field from the current read
pointer position.

getWI(i) To return the field after skipping i fields from the
current read pointer position.

getWI(header) To return the field located directly after the
specified header from the current read pointer
position.

getWI(n,
header)

To return the field after the occurrence of the
header n times from the current pointer position.

getWI(n, header, i) To return the field after skipping i fields after the
defined header appears n times from the current
pointer position.

Here we rely on middleware to facilitate access, reuse

and integration of available public information with
application programs designed to meet the specific needs
of users. Generally, different middleware platforms were
created to add new values for different systems such as
enterprise systems [27], cluster computing [28], wireless
sensor networks [29], mobile ad hoc networks [30], and
robotics [31]. The main research goals in middleware
platforms are to develop simple mechanisms, approaches,
and methodologies that add value to existing computer
systems, networks, and distributed applications. This
value can be in the form of scalability, reliability,
availability, usability, extensibility, manageability,
reusability, stability, efficiency, autonomicity and
integrity. The mechanisms are usually based on the reuse
of existing methods, protocols, software, and systems to
add the needed values.

IV. WEB INFORMATION REUSE CHALLENGES

As the first model was designed we came across many
challenges that need to be addressed to implement a
complete middleware for Web information reuse. In this
section, we discuss these challenges that make it hard to
retrieve live Web information and reuse it as part of other
applications. Efficient solutions are required to simplify
the process of the integration and to smooth the
communication among the different applications and the
needed Web information. These challenges include:
• Interoperability: the Web mainly provides

information in the form of HTML documents, XML,
documents, and web services. On the other hand, most
applications still use CORBA, RMI, and DCOM to
facilitate integration. It is very difficult for example to
allow a CORBA, RMI, or DCOM based application to
reuse the Web Information provided in HTML, XML,
or even some web services. Web information
providers do not support CORBA, RMI, and DCOM
interfaces through the Internet since these use special
port numbers that are typically disabled by firewalls.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1453

© 2012 ACADEMY PUBLISHER

Applications that support web services can directly
integrate themselves with the Internet to get the
required information. Web services overcome the
disabled ports problem by using the HTTP protocol
for communication. HTTP usually uses port 80 which
is generally enabled by most firewalls. Unfortunately,
not all Web information is provided by web services.
Furthermore, not all applications can support web
services yet. In addition, XML provides some
structure to the data made available; however, just as
in web services, these are not very commonly used
over the Web. To date, most of the information is still
provided in HTML documents, which imposes a
challenge on how to extract the required parts to be
used by another application.

• HTML Format Changes: most information is still
available on the Web in HTML format. Unlike XML
documents, HTML documents are unstructured and
have no semantics for the fields present in the
document. As a result, integrating an HTML
document that contains dynamic information with a
local application can be a very difficult task.
Somewhat, it is possible to implement a solution for
the integration by extracting the required information
from the relevant HTML documents based on the
knowledge of the structure of the document and the
position of the required information in the document.
This allows an application to identify certain values
based on their relative position to some fixed items in
the document like labels or specific texts. However,
the structure and the positions may change at any
time, which makes the extraction method useless after
the change. In addition, dealing with multiple HTML
documents with different structures can be a very
intricate task. Any changes in any used HTML
document will require some changes in the local
application that uses this document.

• Distributed Information/Servers: a local application
may require some information that is distributed over
multiple web servers located in different places. These
servers may support different mechanisms to provide
information such as through HTML documents, web
services, or XML documents. At the same time, the
response times for the requests from the client/local
application asking for certain information from these
servers may differ. Therefore, it becomes very
difficult for the local application to deal with all the
heterogeneity in the delivery mechanisms, in the
response time, and in the number of the servers. This
imposes a great challenge on the application
developer to account for all these differences and
ensure efficient operation of the information
integration.

• Highly Dynamic Information: the required
information provided by HTML documents, XML
documents, or web services can be very dynamic.
This causes the required information to rapidly
change. For some applications, it is required to
capture all changes that occur over time. One example
is a stock price displayed in a dynamic HTML page.

That price may change every two seconds. At the
same time, some application may require registering
all changes to that price to perform some calculations,
analysis or make some decisions. Implementing the
methods in the local application to get all changes in
some fields in time and keep track of these changes
continuously can be a very complicated task.

