
An Approach to Automated Runtime Verification
for Timed Systems: Applications to Web

Services
Tien-Dung Cao1∗, Richard Castanet2, Patrick Felix2, and Kevin Chiew1

1 School of Engineering, Tan Tao University
Duc Hoa District, Long An Province, Vietnam.

Email: {dung.cao, kevin.chiew}@ttu.edu.vn
2 LaBRI - CNRS - UMR 5800, University of Bordeaux
351 cours de la libération, 33405 Talence cedex, France.

Email: {castanet, felix}@labri.fr

Abstract—Software testing plays an important role in
verifying and assessing the quality of a software application.
There are various testing approaches proposed for different
application scenarios. In this paper, we propose a new
passive testing approach to verifying a timed trace with
respect to a set of constraints. With the extension of Nomad
language, we are able to formally describe all constraints
and combine conditions by logical operations AND and
OR into expressions. By well organizing and evaluating the
expressions, we are able to carry out runtime verification
message by message in a timed trace. In addition to the
theoretical framework, we have also developed a software
tool known as RV4WS (Runtime Verification for Web
Services) for the automation of our testing approach, and
implemented all algorithms in the paper with this tool. We
conduct a case study of web service composition to verify
the effectiveness of our approach and tool.

Keywords-Runtime verification, Passive testing, Rule spec-
ification, Web services.

I. INTRODUCTION

The activity of conformance testing focuses on veri-
fying the conformity of a given implementation based
on its specification. It can be classified into two cate-
gories, namely active testing and passive testing. (a) Ac-
tive testing requires a tester to interact directly with
the implementation under test (in short as IUT) and
check the correctness of answers by the implementation.
However, this method is not applicable to a running
system due to some reasons like (1) testers do not have
permission to access to the interface of a running system;
(2) if testers use the active method to test functions
like create new account(...) or update debit(...) of a
banking system, it may incur errors like false accounts
or updates in the database of the system; and (3) active
testing does not allow us to check several security prop-
erties of a system that can only be captured at runtime or

This paper is based on “Automated Runtime Verification for Web
services,” by T.-D. Cao, T.-T. Phan-Quang, P. Felix, and R. Castanet,
published in the Proceedings of the IEEE International Conference on
Web services, Miami, FL, USA, July 5–10, 2010. c© 2010 IEEE.

This Research is partly supported by the French National Agency of
Research within the WebMov Project http://webmov.lri.fr.

* Corresponding author.

when several sessions are executed in parallel. Moreover,
because testing cannot find all faults, even if a system has
passed an active test, we still need to verify its conformity
at running time or to analyze its log files for improving
the reliability of a system. (b) Passive testing collects the
observable traces (i.e., the log files) of the running system
by installing a probe and analyzes them based on a set of
rules [8], [9], [21] or a formal specification [12]. Without
a tester directly interacting with the IUT, passive testing
does not effect the system running, and is widely adopted
for system verification.

Passive testing can be carried out either on-line or off-
line. The on-line technique, a.k.a. runtime verification
technique, immediately checks an observable trace once
an input/output event occurs so that potential damage can
be prevented by terminating the system running whenever
any fault is detected; whilst the off-line technique checks
an observable trace after it is collected for a period of
time, and does not usually require additional resources
such as CPU, RAM or another computer to run both of the
trace collection engine and checking engine in parallel.

For a complex system such as an SOA application or a
cloud computing application, the communications across
system components are carried out by signals, events, and
messages, whose timed traces may be collected from a
distributed environment and need to be well synchronized
during verification. Therefore, we suggest to address the
following factors when we define a set of constraints to
verify a timed system.
• Time constraint. The passive testing verifies the mes-

sage sequence in a trace. However, when a system
is running, we do not know when the next message
will arrive after the previous one. Thus we may have
to set time constraint for each message. For example,
we can set 10 seconds of time constraint for receiving
a loginResponse after sending a loginResquest.

• Condition on message content. Sometimes we are
only interested in some messages of which the
contents satisfy some conditions. For example, we
can identify the messages sent to or received from
machine A by their contents (SourceIP = A) or

1338 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.6.1338-1350



(DestIP = A).
• Data correlation. For any observable trace mixed

by several traces or sessions that are executed in
parallel, we need to apply our constraints on the
messages that belong to an individual trace or ses-
sion. To do so, we firstly find the messages that have
a correlation by their data values (known as data
correlation), and then apply our constraints on these
messages. For example, we can assign sessionId
fields to messages belonging to different sessions
running in parallel, can group these messages by the
values of sessionId field before applying our rules
for correctness verification.

• Combination of conditions. A constraint can also be
represented by a combination of several conditions
with logical operations such as AND, OR, and NOT.

In this paper we propose a new approach to passive
testing either on-line or off-line for a timed system by
verifying a timed trace based on a set of rules which
contains the constraints on message sequence, the interval
time between any two messages, and the contents of mes-
sages. To formally describe constraints for the specifying
permissions and prohibitions, we propose to extend the
Nomad [14] language by defining the constraints on each
atomic action (fixed conditions) and a set of data correla-
tions between the actions, so as to describe permissions
and prohibitions both of which are atomic actions and
should be applied immediately and obligations which are
related to non-atomic actions within contexts and need a
time duration to complete. For example, let x be a positive
integer, a prohibition or a permission rule is evaluated to
be true at time t if t ∈ [0, x]; whereas an obligation rule
is evaluated to be true at time t if t > x, meaning that
the obligation needs at least a duration x to complete the
work. Besides the theoretical framework, we develop a
software tool known as RV4WS (Runtime Verification for
Web Service) to implement the automation of our passive
testing approach. In particular, the algorithms presented in
this paper are fully implemented by this software tool. We
also apply our tool to a case study of WebMov1 project
which provides design and composition mechanisms for
web services.

The remaining sections are organized as follows. We
first present some discussions about software testing and
existing method for passive testing or runtime verification
in Section II, and then introduce the syntax and semantics
of our rules in Section III followed by an algorithm
for verifying a timed system based on a set of rules in
Section IV. In Section V, we introduce the RV4WS tool
together with a case study in Section VI before concluding
the paper in Section VII.

II. DISCUSSION

A. Software Testing
Testing is an important step to verify and assess the

quality of a software application, and an appropriate test-
ing type should be chosen for an individual application.

1http://webmov.lri.fr

Fig. 1. Classification of testing types

We classify the types of testing into four categories based
on the characteristics of the application, the phases of the
development, the available information of specifications
and the capability of application controls, and use a
schema with four axes to show the classification as
depicted in Figure 1.

1) The characteristics:
• Conformance testing. It is used to test the confor-

mance of an implementation based on its specifica-
tion.

• Robustness testing. It is used to test the capability to
deal with the unexpected data.

• Performance testing. It refers to the assessment of
the performance of an application in different cases
in terms of the speed and effectiveness.

• Security testing. It is a process to determine that
an information system protects data and maintains
functionality as intended. Some security concepts
that need to be covered by security testing are listed
as follows.

– Authentication, which is the process of estab-
lishing the identification of a user.

– Authorization, which is the process of deter-
mining that a requester is allowed to receive a
service or perform an operation.

– Availability, which is to assure information and
communications services be ready for use upon
requests or the information kept available to
authorized users when they need it.

– Integrity, which is a measure by which receivers
can determine the correctness of the information
provided by the system.

• Reliability testing. It evaluates the good functions
under different conditions such as timing constraints,
speed of network, etc.

2) The phases of the development:
• Unit testing. It is to verify the operation of an

individual component or module in isolation to the
rest of the system.

• Integrated testing. It is to test the interactions

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1339

© 2012 ACADEMY PUBLISHER



amongst components of a system. In other words,
it tests a system at the interface level of each
component.

• System testing. It is to verify the global behavior of
the system.

3) The accessibility:

• Black-box testing. It allows testers to generate test
cases from system specifications for functional test-
ing without knowing the internal structure of system.

• Gray-box testing. It is used when some information
of the internal structure are available for testers.

• White-box testing. It is used when testers know
the internal structure of the system (i.e., the code)
and allows testers to verify the structure by testing
different paths in the code.

4) The controllability:

• Active testing. It allows testers to interact directly
with the system under test by sending requests and
receiving responses for analysis.

• Passive testing. It allows testers to assess a system
from input/output events or log files without inter-
acting with the system under test.

B. Passive Testing of systems

Due to its side-effect to a system, passive testing is
usually used as a monitoring technique to detect and
report errors when we cannot use an active testing method.
Another area of its applications is in network management
for the detection of configuration problems, fault identi-
fication, or resource provisioning. This section reviews
some passive testing approaches.

Bayse et al. [9] and Cavalli et al. [12] proposed a pas-
sive testing approach based on invariants of a Finite State
Machine (FSM). They defined two types of invariants in
the following for an FSM M = (S, sin, I,O, T ) where
S is a set of finite states, sin an initial state, I the set of
input actions, O the set of output actions, and T the set
of transitions.
• Simple invariant. Trace i1/o1, i1/o1, ..., in−1/on−1
, in/O is a simple invariant of FSM M given that
we necessarily get an output O where O ⊆ O if we
obtain the input in under the premise that each time
the trace i1/o1, i1/o1, . . . , in−1/on−1 is observed.

• Obligation invariant. It is used to express properties
such as “if y happens then we must have that x had
happened”.

They presented two algorithms to check from left-
to-right and right-to-left a finite trace to give a verdict
without considering the time constraints on the traces.
TIPS [11] (Test Invariant of Protocols and Services) is an
implementation tool of this approach.

To express temporal properties, Andrés et al. [1]–[3]
introduced Timed Invariant as an extension of simple
invariant with time constraints between an input and
an output. There are some limitations of their Timed
Invariant model as listed below.

• It only supports future times not past time. This is
because its semantic is defined as “if we obtain a
trace of the pair of input/output event (the interval
time between an input and an output is also consid-
ered) and we continue to obtain an input (after this
trace), then we must obtain an output after a fixed
interval time”.

• It does not support combining several conditions into
a Timed Invariant by the logical operations such as
AND and OR.

• It does not consider the constraints on the content
of each event, therefore the data correlation problem
between the events is also not considered.

• Finally, the tool PasTe [1] that is implemented to
check the correctness of a log w.r.t. a set of time
invariant does not allow us to verify an execution
trace in parallel with the trace collection engine,
i.e., not supporting runtime verification or on-line
checking.

Mallouli et al. [16] proposed the security rule using
the Nomad language to express the constraints on a trace
with obligations, prohibitions and permissions. That is,
a prohibition or permission rule is granted and applied
immediately to a trace; while a obligation rule delimits
the completion deadline of a task. They also introduced
an algorithm to check the correction of the trace follow-
ing these security rules. Their approach solves the time
constraints caused by invariant approach though, it does
not consider the correlation of messages by its data values
which is an important issue for passive testing.