• Fault Tolerance: some web servers may be
unavailable for some time due to different reasons
including overloaded servers, network problems, and
server maintenance. In addition, servers may have
varying response times. A local application may not
be able to function correctly due to the unavailability
of a web server that provides some of the required
information. However, the required information may
be duplicated over multiple web servers under
different contexts and possibly different formats as
well. For example the current price of a specific stock
can be available on multiple websites related to
different organizations. If the local application uses
one website to get the information and that site fails, it
will not be possible to switch to a different site to get
that same piece of information. However, it will be
desirable to make the application capable of
performing that switch when necessary. Yet, it is very
difficult to utilize multiple web servers and implement
a fault tolerance mechanism among them to provide
the required information in real-time bases even with
some faults.

• Efficiency: some Web information (especially those
available on a single web page) may be required by
multiple local applications at the same time. For
example, all stock information in a single stock
market is displayed in real-time on a single web page.
Several applications may be requesting different stock
prices from that same list at the same time. If the
extraction is done within the application, each one
will download and process the same page, while it
may be much more efficient to download the page
once, process it to extract multiple pieces of
information then provide each application with its
own required information. However, it is a
challenging task to determine the duplication in
requests among several independent applications and
efficiently reduce the amount of processing required
to extract the needed information for each one of the
applications.

There are several possible solutions for the challenges

mentioned above. These solutions can be implemented as
part of the local applications that need to use the Web
information. However, this approach is inefficient and
needs huge development and testing efforts and a lot of
time. This effort may be duplicated for different
applications that need to reuse Web information. It will
be more efficient to have some well developed and
appropriately tested independent services that can be
efficiently used to obtain the required information by any
application. Thus middleware offers a suitable platform
for this type of services. This way, it will be easier to

1454 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

reuse and integrate the required services with different
applications.

V. M IDWIRE SERVICES

In this section we discuss our middleware solution to
solve most of the challenges mentioned in Section IV.
The middleware connects the Web as an information
source with the local applications that need to use the
information (see Figure 1). This middleware provides
some services that can be used by users to configure the
required information needed by their local applications.
The configuration defines the location of the required
information. As it supports information reuse we call it
MidWire (Middleware for Web Information Reuse).

The design of MidWire provides the following
functions:
1. Establish connections with web servers and web

services.
2. Download and extract the required information from

HTML and XML documents.
3. Present all the required Web information in a

uniform way such that it can be easily reused by or
integrated with the local applications.

4. Capture changes in highly dynamic Web
information.

5. Provide a fault tolerance mechanism by utilizing the
duplications of the required information over the
Web.

6. Provide APIs to allow the local applications
developers to easily use the middleware services.

MidWire provides the required Web information for
local applications in three delivery techniques:
1. Polling: in this technique, the required information

will only be downloaded and provided when a local
application requests it. The local applications are
provided with APIs to make the requests. Responses
for these types of requests usually take few seconds
since the middleware will need to connect to Web

servers, download and process the web page and
deliver the requested information with each request.

2. Caching: in this technique the middleware
frequently downloads and extract the required
information and keeps them in a local cache. The
information cached will be based on the history of
requests made by local applications. The cache will
contain the latest downloaded information that may
be soon needed by the local applications. Local
applications can directly read the required
information from the cache using the available APIs.
This type of read will not take much time from the
local applications to get recent information.

3. Notification : in this technique, the local
applications can ask the middleware to send
notifications to them when a certain value over the
Web has changed. The middleware will monitor that
value and will only send the notification when the
value has changed from the time the request was
made. For example, an application is interested to be
notified as soon as the current Google Stock price
changed. In this case, the middleware will monitor
the Google stock current price from one of the web
pages or one of the web services providing this
information and will only notify the application
when the price changes. This type of communication
request is useful for applications that do not need a
frequent access to the Web information. It transfers
the overhead of frequent Web accesses from the
application to the middleware.

The suitability of the above communication techniques

depends on the application scenarios. Table 2 lists some
of the common application scenarios and their most
suitable communication techniques.

MidWire addresses several of the challenges discussed
in Section IV. Interoperability is addressed by providing
a middleware framework that may be implemented in
several ways such as using Java modules which can
operate across different platforms. In addition, the design
of MidWire is flexible enough to allow for the
incorporation of different components. It is capable of
handling highly dynamic and changing HTML content.
MidWire also allows for incorporating multiple sources
and servers to be used.

TABLE 2.

DELIVERY SCENARIOS
Application Scenario Communication

Method
Single application accesses different Web information
from time to time.

Polling

Single or multiple applications need a continuous
stream of information from one or a few web sources.

Caching

Multiple applications need the same information from
the Web.

Caching

Single or multiple applications need to capture
changes in some Web information.