Tabourier and Cavalli [22] proposed an approach to
verify the traces which actually belong to the accepted
specifications provided by an FSM. This method is com-
posed of two stages:

• Firstly, passive homing sequence is applied to de-
termine the current state. Initially, all states are put
into a candidate list. When an input/output arrives,
the current state will be updated by the destination
state of the corresponding transition if it is the source
state of the transition or otherwise removed from the
candidate list. After a number of iterations, either a
single current state is obtained and we move to the
second step to detect the fault, or an input/output pair
is not accepted by any candidate state. In the latter
case, a fault is detected.

• Secondly, fault detection is carried out by applying
the search technique to the current state and the
current input/output pair. If a state which does not
accept the following transition is reached, then there
is an error; otherwise, then the end of the trace is
reached, and no error is detected.

This method does not consider the time constraints on
the traces and is not applicable to the case where the trace
is collected from the execution of multi-sessions that run
in parallel.

1340 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



C. Passive Testing of Web Services

In recent years, many methods have been proposed
together with tools developed for passive testing of web
services [4]–[6], [13], [17], [20]. These work focus on
either checking the order of messages and/or its occur-
rence time on a trace file to give a verdict [13], [20], [21]
or proposing a method for dynamic statistics [4], [6] of
some properties of web services.

Dranidis et al. [17] proposed the utilization of Stream
X-machines for constructing formal behavioral specifi-
cations of web services. They also presented a runtime
monitoring and verification architecture and discussed
how it can be integrated into different types of service-
oriented infrastructures. However, they did not present an
algorithm or a tool to verify an execution trace using the
Stream X-machines specification of web services.

Baresi et al. [4], [5] presented a monitoring framework
for BPEL orchestration which is obtained by integrating
two approaches namely Dynamo and Astro, which are
used for dynamic statistics of some properties of BPEL
processes from single instance or multi instances. These
work focus on the behavioral properties of composition
processes expressed in BPEL rather than on individ-
ual web services. Moreover, an assessment (a verdict
true/false) about service is not considered in this work.

Cavalli et al. [13] proposed a trace collection mecha-
nism for SOA by integrating modules within BPEL engine
and a tool [13], [16] that checks off-line execution traces.
This approach uses the Nomad [14] language to define
the security rule though, it does not allow us to check
real-time (i.e., “on-line”) whenever a message happens.
Moreover, this work does not consider the data correlation
between the messages in the rules.

Li et al. [20], [21] presented the pattern and scope
operators as the rule-based to define the interaction con-
straints of web services. The authors use FSM as semantic
representation of interaction constraints. In this approach,
the validation process runs in parallel with the trace
collection. This approach is limited by the pattern number,
while it does not consider the time constraints.

III. RULE DEFINITION

A. Syntax

In our work, we consider each message as an atomic ac-
tion, and use one or several messages to define a formula
with logical operations AND and OR. We also use the
operation NOT to indicate that a message is not permitted
to appear in the trace within a duration. During the
formula definition, the constraint on message parameters
values may be considered. Finally, from these formulas,
the rule is defined in two parts, namely supposition (or
condition) and context. The set of data correlations are
included as an option.

Definition 1. Atomic action. An atomic action is either
an input message or an output message, formally denoted
as

AA := Event(Const)|¬AA

where
• Event represents an input/output message name;
• Const := P ≈ V |Const ∧ Const|Const ∨ Const

where
– P are the parameters. These parameters repre-

sent the relevant fields in the message;
– V are the possible parameters values;
– ≈ ∈ {=, 6=, <,>,≤,≥};

• ¬A means not(A).

Definition 2. Formula. A formula is recursively defined
as

F := start(A) | done(A) | F ∧F | F ∨F | Od∈[m,n]F

where
• A is the atomic action;
• start(A): A is being started;
• done(A): A has been finished;
• Od∈[m,n]F : F was true in d units of time ago if
m > n, and F will be true in the next d units of
time if m < n where m and n are natural numbers.

Definition 3. Data correlation. A data correlation is
a set of parameters that have the same data type where
each different parameter represents a relevant field in a
different message, for which the operator = (equal) is
used to compare the equality amongst parameters. A data
correlation is considered as a property on data.

Example 1. Let A(pA0 , pA1 ), B(pB0 , pB1 , pB2 ) and C(pC0 )
be messages with pi the parameters where pA0 , pB0 and
pC0 have the same data type. A data correlation set that is
defined based on A, B and C is {pA0 , pB0 , pC0 } ⇔ {pA0 =
pB0 = pC0 }.

By putting the time constraints into an interval, we
support only two types of rules, namely permission and
forbidden. Permission means that all traces must satisfy
the constraints; whereas forbidden is the negation of a
permission constraint.

Definition 4. Rule with data correlation. Let α and
β be formulas, and CS be a set of data correlations
based on α and β (CS is defined based on the messages
of α and β). A rule with data correlation is defined as
R(α|β)/CS2 where R ∈ {P: Permission; F : Prohibi-
tion;}. The constraint P(α|β) or F(α|β) (where F(α|β)
= P(NOT α|β)) respectively means that it is permitted
or prohibited to have α true when context β holds within
the conditions of CS.

Example 2. We create a new account on the services
if we successfully logged in within maximal one day ago
and have not yet logged out by now. The rule with data
correlation for this event can be denoted as

P(start(createAccountReq)|Od∈[1,0]D

done(loginRes) ∧done(¬logoutReq)).

In case we want to indicate the messages belonging to
a session by using sessionId, we can denote it as

2CS is an optional part.

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1341

© 2012 ACADEMY PUBLISHER



P(start(createAccountReq)|Od∈[1,0]D

done(loginRes) ∧ done(¬logoutReq))/
{{createAccountReq.sessionId,

loginRes.sessionId, logoutReq.sessionId}}

B. Semantics

A model of rules corresponds to a pair r = (Pr, Cr)
where
• Pr is a total function that associates every integer x

with a propositional formula.
• Cr is a total function that associates every integer
x with a pairs (α, d) where α is a formula and d a
positive integer.

Intuitively, ∀x, p ∈ Pr(x) means that proposition p is
true at time x; while (α, d) ∈ Cr(x) means that context
of formula α holds (is evaluated true) at time t where
• t ∈ [x, x+ d] if we focus on future time.
• t ∈ [x− d, x] if we focus on past time.

IV. VERIFICATION

A. Correctness of a System

The following definition is a formal description for the
correctness of a system. That is, a system is correct if
the execution traces obtained from the IUT satisfy the
properties expressed by the rules, and a system fails if a
rule is timeout or its content is evaluated to be false.

Definition 5. Correctness of a timed trace w.r.t. a
finite set of rules. Let σ = σ0.σ1.σ2... be an observable
timed trace that is collected from a running system
where σi=0,1,2,... = (mi, ti) denotes the message and its
occurrence time, and let Φ = {φ0, φ1, ..., φn} be a finite
set of rules, define σ conforms to Φ if and only if ∀ σi,
@ φj such that φj is timeout at ti or the evaluation of φj
after updating its context is false.

B. Checking Algorithm

In this section, we give the outline for the computation
mechanism used to determine whether a rule holds for
some given input/output sequence of events. Our algo-
rithm verifies message-by-message the conformity with
each rule without storing the message sequence. Here, we
use two global variables, namely currlist and rulelist.
currlist is a list of enabled rules that have been activated,
while rulelist is the list of defined rules that are used
to verify the system. Before introducing the detail of
our algorithm, we present some functions running on the
context of each rule.
• Function correlation. This function will return one

of three values, namely either undefined or true or
false. Value undefined is returned when a message
is not defined in the set of data correlations of rule. If
a message is defined in the set of data correlations of
rule, then this function will query the corresponding
value and return true/false after comparing it with
the value of the previous messages.

• Function contain. This function verifies whether a
message is contained by the context of a rule. It
returns true if a message is found in the context
of a rule and its conditions are validated (if they
are defined). For example, given the context of the
rule msgA(id = 5)&msgB, when message msgA
(with its value id = 4) arrives, the function returns
false because but its condition (i.e., id = 4) does
not match that in the rule even if the message name
is found; whereas when message msgB arrives, this
function returns true.

• Function update. This function updates the value
of context whenever a message arrives and
is found in the context (verified by function
contain). For example, the context of a rule is
loginResponse ∧¬logoutRequest. When message
loginResponse arrives, this context is updated as
true ∧ ¬logoutRequest.

• Function evaluate. This function evaluates whether
or not a context of rule holds (true) by returning
one of three values, namely either true or false
or undefined. The undefined value is returned if
there is at least one message name in the context of
the rule. For instance, context true∧ logoutRequest
is evaluated to be undefined. During the evaluation,
a message with the function NOT 3 will be provi-
sionally assigned as true. For example, at the time
of evaluation, the expression true∧¬logoutRequest
will be evaluated as true.

As foregoing, there are two types of rules, namely
future time and past time rules. To make this more clear,
we will analyze the checking algorithm for each type.

1) Rules with future time:
Given that each rule has two parts (i.e., the supposition

and context parts), a rule will be evaluated as either true
or false or undefined if its supposition has been enabled
and the current message belongs to its context. At any
occurrence time t of message msg, our algorithm checks
the correctness of a rule by two steps.

• Step 1. Examine the list of enabled rules currlist to
evaluate their context if the time constraints are valid.
If the context of a rule is evaluated to be true/false,
then it will be removed from the enabled list currlist
and the corresponding verdict is returned. Otherwise
(i.e., the context is undefined, meaning incomplete
context), we wait for the arrival of the next message
and return true to the verdict.

• Step 2. Examine the list of rules rulelist to acti-
vate them if their supposition contains the current
message msg.

Algorithm 1 shows how to checks the correctness of
a message with a set of future time rules, in which we
assume that the rules are Permission (the Forbidden
rules are the negation of the verdict of the Permission
rules), and do not consider data correlation.

3This function only applies to atomic actions.

1342 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



Algorithm 1: Checking algorithm for future time
rules
Input : timed event: (msg, t)
Output: true/false
verdict←− true

1) For each r ∈ currlist
• IF the time constraints of r at t are validation

– IF msg belongs to the context of r
∗ Update context of r by msg
∗ IF the evaluation of the context of r is
true/false

· Remove r from currlist
· verdict←− verdict∧ true/false

• ELSE: verdict←− false
2) For each r ∈ rulelist

• IF msg belongs to the supposition of r
– Update the activated time for r by t
– Add r into currlist (activated)

2) Rule with past time:
For a rule with past time, the context part will happen

before its supposition, meaning that the context part must
be evaluated to be true/false whenever its supposition
handles the current message. Upon the arrival of any
timed event (msg, t), our algorithm checks correctness
of a rule with past time by two steps.
• Step 1. Examine the list of enabled rules currlist

to check the correctness of current message msg.
If t satisfies their time constraints and msg be-
longs to their supposition, then remove them from
list currlist. At the same time, if their context is
evaluated to be false/undefined, then a false
verdict will be assigned; otherwise, a true verdict
is admitted. On the other hand, if msg does not
belong to their supposition and msg is found in their
context, then we update their context by msg and
wait the next message to evaluate these rules.