Notification

MidWire

Web Server 1

Internet

Local
Appl. 1

Web Server 2 Web Server 3 Web Server 4

Local
Appl. 2

Local
Appl. 3

Figure 1. Three local applications reuse Web information available
in four web servers through a middleware located locally.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1455

© 2012 ACADEMY PUBLISHER

VI. M IDWIRE ARCHITECTURE AND IMPLEMENTATION

MidWire is designed and implemented in three layers.
The layers are: The Web Information Retrieval Layer,
The Cache Layer, and the Delivery Layer (see Figure 2).
In this section, the functions of each layer are discussed.

A. Web Information Retrieval Layer

One of the main layers of this middleware is the Web
Information Retrieval Layer. This layer directly deals
with the web servers. The main function of this layer is to
retrieve the required Web information. The required Web
information can be obtained from the Web using web
services or using any library that provides mechanisms to
obtain the required information from dynamic HTML
pages as discussed in Section III. The information is
obtained from the Web in a series of individual requests
to be used for serving the polling type deliveries which
we discussed in the previous section or as streams to
update the cache layer. This layer uses multiple threads
parallelize the retrieval of highly dynamic information
from the Web. This layer retrieves the required Web
information based on user configurations.

One of the advanced functions that can be provided in
this layer is to discover changes in the structure of the
defined dynamic HTML documents. This layer can
implement an automatic validation mechanism to allow
the middleware to make sure that the formats of the
defined HTML documents were not changed before
attempting to extract the required Web information. One
possible solution for this problem is to automatically
capture and store the format patterns of the HTML
documents. These patterns can be used by the system to
discover any future changes in the downloaded
documents. In case there are changes, the system notifies
the middleware administrator to configure new
parameters for the middleware.

Another function that can be provided by this layer is
to enhance the performance and reliability of the
retrieving process. If a piece of the required information
is provided by multiple sites or web services, this layer
can discover which site or web service can provide faster
access. This can be discovered automatically by the layer
using some experimental testing. MidWire can test and

record response times of available sources periodically to
select the best one to provide the required information.
In addition, this layer can switch from a faulty source or
unreliable source to a working source without affecting
the user applications. This function requires that the
middleware administrator defines all websites or web
services that provide the same information.

B. Cache Layer

The main function of this layer is to provide memory
for updated information obtained from the Web. This
layer will be accessed by the Web Information Retrieval
Layer to update the cache with new information and by
the Delivery Layer to obtain updates on required Web
information.

One of the advanced functions that can be
implemented by this layer is to capture the access
patterns of the information in the cache by the
applications. Capturing the access patterns can be used to
adjust the required speed of retrieving the required
information from the Web by the Web Information
Retrieval Layer. For example, the applications access a
certain value in the cache once every 20 seconds. In this
case there is no sense in retrieving that value every 5
seconds. Therefore, the retrieval layer can be informed
about that fact to adjust its download accordantly.

C. Delivery Layer

This layer will be accessed by the application to
receive Web information either from the cache or from
the Web directly using the Web Information Retrieval
Layer. This layer will also wrap the required Web
information to a format that can be accessed by the
applications. For example, this layer can provide different
access methods such as RMI, CORBA, web services, and
DCOM. These access methods can be either implemented
by the users or using tools to help them in automatically
generating servers that use both the cache layer and the
Web Information Retrieval Layer to get the required
information for the applications. The implementation of
code generation techniques can be similar to [32].

This layer can combine information collected from
different web pages and web services to be delivered as a
reply for an application request. The advantage of this
function is that instead of making the applications deal
with multiple web services and web pages to collect a set
of needed information, this layer can provide all required
information in one record and reply. This layer also can
implement the notification services mentioned in the
previous section. This layer notifies the interested
applications about any changes in required values.

VII. PROTOTYPE IMPLEMENTATION

We have implemented a prototype of MidWire. In this
prototype we did not cover all the features that MidWire
can provide; however, we covered some essential
features. We used Java to implement the prototype, yet
MidWire can be implemented using any other language.
The middleware admin can build a configuration file
using a set of Java classes, which define the operations of
MidWire. We use Java classes for configuration since it

Figure 2. The Middleware Architecture.

Web Information Retrieval Layer

Cache Layer

Delivery Layer

CORBA RMI

Internet

Local
Application 1

Local
Application 2

Local
Application 3

1456 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

provides flexibility in dealing with different methods for
retrieving Web information. This method is used for
defining some configurations in other middleware
systems such as JOR [33], which is a middleware for
Java object content-base routing among distributed Java
applications.