• Step 2. Examine the list of rules rulelist and activate
them if their context contains the current message
msg.

Algorithm 2 shows how to checks the correctness of a
message with a set of past time rules under the assumption
that the rules are Permission.

Be combining the above two algorithms, we give the
complete checking algorithm as shown in algorithm 3. It
verifies event-by-event and returns the verdict whenever
a timed event happens. Two functions verify future()
and verify past() called by algorithm 3 are shown in
algorithms 4 & 5.

There is an exception that a fail verdict is returned
if the algorithm finds a rule that is not satisfied and not
applicable to current message. To identify which rule fails
upon an arrival of message, we propose a graphic statistics
to show the current test states.

Example 3. We have an execution of timed trace with

Algorithm 2: Checking algorithm for past time rules
Input : timed event: (msg, t)
Output: true/false
verdict←− true

1) For each r ∈ currlist
• IF the time constraints of r at t are validation

– IF msg belongs to the supposition of r
∗ Remove r from currlist
∗ IF the evaluation of the context of r is
false/undefined

· verdict←− verdict ∧ false
– ELSE IF the context of r contains msg
∗ Update the context of r by msg

• ELSE: verdict←− false
2) For each r ∈ rulelist

• IF msg belongs to the context of r
– Update the activated time for r by t
– Add r into currlist (activated)

Fig. 2. Architecture of the RV4WS tool

the message name and its time occurrence as: (a1,0),
(a2,2), (a1,3), (b2,8), (b1,9), (a2,12), (b3,15), (c1,16), . . . .
The security rules defined to assess the system are:
r1 = P(start(a1)|Od∈[0,10] done(b1) ∨ done(c1)),
r2 = P(start(b2)|Od∈[+∞,0] done(a2) ∧ done(¬c2)).
The table 1 shows the results of the algorithm execu-

tion. In the table, a false verdict is returned at message
(b3, 15) due to the failure of rule r1 at time 15 of which
the last enabled message is (a1, 3).

V. RV4WS TOOL

RV4WS (Runtime Verification for Web services) is a
software tool implemented to verify a web service at
runtime based on a set of constraints defined by the syntax
in Section III. This tool receives a sequence of messages
(message content and its occurrence time) via a TCP/IP
port, then verifies the correctness of this sequence. The
architecture of RV4WS is shown in Figure 2.

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1343

© 2012 ACADEMY PUBLISHER



message enabled rule list verdict add/remove (+/-)
(a1, 0) {r+1 = P(true|Od∈[0,10]done(b1) ∨ done(c1))} true +r1
(a2, 2) {r1 = P(true|Od∈[0,10]done(b1) ∨ done(c1)); true +r2

r+2 = P(start(b2)|Od∈[+∞,0]true ∧ done(¬c2))}
(a1, 3) {r1 = P(true|Od∈[0,10]done(b1) ∨ done(c1));

r2 = P(start(b2)|Od∈[+∞,0] true ∧ done(¬c2)); true +r1
r+1 = P(true|Od∈[0,10]done(b1) ∨ done(c1))}

(b2, 8) {r1 = P(true|Od∈[0,10]done(b1) ∨ done(c1)); true -r2
r1 = P(true|Od∈[0,10]done(b1) ∨ done(c1))}

(b1, 9) {r1 = P(true|Od∈[0,10]done(b1) ∨ done(c1))} true -r1
(a2, 12) {r1 = P(true|Od∈[0,10]done(b1) ∨ done(c1)); true +r2

r+2 = P(start(b2)|Od∈[+∞,0] true ∧ done(¬c2))}
(b3, 15) {r2 = P(start(b2)|Od∈[+∞,0] true ∧ done(¬c2))} false* -r1
(c1, 16) {r2 = P(start(b2)|Od∈[+∞,0] true ∧ done(¬c2))} true

TABLE I
AN EXAMPLE OF RUNTIME VERIFICATION

Algorithm 3: The detail of runtime verification algorithm
Require: currlist is the list of current rules that were enabled,

rulelist is list of rules that are defined to verify the system.

Input : message msg, occurrence time t.
Output : true/false

1 res← true;
2 list← ∅; // a list;

3 // step 1: check in currlist to give a verdict;
4 foreach rule in currlist do
5 // if a rule is enabled many times, we just pick up the first one to consider and use a variable list to

handle this problem;
6 if rule.id /∈ list then
7 if rule is future time then
8 res← res ∧ verify_future(rule, msg, t);

9 else
10 res← res ∧ verify_past(rule, msg, t);

11 list.add(rule.id);

12 // step 2: check in rulelist to enable new rules;
13 foreach rule in rulelist do
14 if msg ∈ rule.supposition() ∧ rule.condition(msg)= true then
15 if rule is future time then
16 r1← rule; // create a new rule;
17 r1.active time← t; // set active time;
18 r1.getDataCorrelationValue(msg);
19 currlist.add(r1); // add into enabled list;

20 // the rule is not processed in the first step (rule.id /∈ list) if it is a past time rule;
21 else if rule.correlation(msg) 6= false ∧ rule.evaluate()! = true ∧ rule.id /∈ list then
22 res← false;

23 // the rule is not processed in first step (rule.id /∈ list) if it is a past time rule;
24 else if rule is past time ∧ rule.id /∈ list ∧ rule.context.contain(msg) then
25 r1← rule; // create a new rule;
26 r1.active time← t; // set active time;
27 r1.update(msg) // update context;
28 r1.getDataCorrelationValue(msg);
29 currlist.add(r1); // add into the list of enabled rules;

30 return res;