In the admin configuration file, each Java class
represents a data structure that will be retrieved from the
Web. Each class can be defined for a set of related pieces
of information from a single page or from a single web
service. For example, a class can be defined for US stock
quote pages from Yahoo. The class will have a number of
fields that define the required structure of a stock in one
of the US markets. It can have for example, StockCode,
LastTrade, Bid, Ask, and Volume. One example of this
class is US_Stock class shown in Figure 3. The class also
has a constructor to define the initial setup process for the
download. Objects from these classes will be used
internally within the MidWire components. These objects
represent updated related Web information called Web
Information Object (WIO). Each class must have a
method called update(). This update method is to retrieve
the updated information for the WIO. The update()
method should contain some code to update the defined
fields in the class. Within this class the user can use
urlINFO or any web service to retrieve related web
information. The parameter in the constructor is used to
pass information about the retrieve request. It can be for
example “WMT”. This is to retrieve quote for Wal-Mart
Stores. WIOs are then transferred from the Web
Information Retrieval Layer to the cache layer or to the
Delivery Layer.

The configuration file also has a class called setup,
which extends the class MidWireConfiguration. This
class is to define which of the WIOs should be cached
and which of the cached WIOs should be monitored for
notification services. The definition is done in a static
method called MidWireSetup. MidWireConfiguration
contains some methods that implement and provide
support for both the cache and notification services. For
each cached information, WIO and download interval are
defined as cache(WIO, interval). The interval defines the
frequency of updates in seconds. If the interval is 2, then
MidWire will download a new update every 2 seconds.
Examples of these cached WIOs for Wal-Mart Stores and
Intel Cooperation stock information are shown in Figure
3.

 In addition, in the configuration file the user can
define which of the cached WIOs is to be monitored for
providing notification services. The middleware admin
can use the method notify(WIO, field) where WIO is the
cached web information object while field is the attribute
to be monitored for change. If it changes, then this
method will notify the interested applications about the
changes.

Before we go to the Delivery Layer, let us discuss the
implementation of the Web Information Retrieval Layer
and the Cache Layer. The Web Information Retrieval
Layer was implemented as a set of Java classes. One of
the main functions of this layer is to update the Cache

Layer with new updated WIOs. In this layer, a thread is
started for each WIO to download updated Web
information at each defined interval. With each cached
object, a timestamp is recorded for the thread start time.
Updated WIOs will be sent to the cache layer for storage.
The Web Information Retrieval Layer provides a static
method to retrieve an update for any WIO. This method
can be used by the Delivery Layer to retrieve updated
WIO directly from the Web. The Web Information
Retrieval Layer uses the Java virtual machine class loader
and the reflection API [34] to deal with and invoke the
defined methods in the user configuration file.

import java.io.*;
class setup extends MidWireConfiguration
{
 public static void MidWireSetup()
 { // Cache Wal-Mart Stock Information
 US_Stock wmt = new US_Stock("WMT");
 cache(wmt,2);
 // Cache Intel Stock Information
 US_Stock intc = new US_Stock("INTC");
 cache(intc,2);
 // Notify when Wal-Mart LastTrade changed
 notify(wmt,"LastTrade");
 }
}

class US_Stock
{
 public String StockCode;
 public String LastTrade;
 public String Bid;
 public String Ask;
 public String Volume;
 private urlINFO stock;
 public US_Stock(String dPar)
 { StockCode = dPar;
 Stock=new
urlINFO("HTTP://finance.yahoo.com/q?s="+dPar+"&ql=1");
 }

 public void update()
 { stock.download();
 LastTrade = stock.get("Last Trade:");
 Bid = stock.get("Bid:");
 Ask = stock.get("Ask:");
 Volume = stock.get("Volume:");
 }
}

Figure 3. MidWire Configuration.

The fault tolerance in retrieving Web information is

handled by the Web Information Retrieval Layer by
allowing the middleware admin to define two update
methods, update1() and update2() in the Web
information class. Both update methods will retrieve the
same required information but from different websites or
web services. Invoking any of the two update methods
can retrieve the recent Web information and update the
attribute of the WIO. The Web Information Retrieval
Layer can rely on one of the update methods for
obtaining updated information and switch to the other if
the first one fails.

The Cache Layer is also implemented as a set of Java
classes. It has a data structure to store updated WIOs.
Only recent WIOs sent by the Web Information Retrieval
Layer are considered. WIOs timestamps are used to

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1457

© 2012 ACADEMY PUBLISHER

implement that mechanism. The cache layer provides a
static method that allows retrieving any cached WIO.
This method can be used by the Delivery Layer to
retrieve updated WIO from the cache.

The Delivery Layer is responsible for delivering
updated Web information to different applications. This
layer can be implemented as an RMI server, CORBA
server, or any other type of servers. This layer uses the
static methods provided by both the Web Information
Retrieval Layer and the Cache Layer to obtain updated
WIOs. The layer maps WIOs to different formats and
communication types used by the applications. We coded
this layer manually. However, it is possible to automate
the coding by developing tools to map WIOs to RMI
server or CORBA server as examples. This tool can
implement RMI server by considering both RMI server
interface class and one or more WIOs. If common field
names are used, then the RMI server code can be
automatically generated.