1344 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



Algorithm 4: verify future(rule, msg, t)
Require: currlist: is a global variable

Input : rule: a rule, msg: a message, t: occurrence time
Output : true/false

1 result← true;

2 // the time condition is FALSE and the type of rule is Permission;
3 if verifyTime(t, rule.active time) = false ∧ rule.type =′ P ′ then
4 result← false;
5 currlist.remove(rule);

6 else if r.context.contain(msg) ∧ rule.correlation(msg) 6= false then
7 rule.update(msg) // update context;
8 if rule.evaluate() = true then
9 currlist.remove(rule);

10 // the time condition is TRUE and the type of rule is Prohibition;
11 if rule.type =′ F ′ ∧ verifyTime(t, rule.active time) = true then
12 result← false ;

13 else if rule.evaluate()=false then
14 currlist.remove(rule);
15 // type of rule is Permission;
16 if rule.type =′ P ′ then
17 result← false;

18 return result;

Algorithm 5: verify past(rule, msg, t)
Require: currlist: is a global variable

Input : rule: a rule, msg: a message, t: occurrence time
Output : true/false

1 result← true;

2 if msg ∈ rule.supposition() ∧ rule.condition(msg)=true ∧
rule.correlation(msg)6= false then

3 currlist.remove(rule);
4 if rule.evaluate() = true then
5 // the time condition is TRUE and type of rule is Prohibition;
6 if rule.type =′ F ′ ∧ verifyTime(t, rule.active time) = true then
7 result← false;

8 else
9 // the type of rule is Permission;

10 if rule.type =′ P ′ then
11 result← false;

12 else
13 if verifyTime(t, rule.active time) = false then
14 currlist.remove(rule);

15 else if rule.context.contain(msg) ∧ rule.correlation(msg) 6= false then
16 rule.update(msg);

17 return result;

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1345

© 2012 ACADEMY PUBLISHER



Fig. 3. ParseData Interface of RV4WS

The checking engine in the architecture implements the
runtime verification algorithm 3. It allows us to verify
each incoming message without any constraint of order
dependencies, and is applicable to both of on-line and
off-line testing. Moreover, it verifies the validation of
current message without using any storage memory. In
order to use this engine for other systems, we define
an interface IParseData shown in Figure 3 as an
adapter to parse the incoming data for RV4WS if the data
structure of input/output messages from another system is
different from ours. The methods in IParseData are for
gathering information from incoming messages. Method
getMesssageName() returns the message name from its
content, while method queryData() allows us to query a
data value from a field of message content.This interface
is implemented for each application case. For example,
its implementation is class ParseSoapImpl for a web
service application. This engine has been designed as a
java library and is controlled by a component known as
Controller which receives a data stream coming from a
TCP/IP port.

The input format for this tool is an XML file as defined
in Figure 4. A rule with a true or false verdict respec-
tively represents a permission or prohibition. The context
of a rule will be expressed as an expression with three
operators AND, OR and NOT . Each data correlation is
defined as a property with some query expressions from
different SOAP messages. For web service applications,
we have developed a Graphic User Interface (GUI) that
allows us to easily define a set of rules from WSDL files.

The checking algorithm returns a fail verdict if a
rule is found not satisfied, meaning that this rule is
not applicable to the current message. To identify which
rule fails at an arrival of message, we have developed
a Graphic User Interface (GUI) for visualizing some
statistical properties that are calculated at any moment
of testing process. Whenever a rule is activated which
means that its conditions have been satisfied, a statistical
property such as type counter will be used to compute the
percentage of unsatisfying time when applying the rule
to the input data stream. If the rule has been satisfied,
we need to know the time duration from the activating
moment to its context’s holding moment. For each rule,
we have three statistical properties about time, namely
time-min, time-max and time-average.

Now we need to know the values of these statistical
properties such as the failure percentage in proportion
to its duration time or to others properties for a rule

Fig. 4. Rule format example

executing, and also visualize the relationships between
them. If we had used a histogram view and applied it to
each, we would not have been able to get this information
because of the different scales of these properties. We
built a visualized interface which is based on the idea of
parallel coordinates scheme introduced by Inselberg [19].

In information visualization, parallel coordinates view
is used to show the relationships between items in a multi-
dimensional data set. Each axes in this view parallels
to each other and a point in an n-dimensional space is
represented as a polyline with verticals on these axes.
Considering that the list of statistical properties of our
testing process is a multi-dimensional data set, we have
applied this visualization to RV4WS tool and made it
possible to explore the result of our checking algorithms.

As foregoing, we have implemented the checking al-
gorithms inside RV4WS tool which enables a user-tester
to verify these conditions defined in rules. When the
user-tester finds that rule’s properties change over time,
he/she may need a complete view of these traces of
testing process. There are parallel coordinates views cor-
responding to rules. In Figure 5, each scheme of parallel
coordinates represents a time-log of statistical values
as these polylines crossing properties axes. Within each
view, there is a single polyline per time instance. The lines
of current time are always highlighted. This view enables
the tester to quickly tell from the GUI whether or not these
changes of executing rule’s properties are interesting. This
visualization does not have to be refreshed in real-time,
rather, it can be refreshed after a duration.

VI. A CASE STUDY

In this section, we present a real-life case study known
as Product Retriever [23] from WebMov project, and tell
how to apply our RV4WS tool to test Product Retriever.
This case study is a BPEL process that allows users to
automate part of the purchasing process. It enables users
to retrieve one searched product sold by a authorized
provider. The search is limited by specifying a budget
range and one or more keywords characterizing the prod-
uct. The searched product is done through the operation
getProduct and the parameter RequestProductType that is
composed of information about the user (first-name, last-

1346 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



Fig. 5. The main GUI and checking analysis of RV4WS tool

name and department) and searched product (keyword,
max price, category).

The process contains four partner services, namely
AmazonFR, AmazonUK, CurrencyExchange and
PurchaseService. They are developed by Montimage4

and available online5. The overview behavior of the
process is illustrated in Figure 6 and described as follows.

1) Receives a message from the client with the product
and keywords of the characteristics of the product.

2) Contacts the PurchaseService partner to obtain
the list of authorized providers for that product.
In case there is not any authorized provider, an
announcement is be sent to the client by a fault
message response.

3) Depending on the authorized provider result, the
process contacts either the AmazonFR or Ama-
zonUK service to search a product that matches the
price limit by Euro and the keywords.

4) Sends back to the client the product information
and the name of the provider where the product was
found, and the link from which it can be ordered.
If a matching product is not found, a response with
unsatisfied product will be sent back to the client.

5) After receiving the product information, the client
can send an authorization request to confirm the
purchase of the product within a certain duration of
time (e.g., one minute).

The Product Retriever service is built with Netbeans
6.5.1 and deployed by a Sun-Bpel-engine within a Glass-
fish 2.1 web server.

4http://www.montimage.com/
5http://80.14.167.59:11404/servicename

Fig. 6. ProductRetriever - BPMN specification

A. Test Product Retriever by RV4WS tool
In this section, we present some preliminary results

from our first experiment on the case study of Product

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1347

© 2012 ACADEMY PUBLISHER



Fig. 7. Testbed architecture

Retriever using RV4WS tool. SoapUI [24] is a well known
test tool for web services. We use it in our experiment
as a client of Product Retriever service, sending requests
to activate the web service (i.e., BPEL process). To
collect the communication messages between the Product
Retriever service and its partners (including SoapUI),
we have developed a proxy that allows us to forward
a message to a specified destination. This allows us to
receive and forward from/to some sources and destina-
tions. Each connection is handled on a different port.
Afterwards, this message and its time occurrence are
also sent to our RV4WS tool, to check its correctness.
SoapUI and Product Retriever service were configured
to make connections through the proxy. The connection
information (service name) is also sent to RV4WS to help
this tool easily identify which message belongs to which
service. Figure 7 shows our testbed architecture.

1) Rule definition: We can define many test purposes
to verify the interaction order with partner services. Here
we introduce three test purposes:
• During the execution of service, if the client receives

a ProductFault message, then the Purchase ser-
vice must have already returned a ProviderFault
message. The time constraint for this test purpose is
less important, so we can define the maximal time
interval between two messages as 10 seconds.

P(start(ProductFault)|Od∈[10,0]s

done(ProviderFault))

• If the Purchase service introduces the provider ser-
vice AmazonUK, then the orchestration must contact
the CurrencyExchange service within 10 seconds.
P(start(getProviderResponse[provider =

AmazonUK])|Od∈[0,10]s

done(getCurrencyRateRequest))

• When the client sends an authorization request mes-
sage to confirm the purchase of a product, then it

must have received a product response message with
field EmptyResponseProduct being null one minute
ago. In this rule, the data correlation is used by
userId.
P(start(getAuthorizationRequest)|Od∈[1,0]m

done(getProductResponse
[EmptyResponseProduct = null]))/
(getAuthorizationRequest.userid,
getProductResponse.userid)

2) Checking results: Figure 8 illustrates the checking
analysis of the Product Retriever, which indicates
• The fault messages that are defined in rule 1 do not

occur (see the percentage in fail column of rule 1).
• Message getProviderResponse with provider =
AmazonUK appeared three times (see value in
enabled count column of rule 2), however there are
two times where the tool did not found message
getCurrencyRateRequest within 10 seconds from the
occurrence time of message getProviderResponse. In
Figure 9, we found the interval time between them
is 26 seconds for the first fail case and 42 seconds
for the second fail case. Then the tool produces the
fail verdicts (the fail column of rule 2).

• Message getAuthorisationRequest appeared two
times (see value on enabled count column of rule
3). Before that, message getProductResponse also
appeared with field EmptyResponseProduct being
empty and the interval time between them less than
one minute.

In Figure 9, a false verdict is returned when the
itemSearchResponse arrives because at the occurrence
time of itemSearchResponse, the time constraint of rule 2
(i.e., 10 seconds) is not satisfied.

VII. CONCLUSIONS

This paper presents a passive test method for systems
in particular for web services with (1) the definition of a
language including logic expressions for constraints and
(2) a verification method and a tool implementing the
verification algorithm. This tool has been integrated in
the WebMov tool chains. To verify the practicability of
the proposed method on real systems, a real case study
which is a web service composition known as Product
Retriever has been extensively studied.

Extensions planned for this research include (1) a
system for calculating the test coverage (corresponding to
real need of the implementor of the web services), (2) an
extension to test more complex distributed systems such
as cloud computing architecture by integrating a set of
distributed observers with recoveries of all the traces that
need to be synchronized.

ACKNOWLEDGMENT

We would like to thank Ms. Nguyen Thi Kim Dung, a
master student from PUF (Pole Universitaire Français) in
Ho Chi Minh city, for helping us develop the RV4WS tool
during her internship in LaBRI. We also thank Montimage
for their case study Product Retriever.