The notification service is provided by the notification
manager which is one of the components of the Delivery
Layer. Any application interested in monitoring some
Web Information should subscribe by sending a
subscription message to the notification manager. The
notification manager maintains a table for the information
about all subscriptions. Whenever, the Cache Layer
receives a WIO that is monitored for notification and it
has some changes, it will notify the notification manager
about that change. The notification manger checks its
subscription table to find subscribers with matching
change definitions and send the notifications to all
applications registered to receive these notifications.

VIII. THE PERFORMANCE MEASUREMENTS

A number of experiments were conducted on the
implemented prototype of MidWire to measure the
performance gain and overhead. In the following
subsections we provide details of these experiments.
First, we measure the overhead introduced by using
MidWire when a single value is requested using the
polling method. Then we evaluate the performance gain
of using MidWire when multiple client applications are
requesting a stream of related dynamic values from the
Web. In this experiment, we use the caching option. We
also evaluate the performance gain of a client application
using MidWire compared to using direct Web retrieval
methods implemented and embedded in the client
applications themselves. In this experiment, we use the
notification option. To evaluate MidWire, four multi-core
machines were used with the specifications listed in Table 3.
These machines were connected by a dedicated LAN using
Dell 2324 Fast/Gigabit Ethernet switch. In addition, the
machines have wireless network interface cards.

A. Measuring the Overhead

An experiment was conducted to measure the overhead
of using MidWire to retrieve some web information using
the polling option. The retrieve process was repeated
multiple times to retrieve some information though two
methods. The first method uses a direct connection
between the Web and a prototype client application that

implements some code to directly retrieve the required
information. This was done using machine M2 through a
wireless connection for the prototype client application.
The second method is uses MidWire to retrieve the
required information. In this method MidWire is
connected to the Web and the prototype client application
is connected to MidWire. This was done using machine
M5 for MidWire and machine M2 for the prototype client
applications. Machine M5 was connected to the Internet
through wireless connection while both machines M2 and
M5 where connected through the wired switched
network. The wireless connection of the client machine
M2 was disabled. In each case, the retrieve process is
repeated 100 times and the average response time is
taken. The response time is measured from the prototype
client application. The experiment was conducted for
some information obtained from four different web pages
and the results are shown in Figure 4. On average around
22 milliseconds is added as overhead by using MidWire.
This is a very small overhead and represents a very small
percentage of the average time needed to download a
webpage. In addition, using MidWire relieved the client
from the burden of implementing the method to get the
information and it also allows the client to reuse the
method through MidWire in any other application.

0

100

200

300

400

500

600

700

Value1 Value2 Value3 Value4

M
il
li
se

co
n
d
s

Direct

MidWire

Figure 4. Overhead of MidWire.

B. Performance Gain Using the Caching Option

The caching option is useful when there are multiple
client applications that need the same or related

 TABLE 3. MACHINE SPECIFICATIONS.

Machine Specifications
M1 Desktop, Microsoft Windows XP Professional, Intel®

Core 2 CPU 6400 @ 2.13GHz, 3.00 GB of Ram, Gigabit
Ethernet NIC

M2 Laptop, Microsoft Windows XP Professional, Intel®
Core 2 Duo T7300 @ 2.00GHz, 0.99 GB of RAM,
Gigabit Ethernet NIC

M3 Laptop, Microsoft Windows 7, Intel® Core i5 CPU
M430 @ 2.37 GHz, 4.00 GB of RAM, Fast Ethernet
NIC

M4 Laptop, Microsoft Windows 7, Intel® Core i5 CPU
M450 @ 2.4 GHz, 4.00 GB of RAM, Fast Ethernet
NIC

M5 Laptop, Microsoft Windows 7, Intel® Core i7CPU Q740
@ 1.73GHz, 6.00 GB of RAM, Fast Ethernet NIC

1458 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

information or information located on the same webpage.
To evaluate this option, we used two experiments with
multiple applications that directly retrieve related
information and then retrieve them through MidWire. All
application computers are connected through a limited
bandwidth ISDN Internet connection, 1 Mbps through a
wireless switch/router device. The experiments were
conducted using 2, 4, 6, and 8 client applications in both
configurations: direct retrieval and using MidWire.
MidWire was installed on M5 while clients where
installed on machines M1, M2, M3, and M4. The
machines were used for a maximum of two client
applications. Only the wired network was used to connect
the five machines together. In addition, machine M5 was
also connected to the Internet via the wireless network.

 The results for both configurations are shown in
Figure 5. The time measured for MidWire includes the
one-time page download time to MidWire which then
uses that page for all applications. The response time
significantly increases with the increase of the number of
requesting applications in the direct retrieval since the
page will be downloaded several times. While the
response time only slightly increases with the increasing
number of client applications using MidWire. The high
increase in the direct retrieval is mainly due to the
contention on the limited Internet bandwidth as well as
the web server. This is due to multiple and frequent
downloads for the same web pages. However, using
MidWire, a more efficient download process for the
required pages is used. In this case, the same and related
information is retrieved once and used by multiple client
applications.

0

50

100

150

200

250

300

350

400

450

2 4 6 8

Number of Client Applications

M
il
li
se

co
n
d
s

Direct

MidWire

Figure 5. Performance of Caching in MidWire.

C. Performance Gain Using the Notification Option

The notification option in MidWire relives client
applications from intensive information download and
retrieval processing. MidWire can be configured to notify
interested client applications about any change in a value
whenever it happens. An experiment was conducted
using four multi-core computers to demonstrate that the
notification option can provide a good solution for
monitoring Web information with efficiently. The four
machines M1, M2, M3, and M4 were used to
concurrently execute two applications. The first
application was parallel matrix multiplication, which
fully utilizes the computation powers of the four
computers as well the network among them to produce

the result. The parallel application was implemented
using JOPI and distributed agents supporting runtime
environment [28]. The second application replicated on
all computers is a prototype of an application that needs
to retrieve some value changes from the Web. Two
configuration cases were attempted. The first was by
implementing the retrieve process as part of the prototype
application. In this case the retrieve part will
continuously monitor the required web values. In the
second configuration, MidWire was used to notify the
prototype client application about any value changes.
MidWire was installed on machine M5 with a wireless
connection to the Internet. This experiment was designed
to evaluate the impact of consuming the system recourses
available on the four computers. As both applications
execute on the machines, we notice that the parallel
matrix multiplication execution time is 22 seconds when
using the direct retrieval and it only reaches 18.5 seconds
when MidWire is used. The main reason for this
difference is that the direct retrieval consumes more
resources on the machines thus affecting the other
application using these resources. MidWire, on the other
hand, does not require that much resources since it will
separately retrieve and sort out the required results for all
instances of the application. As a result the load on the
machines is less.

D. Discussion

Based on the results provided by this section, although
MidWire adds some overhead for some scenarios for
retrieving Web information, it provides efficient solutions
for retrieving multiple and stream Web information for
multiple client applications. The overhead is relatively
low and is compensated for in the savings gained using
the caching and notification methods. These solutions can
be provided using the caching and notification
communication options allow for more efficient
downloading of Web pages and better handling of the
required data. Furthermore, MidWire reduces the overall
load on the client applications resources and the network
infrastructure in use. In addition to the performance
advantages, MidWire saves significant efforts and time in
designing, developing and testing, information retrieval
modules as part of different client applications.

Using MidWire, new client applications can be easily
linked to utilize the available web information. One
example of these applications is the Personalized Stock
Investors Alert System [1]. This system provides
personalized monitoring for stock information over the
Web. The user defines a set of conditions to get
notifications about specific stock information. This helps
stock investors to define their business rules for stock
buying and selling to get notifications about the
occurrence of the defined events. Currently, this
application is implemented using direct connection to the
Web. However, MidWire can be used to relive the stock
alert application from retrieving and processing the
required web information.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1459

© 2012 ACADEMY PUBLISHER

IX. CONCLUSION

In this paper we discussed the design issues of
middleware services to help retrieve, integrate and reuse
dynamic web-based information from the Web with local
applications. To do that, we went through the different
methods used to access Web information and how
middleware solutions may be useful to enable and
optimize these methods. We discussed the different
challenges to be addressed when considering the
middleware design. Some of these challenges are
interoperability, HTML format changes, distributed
information, highly dynamic information, fault tolerance,
efficiency and software engineering issues. Then we
discussed the design of the proposed middleware which
provides three delivery techniques: polling, caching and
notification. Finally we described the architecture of the
proposed middleware which comprise of three layers: the
Web Information Retrieval Layer, the Cache Layer and
the Delivery Layer. This paper provided the design
aspects of the middleware with a prototype
implementation. Some experiments were conducted to
demonstrate the advantages of using MidWire.

One drawback of the current design of MidWire is that
it works on a single machine. This makes MidWire a
single-point-of-failure. In addition, it is not scalable for
very high load. As future work, we plan to investigate the
use of multiple machines for MidWire. This will make
MidWire more reliable and scalable. In addition, we plan
to investigate models and algorithms for validating the
formats of the defined HTML documents and detecting
changes in them before attempting to extract the required
Web information. Furthermore, we plan to develop some
techniques to enhance the retrieval process. We plan to
investigate adding some advanced features to MidWire
such as the dynamic discovery of existing sources, their
ranking, as well as using web information modeling to
capture the dynamic changes and validate the retrieval
formally.

ACKNOWLEDGEMENTS

This work was partially supported by a UAEU
research grants #01-04-9-11/09 and #01-03-9-11/08. A
primary version of this paper was presented at NBiS
2009.

REFERENCES

[1] J. Al-Jaroodi and N. Mohamed, “A Personalized Stock
Investors Alert System,” in The Journal of Software,
Finland, Vol. 4, No. 8, pp. 875-882, October 2009.

[2] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “A Generic
Notification System for Internet Information,” In Proc.
IEEE International Conference on Information Reuse and
Integration (IRI-08), Las Vegas, USA, pp. 166-171, 2008.

[3] Web Service: CurrencyConvertor,
http://www.webservicex.net/ws/wsdetails.aspx?wsid=10,
viewed May 23, 2011.

[4] N. Mohamed and J. Al-Jaroodi, “A Simple and Efficient
Approach for Retrieving Live HTML-based Internet
Information,” in System and Information Sciences Notes,
Vol. 1, No. 3, pp. 221-224, July 2007.

[5] F. Curbera et al. “Unraveling the Web Services: an
Introduction to SOAP, WSDL, and UDDI,” in IEEE
Internet Computing, Mar/Apr 2002.

[6] Extensible Markup Language (XML) 1.0 (Fourth
Edition), http://www.w3.org/TR/REC-xml/, September
2006.

[7] RFC 1866, Hypertext Markup Language – 2.0, November
1995.

[8] R. Burget, “Hierarchies in HTML Documents: Linking
Text to Concepts,” in Proc. 15th International
Workshop on Database and Expert Systems
Applications (DEXA'04), pp. 186-190, 2004.

[9] S. Li, Z. Peng, and M. Liu, “Extraction and Integration
Information in HTML Tables,” in Proc. 4th International
Conference on Computer and Information Technology
(CIT'04), pp. 315-320, 2004.

[10] H. Li, “Web Information Retrieval - Through
Introduction to Semantic Matching Project,” presentation,
MSRA WSM Lecture Series, Feb. 25, 2011.

[11] J. Xu and H. Li, “A Boosting Algorithm for Information
Retrieval,” in proc. 30th Annual International ACM
SIGIR Conference On Research And Development in
Information Retrieval, ACM, USA, 2007.

[12] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald,
and C. Lioma, “Terrier: A High Performance and
Scalable Information Retrieval Platform,” in Proc. SIGIR
Open Source Workshop, Seattle, Washington, USA,
2006.

[13] W.W. Cohen and W. Fan, “Learning Page-independent
Heuristics for Extracting Data from Web Pages,” in
Computer Networks, Vol. 31, No. 11-16, pp. 1641-1652,
May 1999.

[14] A. Jatowt and M. Ishizuka, “Temporal Multi-page
Summarization,” in the Journal of Web Intelligence and
Agent Systems, IOS Press, Vol. 4, No. 2, pp. 163-180,
2006.

[15] E. P. LIM, W. K. Ng, S. S. Bhowmick, F. Qin, and X. Ye,
“A Data Warehousing System for Web Information,” in
Proc. 1st Asia Digital Library Workshop, Research
Collection School of Information systems, Paper 1025,
1998.

[16] N. Glance, J. L. Meunier, P. Bernard, and D. Arregui,
“Collaborative Document Monitoring,” in Proc.
International ACM SIGGROUP Conference on
Supporting Group Work, ACM, NY, USA, 2001.

[17] E. Shakshuki, H. Ghenniwa, and M. Kamel, “A Multi-
agent System Architecture for Information Gathering,” in
Proc. 11th International Workshop on Database and
Expert Systems Applications, London, UK, pp. 732-736,
2000.

[18] S. Rahimi and N. Carver, “A Multi-Agent Architecture
for Distributed Domain-Specific Information
Integration,” in Proc. 38th Annual Hawaii International
Conference on System Sciences, 2005.

[19] M. S. Ackerman, B. Starr, and M. Pazzani, “The Do-I-
Care Agent: Effective Social Discovery and Filtering on
the Web,” in proc. 5th International Conference
Computer-Assisted Information Retrieval (RIAO 1997),
Montreal, Canada, 1997.

[20] M. Labský, V. Svátek, O. Šváb, P. Praks, M. Krátký, and
V. Snášel, “Information Extraction from HTML Product
Catalogues: From Source Code and Images to RDF,” in
Proc. IEEE/WIC/ACM International Conference on Web
Intelligence (WI'05), pp. 401-404, 2005.

[21] Web Scraping, Wikipedia,
http://en.wikipedia.org/wiki/Data_scraping, viewed
October 2011.

[22] ScraperWiki, https://scraperwiki.com/, viewed October
2011.

1460 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

[23] M. Beno, J. Misek, and F. Zavoral, “AgentMat:
Framework for Data Scraping and Semantization,” in
Proc. 3rd International Conference on Research
Challenges in Information Science (RCIS), pp. 225-236,
April 2009.

[24] A. Pan, J. Raposo, M. Alvarez, J. Hidalgo, and A. Fina,
“Semi-automatic Wrapper Generation for Commercial
Web Sources,” book chapter in Engineering information
Systems in the Internet Context, Editors: C. Rolland, S.
Brinkkemper and M. Saeki, 2002.

[25] Mozenda, http://www.mozenda.com/data-scraping-
software, viewed October 2011.

[26] A. Y. Levy, “The Information Manifold Approach to
Data Integration,” in IEEE Intelligent Systems, Vol. 13,
No. 12-16, 1998.

[27] C. Britton, "IT Architecture and Middleware: Strategies
for Building Large, Integrated Systems for Building
Large, Integrated Systems," Addison-Wesley, 2001.

[28] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson,
“Middleware Infrastructure for Parallel and Distributed
Programming Models on Heterogeneous Systems,” in
IEEE Transactions on Parallel and Distributed Systems,
Vol. 14, No. 11, pp. 1100-1111, November 2003.

[29] S. Hadim, N. Mohamed, “Middleware Challenges and
Approaches for Wireless Sensor Networks,” in IEEE
Distributed Systems, Vol. 7, No. 3, March 2006.

[30] S. Hadim, J. Al-Jaroodi, N. Mohamed, “Trends in
Middleware for Mobile Ad Hoc Networks,” in the Journal
of Communications, Vol. 1, No. 4, pp. 11-21, July 2006.

[31] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware
for Robotics: A Survey,” in Proc. IEEE International
Conference on Robotics, Automation and Mechatronics
(RAM 2008), Chengduo, China, September 2008.

[32] N. Mohamed, A. Romaithi, E. Samahi, M. D. Kendi, and
E. Jabrie, “Generating Web Monitors,” in Proc.
International Conference on Internet Computing (ICOMP
2008), Las Vegas, USA, pp. 111-116, July 2008.

[33] N. Mohamed, X. Liu, A. Davis, and B. Ramamurthy,
“JOR: A Content-Based Object Router,” The Journal of
Computer Communications, Special Issue on Activated &
Programmable Internet: The Converging Technologies

for the Internet based Active and Programmable Systems,
Elsevier, Vol. 28, No. 6, pp. 654-663, April 2005.

[34] Java API Specification Website:
http://java.sun.com/reference/api/index.html, Sun
Microsystems, 2011.

Nader Mohamed is an associate professor
at The Faculty of Information Technology,
United Arab Emirates University, Al-Ain,
UAE. He obtained his Ph.D. in Computer
Science from University of Nebraska-
Lincoln, Nebraska, USA in 2004. He was
an assistant professor of Computer
Engineering at Stevens Institute of
Technology in New Jersey, USA. His

current professional interest focuses on middleware, Internet
computing, sensor networks, and cluster, Grid, and Cloud
computing. He published more than 90 refereed articles in these
fields.

Jameela Al-Jaroodi received her Doctorate
of Philosophy degree in Computer Science
from The University of Nebraska-Lincoln,
USA in 2004. Since August 2006, she has
been with the Faculty of Information
Technology, at The United Arab Emirates
University, UAE as an assistant professor.
Prior to joining UAEU, Dr. Al-Jaroodi was
a research assistant professor at Stevens

Institute of Technology in New Jersey, USA. Currently, her
research interests involve middleware, distributed collaborative
systems, security, and mobile and pervasive computing. While
at Stevens, Dr. Al-Jaroodi received the Research Excellence
Grant from Sun Microsystems, Inc. In addition, several areas of
her research were also supported by the United States National
Science Foundation (NSF), Nebraska Foundation, the National
Center for Information Technology in Education (NCITE) and
UAEU research grants.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1461

© 2012 ACADEMY PUBLISHER