1348 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER



Fig. 8. Checking analysis of Product Retriever

Fig. 9. A part of collected trace of Product Retriever

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1349

© 2012 ACADEMY PUBLISHER



REFERENCES

[1] C. Andrés, Mercedes G. Merayo, and M, Núnez, “Formal cor-
rectness of a passive testing approach for timed systems”, IEEE
International Conference on Software Testing, Verification, and
Validation Workshops, pp. 67–76, Apr 01–04, 2009, Denver, Col-
orado, USA.

[2] C. Andrés, Mercedes G. Merayo, M. Núnez, “Passive Testing of
Stochastic Timed Systems”, International Conference on Software
Testing Verification and Validation, pp. 71–80, Apr 01-04, 2009,
Denver, Colorado, USA.

[3] C. Andrés, Mercedes G. Merayo, M. Núnez, “Passive Testing of
Timed Systems”, International Symposium on Automated Technol-
ogy for Verification and Analysis, pp. 418–427, vol. 5311, LNCS,
2008.

[4] L. Baresi, S. Guinea,M. Pistore, and M. Trainotti, “Dynamo +
Astro: An integrated Approach for BPEL Monitoring”, 2009 IEEE
International Conference on Web Service, pp. 230–237, July 6–10,
2009, Los Angeles, CA, USA.

[5] L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore, “An
Integrated Approach for the Run-Time Monitoring of BPEL Or-
chestrations”, The 1st European Conference on Towards a Service-
Based Internet, pp. 1–12, 2008, Madrid, Spain.

[6] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-
BPEL Processes”, The Third International Conference on Service-
Oriented Computing, pp. 269–282, Dec 12–15, 2005, Amsterdam,
The Netherlands.

[7] A. Benharref, R. Dssouli, Mohamed A. Serhani, A. En-Nouaary,
and R. Glitho, “New Approach for EFSM-Based Passive Testing of
Web Services”, Testing of Software and Communicating Systems,
pp. 13–27, vol. 4581, 2007.

[8] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-
Based Runtime Verification”, 5th International Conference on
Verification, Model Checking, and Abstract Interpretation, Jan 11–
13, 2004, Venice, Italy.

[9] E. Bayse, A. Cavalli, M. Nunez, and F. Zaidi, “A passive testing
approach based on invariants: application to the WAP”, Computer
Networks, 48:247–266, 2005.

[10] T.-D. Cao, T.-T. Phan-Quang, P. Felix, and R. Castanet, “Auto-
mated Runtime Verification for Web services”, IEEE International
Conference on Web services, pp. 76–82, July 5–10, 2010, Miami,
FL, USA.

[11] A. Cavalli, Edgardo Montes De Oca, W. Mallouli, and M. Lallali,
“Two Complementary Tools for the Formal Testing of Distributed
Systems with Time Constraints”, 12th IEEE International Sym-
posium on Distributed Simulation and Real Time Applications,
Canada, Oct 27–29, 2008.

[12] A. Cavalli, C. Gervy, and S. Prokopenko, “New approaches for
passive testing using an extended finite state machine specifica-
tion”, Infomation and Software technology, 45(12):837–852, 2003.

[13] A. Cavalli, A. Benameur, W. Mallouli, and K. Li, “A Passive
Testing Approach for Security Checking and its Pratical Usage
for Web Services Monitoring”, NOTERE 2009, Montreal, Canada,
2009.

[14] F. Cuppens, N. Cuppens-Boulahia, and T. Sans, “Nomad: a se-
curity model with non atomic actions and deadlines”, 18th IEEE
Workshop on Computer Security Foundations, pp. 186–196, June
20–22, 2005, Aix-en-Provence, France.

[15] S. Halle, R. Villemaire, and O. Cherkaoui, “Specifying and
Validating Data-Aware Temporal Web Service Properties” IEEE
Transactions on Software Engineering, 35(5):669-683, 2009.

[16] W. Mallouli, F. Bessayah, A. Cavalli, and A. Benameur, “Security
Rules Specification and analysis Based on Passive Testing” IEEE
Global Telecommunications Conference, 2008, pp. 1–6, Nov 30–
Dec 4, 2008, New Orleans, LA, USA.

[17] D Dranidis, E. Ramollari, and D. Kourtesis, “Run-time Verification
of Behavioural Conformance for Conversational Web Services”,
2009 Seventh IEEE European Conference on Web Services, pp.
139–147, Nov 9–11, 2009, Eindhoven, The Netherlands.

[18] A . Goldberg and K. Havelund, “Automated Runtime Verification
with Eagle”, Verification and Validation of Enterprise Information
Systems, May 24, 2005, Miami, USA.

[19] Alfred Inselberg, “The plane with parallel coordinates”, The Visual
Computer, 1(2):69–91, 1985.

[20] Z. Li, Y. Jin, and J. Han, “A Runtime Monitoring and Validation
Framework for Web Service Interactions”, Proceedings of the
Australian Software Engineering Conference, pp. 70–79, Apr 18–
21, 2006, Sydney, Australia.

[21] Z. Li, J. Han, and Y. Jin, “Pattern-Based Specification and Val-
idation of Web Services Interaction Properties”, In Proceedings
of the 3rd International Conference on Service Oriented Comput-
ing (ICSOC’05), pp. 73–86, Dec 12–15, 2005, Amsterdam, The
Netherlands.

[22] M. Tabourier and A. Cavalli, “Passive testing and application to
the GSM-MAP protocol”, Information ans software technology,
41:813–821, 1999.

[23] W. P. Consortium, “D5.1 webmov case studies: definition of
functional requirements and test purposes”, WebMov, Tech. Rep.
WEBMOV-FC-D5.1/T5.1, 2009.

[24] Eviware, http://www.eviware.com/.

1350 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER


