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Abstract—Domain-Specific Modeling has been widely and 
successfully used in software system modeling of specific 
domains. In spite of its general important, due to its 
informal definition, Domain-Specific Metamodeling 
Language (DSMML) cannot strictly represent its structural 
semantics, so its properties such as consistency cannot be 
systematically verified. In response, the paper proposes a 
formal representation of the structural semantics of 
DSMML named XMML based on first-order logic. Firstl y, 
XMML is introduced, secondly, we illustrate our approach 
by formalization of attachment relationship and refinement 
relationship and typed constraints of XMML based on first-
order logic, based on this, the approach of consistency 
verification of XMML itself and metamodels built based on 
XMML is presented, finally, the formalization automatic 
mapping engine for metamodels is introduced to show the 
application of formalization of XMML.  
 
Index Terms—Domain-Specific Metamodeling Language, 
structural semantics, attachment, refinement, consistency 
verification 
 

I.  INTRODUCTION 

Compared with the uniformity and standardization of 
MDA [1], DSM [2] focuses on simplicity, practicability 
and flexibility. As a metamodeling language for DSM, 
DSMML plays an important role in system modeling of 
specific areas. 

DSMML is a metalanguage used to build Domain-
Specific Modeling Languages (DSMLs); this process that 
we use DSMML to build domain metamodels indicating 
the structural semantics of DSMLs is called 
metamodeling. Correspondingly, DSML is modeling 
language used to build domain application models; this 
process that we use DSML to build domain application 
models is called application modeling. 

Semantics of DSMML can be grouped into structural 
semantics [3] and behavioral semantics. The former 
concerns static semantic constraints of relationship 
between modeling elements, focusing on the static 

structural properties; the latter concerns execution 
semantics of domain metamodels, focusing on the 
dynamic behavior of the metamodels. Although structural 
semantics is very important, research in structural 
semantics is not as extensive and deep as behavioral 
semantics’, so this paper only studies structural semantics 
of DSMML. 

There are several problems that have not been solved 
well for DSMML, which include precise formal 
description of its semantics, method of verification of 
properties of domain metamodels based on formalization 
and automatic translation from metamodels to 
corresponding formal semantic domain. 

The paper proposes a formal representation of the 
structural semantics of DSMML named XMML designed 
by us based on first-order logic, based on this, the 
approach of consistency verification of XMML and 
metamodels is presented, and then design and 
implementation of corresponding formalization automatic 
mapping engine for metamodels is introduced to show the 
application of formalization of XMML. 

II.   RELATED WORKS 

Within the domain-specific language community, 
graph-theoretic formalisms have received the most 
research attention [4]. The majority of work focuses on 
model transformations based on graph, but analysis and 
validation of properties of models has not received the 
same attention. For example, the model transformation 
tool VIATRA [5] supports executable Horn logic to 
specify transformations, but does not focus on restricting 
expressiveness for the purpose of analysis.  

Because UML includes many diagrams including 
metamodeling, state machines, activities, sequence charts 
and so on, approaches for formalizing UML must tackle 
the temporal nature of its various behavioral semantics, 
necessitating more expressive formal methods. All these 
approaches must make trade-offs between expressiveness 
and the degree of automated analysis. For example, Z [6] 
or B [7] formalizations of UML could be a vehicle for 
studying rich syntax, but automated analysis and 
verification is less likely to be found. 
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Figure 1.  Layered architecture of XMML 

There are much typical work on formalization of 
modeling language, such as Andre’s formalization and 
verification of UML class diagram based on ADT [8], 
Kaneiwa’s formalization of UML class diagram based on 
first-order logic [9], Paige’s formalization of BON based 
on PVS [10] and Jackson.E.K’s formalization of DSML 
based on Horn logic [11] and so on. Without considering 
formalization of metamodeling language and automatic 
translation from metamodels to the corresponding formal 
semantic domain, these approaches have lower level of 
automated analysis and verification. 

III.   AN INTRODUCTION TO XMML 

We begin by introducing layered architecture of 
XMML and then an overview of abstract syntax of 
XMML is showed. 

A.  Layered Architecture of XMML 

Similar to structure of UML, XMML is divided into 
the following four layers: metamodeling language layer 
used to define different DSMLs where XMML is located, 
DSML layer used to build concrete domain application 
models, domain application model layer used to make 
corresponding source codes of target system by code 
generator, and target application system layer [12]. 
Layered Architecture of XMML is shown in Figure 1. 

In order to distinguish between model elements of 
different levels of abstraction, we require that element of 
XMML is called metamodeling element and element of 
DSML built based on metamodeling is called domain 
modeling element and domain object built based on 
domain application modeling is called domain model 
element. Among them, metamodeling element is also 
called meta-type and type of model element is name of 
modeling element and type of modeling element is name 
of meta-type. 

B.  Abstract Syntax of XMML 

We extend and refine abstract syntax of XMML to 
meet the needs of formalization and consistency 
verification. Metamodeling element of improved XMML 
is divided into two types: entity type and association type, 
the former is used to describe modeling entities in domain 
metamodel and the latter concerns relationships between 
modeling entities.  

Metamodeling element of entity type contains four 
types such as model type, entity type, reference entity 
type and relationship type; metamodeling element of 
association type includes the following six types: role 
assignment association used to establish the  connection 
between the entity type and relationship type, model 
containment relationship used to build the relationship 
that model contain all entity type modeling elements, 
attachment relationship used to describe close 
containment relationship between entity type modeling 
elements, entity  containment relationship used to 
describe loose containment relationship between entity 
type modeling elements, reference relationship used to 
build reference between reference entity and referenced 
entity, and refinement relationship used to establish 
correspondence between the entity and its refined model 
for multi-layer modeling and model refinement. The 
structural semantics of XMML will be formalized based 
on the above ten types of metamodeling elements. 

IV.   FORMALIZATION OF XMML BASED ON FIRST-ORDER 

LOGIC 

We give a formal definition of XMML, based on this, 
attachment relationship, refinement relationship and 
typed constraints of XMML is formalized based on first-
order logic to show our approach for formalizing the 
structural semantics of XMML. 

A.  A Formal Definition of XMML 

XMML can be regarded as composition of the 
following five parts: a set of predicate symbols SXMML 
denoting corresponding metamodeling elements, an 
extended set of predicate symbols C

X M M LS used to derive 

properties, a set of closed first-order logic formulas 

XMMLF denoting constraints over all metamodels built 

based on XMML, a set of constants OXMML denoting 
public properties, a set of terms symbols 

XMMLΩ  denoting 

modeling elements constituting metamodel. Among them, 
C

X M M LS  and OXMML may be empty, 
XMMLF  is defined using 

first-order logic implication formulas based on SXMML, 
C

X M M LS and OXMML. The definition concerns formal 

characterization of structural properties of XMML, 
focusing on description of constraint relationship between 
modeling elements. So XMML is defined as following. 
Definition 1 (XMML ). DSMML named XMML LXMML 
is a 5-tuple of the 
form , , , ,C

XM M L XM M L XM M L XM M L X M M LOΩ〈 〉S S F,  consisting of 

SXMML, C
XMMLS ,OXMML, XMMLF  and 

XMMLΩ . 

SXMML and C
X M M LS as a group of predicate symbols, 

OXMML as a group of constant symbols, and 
XMMLF as a 

group of constraint axioms are all added to first-order 
logic formalized system called predicate calculus Q 
[13][14] to form formalized system of XMML called 
TXMML based on predicate calculus Q. The powerset of the 
term algebra  =  ( ))

XM M LX M M L XM M LT( ΣSM P over SXMML 

generated by ∑XMML=
X M M LΩ ∪OXMML is considered as a 
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Figure 2.   An example of metamodel                     Figure 3.  Attachment 

     

Figure 4.  Self-attached                              Figure 5.   Attachment loop 

               

Figure 6.  Attachment path            Figure 7.  An example of attachment 

group of interpretations of TXMML to determine whether 
any metamodel  XMML XMML∈Mm is well-formed for 

XMML. Once SXMML, C
X M M LS , OXMML and 

XMMLF  are 

derived, we finish formalization of LXMML based on first-
order logic. 

B.  Formalization of Meta-type of Entity Type 

For each Model, a unary predicate ( )Model x is defined 

to denote meta-type of modeling element x is Model, 
i.e. ( ) XMMLModel x ∈S . Model can contain other two 

modeling elements of entity type. For each Entity, a unary 
predicate ( )Entity x is defined to denote meta-type of 

modeling element x is Entity, i.e. ( ) XMMLEntity x ∈S . 

Entity can be contained in model by model containment 
relationship or point to refined model by refinement 
relationship or establish association with other entity by 
role assignment association or form containment with 
other entity by attachment relationship or entity  
containment relationship. For each Reference Entity, a 
unary predicate ( )RefEntity x is defined to denote meta-

type of modeling element x is Reference Entity, i.e. 
( ) XMMLRefEntity x ∈S . Reference Entity can point to 

referenced entity by reference relationship. Similarly, for 
each Relationship, a unary predicatee ( )R lationship x  is 

defined to denote meta-type of modeling element x is 
Relationship, i.e. ( ) XMMLRelationship x ∈S . Relationship can 

be used to establish explicit association between 
modeling element of entity type combined with role 
assignment association. 

C.  Formalization of Attachment Relationship 

For each attachment relationship (denoted Attachment) 
from modeling element of entity type x to y, a binary 
predicate Attachment(x,y) is defined to represent that 
element x is attached to element y, i.e. 

( , ) XMMLAttachment x y ∈S . In the metamodel shown in 

Figure 2, modeling element of entity type Interface is 
attached to Component, so 
Attachment(Interface,Component) is a legal binary 
predicate symbol of attachment meta-type. As can be 
seen from Figure 3, there exist the following several 
constraint relationships. 
1) Type Constraint: Attachment edge must start from 
and also end with modeling element of entity type. This 
can be expressed as an implication formula named 
Attach1 in the form 
of , . ( , ) ( ) ( )x y Attachment x y Entity x Entity y∀ → ∧ . 

2) Self-attached Constraint: Due to its close containment, 
the same modeling element of entity type cannot be 
attached to itself. For example, self-attached of Interface 
in Figure 4 is not allowed. We can express this as a 
predicate formula named Attach2 in the form 
of . ( , )x Attachment x x∀ ¬ . 

3) Attachment Loop: Attachment loop formed between 
two modeling elements of entity type is not allowed 
because it expresses a contradictory and meaningless 
modeling intent. For example, attachment loop between 

Interface and Component in Figure 5 is illegal. This can 
be expressed as an implication formula named Attach3 in 
the form of , . ( , ) ( , )x y Attachment x y Attachment y x∀ → ¬ . 

4) Attachment Path: To maintain well-formedness and 
reduce the complexity, we require that only one layer of 
attachment path between two entities is legal and two or 
more layers of attachment path formed between entities 
are prohibited. For example, two layers of attachment 
path formed by Interface attached to Component and 
Component attached to Subsystem in Figure 6 is not 
allowed. Assume that two layers of attachment path 
formed by x attached to y and y attached to z is denoted as 
AttaPath(x,y,z), i.e. ( , , ) C

XMMLAttaPath x y z ∈S , 

AttaPath(x,y,z) can be defined by Attachment as an 
implication formula in the form of 

, , . ( , ) ( , )

( ) ( ) ( ) ( , , )

x y z Attachment x y Attachment y z

x y y z x z AttaPath x y z

∀ ∧
∧ ≠ ∧ ≠ ∧ ≠ →

, 

so we can express this constraint as a predicate formula 
named Attach4 in the form of , , . ( , , )x y z AttaPath x y z∀ ¬ . 

According to the Attach1, both ends connected by 
attachment edge are all modeling elements of entity type, 
thus, from the perspective the semantics of first-order 
logic, we can prove the semantic non-implication from 
Attach1 to Attach2, Attach3 and Attach4 by finding a 
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counter-example interpretation that makes Attach1 true 
and makes Attach2, Attach3 and Attach4 false. 
Theorem 1 (Semantic non-implication of attachment 
constraint). Formula Attach1 cannot semantically entail 
formula Attach2, Attach3 and Attach4, i.e. Attach1|≠ 
Attach2, Attach1|≠ Attach3 and Attach1|≠ Attach4. 
Proof. As a semantic interpretation of formula set 
composed of Attach1～Attach4, the metamodel shown in 
Figure 4 can be expressed as a set of predicate statements 
composed of Attachment(Interface,Interface) and 
Entity(Interface) that makes Attach1 true and makes 
Attach2 false due to self-attached of Interface, so we can 
derive Attach1|≠ Attach2. Similarly, the metamodel 
shown in Figure 5 can be expressed as a set of predicate 
statements composed of Attachment(Interface,Component) 
and Attachment(Component,Interface) that makes 
Attach1 true and makes Attach3 false due to attachment 
loop formed between Interface and Componennt, thus, 
Attach1|≠ Attach3 can be derived. In addition, 
Attachment(Interface,Component) and 
Attachment(Component,Subsystem) corresponding to the 
metamodel in Figure 6 all satisfy Attach1 but make 
Attach4 false due to two layers of attachment path formed 
among Interface, Componennt and Subsystem, therefore, 
we can derive Attach1|≠ Attach4. 

Are there grammatical inference relationships among 
Attach2, Attach3 and Attach4? We find that Attach2 can 
be derived from Attach3 based on natural deduction rules 
for quantifiers (NDRQ) which include premise 
introduction rule (denoted P), separation rule (denoted S) , 
return false rule (denoted N) and quantifier rule (denoted 
Q) and so on [14]. Therefore, we can derive the following 
theorem. 
Theorem 2 (Grammatical inference relationship of 
attachment constraint). Formula Attach2 can be derived 
from Formula Attach3, i.e.  

, . ( , ) ( , ) . ( , )x y Attachment x y Attachment y x x Attachment x x∀ →¬ ∀ ¬ ┬ 

      Proof. (Derivation is omitted). 
Because of Attach3├ Attach2, after Attach2 is 

removed, there are only Attach1, Attach3 and Attach4 
among which there are 6 pairs of semantic non-
implication relations. Similar to theorem 1, we can also 
derive Attach3|≠ Attach4, Attach3|≠ Attach1, Attach4|≠ 
Attach1 and Attach4|≠ Attach3, so it is obvious that 
Attach1, Attach3 and Attach4 are independent on 
semantics. Therefore, the formula set of attachment 
constraints only contains Attach1, Attach3 and Attach4. 
Theorem 3 (Semantic consistency of formula set). The 
formula set comprised of Attach1, Attach3 and Attach4 is 
semantic consistent. 
Proof. As a semantic interpretation of formula set 
composed of Attach1, Attach3 and Attach4, the 
metamodel shown in Figure 7 can be expressed as a set of 
predicate statements composed of 
Attachment(Interface,Component) and 
Attachment(Interface,Connection). Because there do not 
exist attachment loops and two or more layers of 
attachment paths in the metamodel, both of them all 
satisfy Attach1, Attach3 and Attach4. Therefore, the 
metamodel shown in Figure 7 can be considered as a 

semantic interpretation that satisfies the formula set, or 
the formula set is satisfiable. By related definitions of 
first-order logic, theorem is proved. 

According to related theorems of first-order logic [14], 
the formula set is grammatical consistent, thus, it is 
consistent. So the formula subset of attachment 
constraints named AttachmentSet is comprised of Attach1, 
Attach3 and Attach4, i.e. AttachmentSet= {Attach1, 
Attach3, Attach4}. 

D.  Formalization of Refinement Relationship 

For each refinement relationship (denoted Refinement) 
from modeling element of entity type x to model type y, a 
binary predicate Refinement(x,y) is defined to represent 
that element x points to element y by refinement edge, i.e. 

( , ) XMMLRefinement x y ∈S . In the metamodel shown in 

Figure 8, the edge Refinement(Component, 
SoftwareArchitecture) built by modeling element of 
entity type Component pointing to its refined model 
SoftwareArchitecture is a legal binary predicate symbol 
of refinement meta-type. As can be seen from Figure 9, 
there exist the following several constraint rules.  
1) Type Constraint: refinement edge must start from 
modeling element of entity type and end with modeling 
element of model type. This can be expressed as an 
implication formula named Refine1 in the form 
of , . ( , ) ( ) ( )x y Refinement x y Entity x Model y∀ → ∧ . 

2) Uniqueness Constraint: the same modeling element 
of entity type cannot point to two or more refined models, 
otherwise ambiguity will be produced. For example, the 
metamodel in Figure 13 is illegal because the modeling 
element Component points to two different refined 
models SoftwareArchitectureA and 
SoftwareArchitectureB. We can express this as an 
implication formula named Refine2 in the form of 

, , . ( , ) ( , ) ( )x y z Refinement x y Refinement x z y z∀ ∧ → = . 

3) Identity Constraint: the refined model that the 
modeling element of entity type points to and the model 
in which it is contained are identical to build multi-layer 
model structure using recursive relationship. For example, 
in Figure 14, the refined model SoftwareArchitectureB of 
Component and the model SoftwareArchitectureA 
containing it are different, so multi-layer model structure 
cannot be built based on it. This can be expressed as an 
implication formula named Refine3 in the form of 

, , . ( , ) ( , ) ( )x y z Refinement x y Containment x z y z∀ ∧ → =
. In formula Refine3, ( , )Containment x y  is a binary 

predicate denoting model containment relationship in 
which modeling element of entity type x is contained in 
model type y. 
4) Self-refinement Constraint: the same modeling 
element of entity type cannot point to itself by refinement 
edge. For example, self-refinement of Component in 
Figure 10 is not allowed. We can express this as a 
predicate formula named Refine4 in the form 
of . ( , )x Refinement x x∀ ¬ . 

5) Refinement Loop Constraint: the refinement loop 
formed between two modeling elements is not allowed 
because it expresses a contradictory and meaningless 
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Figure 8.  An example of metamodel 

   
Figure 9.   Refinement                                  Figure 10.   Self- refinement 

                

Figure 11.  Refinement loop        Figure 12.  Refinement path of two layers 

 

Figure 13.  Refinement ambiguity  Figure 14.Refined and containing model 

 

Figure 15.  An example of violating Refine1 

 

Figure 16.  Refine3 and Con5 deriving Refine2 

modeling intent. For example, refinement loop formed by 
Component and SoftwareArchitecture pointing to each 
other in Figure 11 is illegal. This can be expressed as an 
implication formula named Refine5 in the form 
of , . ( , ) ( ) ( , )x y Refinement x y x y Refinement y x∀ ∧ ≠ → ¬ . 

6) Refinement Path Constraint: To maintain well-
formedness and reduce the complexity, we require that 
only one layer of refinement path between two entities is 
legal and two or more layers of refinement path are 
prohibited. For example, two layers of refinement path 
formed by ComponentA pointing to SoftwareArchitecture 
and SoftwareArchitecture pointing to ComponentB in 
Figure 12 is not allowed. Assume that two layers of 
refinement path formed by x pointing to y and y pointing 
to z is denoted as ( , , )RefinePath x y z , i.e. 

( , , ) C
XMMLRefinePath x y z ∈S , ( , , )RefinePath x y z  can be defined 

by refinement as an implication formula in the form of 
, , . ( , ) ( , )

( ) ( ) ( ) ( , , )

x y z Refinement x y Refinement y z

x y y z x z RefinePath x y z

∀ ∧
∧ ≠ ∧ ≠ ∧ ≠ →

, so 

we can express this constraint as a predicate formula 
named Refine6 in the form of 

, , . ( , , )x y z RefinePath x y z∀ ¬ . 

Any modeling element belongs to one and only one 
meta-type, on the other hand, according to the Refine1, 
both ends connected by refinement edge belong to 
different meta-type, therefore from the perspective the 
semantics of first-order logic, we can prove the semantic 
implication from Refine1 to Refine4, Refine5 and Refine6. 
Theorem 4 (Semantic implication of refinement 
constraint). Formula Refine1 can semantically entail 
formula Refine4, Refine5 and Refine6, i.e. 
Refine1╞Refine4, Refine1╞Refine5 and Refine1╞Refine6. 
Proof. Any semantic interpretation that makes Refine1 
true prompts refinement to satisfy the relationship that 
both ends of refinement belong to different meta-type in 
which one end is modeling element of entity type and the 
other end is modeling element of model type; obviously, 
the relationship excludes the possibility of self-
refinement of the same modeling element and also makes 
it impossible to form refinement loop and two or more 
layers of refinement path, thus, this interpretation 
certainly makes Refine4, Refine5 and Refine6 true, 
according to related definition of semantic implication of 
first-order logic, theorem is proved. 

Now formula set of refinement constraints contains 
only Refine1, Refine2 and Refine3, are there semantic 
implication relationships among them? We find that 
Refine2 can be derived by identity of refinement named 
Refine3 and uniqueness of the models in which the same 
modeling element of entity type is contained named cont5. 
In Figure 16, the modeling element x points to two 
different refined models R1 and R2 by two different 
refinement edges and the model M that can contain x is 
unique by cont5, thus by Refine3 R1 and M are the same 
modeling element of model type, i.e. R1=M, similarly, R2 
and M are the same modeling element of model type, i.e. 
R2=M, so R1= R2. 

Only Refine1 and Refine3 left in the set and among 
them there are two kinds of semantic implication 
relationship. Although syntax derivation between them 
cannot be directly proved, we can explain the semantic 
non-implication from Refine1 to Refine3 by finding a 
counter-example interpretation that makes Refine1 true 
and makes Refine3 false from the perspective the 
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semantics of first-order logic. Similarly, the semantic 
non-implication from Refine3 to Refine1 can also be 
explained. 
Theorem 5 (Semantic non-implication of refinement 
constraint). Formula Refine1 cannot semantically entail 
formula Refine3, otherwise the same, i.e. 
Refine1|≠Refine3 and Refine3|≠Refine1. 
Proof. As a semantic interpretation of formula set 
composed of Refine1 and Refine3, the metamodel shown 
in Figure 14 can be expressed as a set of predicate 
statements composed of 
Refinement(Component,SoftwareArchitectureB) and 
Containment(Component,SoftwareArchitectureA) that 
makes Refine1 true and makes Refine3 false due to 
violation of identity constraint, so we can derive 
Refine1|≠Refine3. Similarly, the metamodel shown in 
Figure 15 can be expressed as a set of predicate 
statements composed of 
Refinement(ComponentA,ComponentB) and 
Containment(ComponentA,ComponentB) that makes 
Refine3 true and makes Refine1 false due to violation of 
type constraint, so Refine3|≠Refine1 can be derived. 
Theorem 6 (Semantic consistency of formula set). The 
formula set comprised of Refine1 and Refine3 is semantic 
consistent. 
Proof. As a semantic interpretation of formula set 
composed of Refine1 and Refine3, the metamodel shown 
in Figure 8 can be expressed as a set of predicate 
statements composed of 
Refinement(Component,SoftwareArchitecture) and 
Containment(Component,SoftwareArchitecture). Because 
Compoment belongs to entity type and 
SoftwareArchitecture is an element of model type and the 
refined model that Compoment points to and the model in 
which it is contained are same SoftwareArchitecture, both 
of them all satisfy Refine1 and Refine3. Therefore, the 
metamodel shown in Figure 8 can be considered as a 
semantic interpretation that satisfies the formula set, or 
the formula set is satisfiable. By related definitions of 
first-order logic, theorem is proved. 

According to related theorems of first-order logic [12], 
the formula set is grammatical consistent, thus, it is 
consistent. So the formula subset of refinement 
constraints named RefinementSet is comprised of Refine1 
and Refine3, i.e.  RefinementSet = {Refine1, Refine3}. 

E.  Formalization of Typed Constraints 

XMML is one of typed metamodeling languages, so 
the metamodels built based XMML are well-typed. On 
the basis of the relevant literatures [15], we characterize 
typed constraints of XMML from completeness and 
uniqueness of classification of modeling elements of 
entity type. 
1) Completeness of Classification 

Four types of meta-types of entity type are defined in 
XMML to build metamodels, so their classification is 
also established. Such a classification must be complete 
in the sense that every modeling element of entity type 
must be an instance of one meta-type of entity type; 
otherwise the metamodel will become meaningless 

because it contains elements not belonging to any meta-
type of entity type. We can express this as a predicate 
formula named Type1 in the form 
of . ( ) ( ) e ( ) ( )x Model x Entity x R lationship x RefEntity x∀ ∨ ∨ ∨ . 

Type1 denotes that any modeling element of entity type 
must belong to one of the above four meta-types. 
2) Uniqueness of Classification 

The classification of modeling elements of entity type 
must be unique because allowing a modeling element to 
belong to more than one meta-type leads to ambiguous 
interpretation of the element, so we require that every 
modeling element belongs to one and only one meta-type. 
This can be expressed as a group of implication formulas 
named Type2 in the form of 

. ( ) ( )

. ( ) ( )

. ( ) ( )

. ( ) ( )

. ( ) ( )

. ( ) ( )

x Model x Entity x

x Model x Relationship x

x Model x RefEntity x

x Entity x Relationship x

x Entity x RefEntity x

x Relationship x RefEntity x

∀ → ¬
∀ → ¬
∀ → ¬
∀ → ¬
∀ → ¬
∀ → ¬

. 

Number of formulas numtype2 in Type2 is combination 
number produced by taking any two elements from six 
elements, i.e. numtype2=4×(4-1)×0.5=6. So the formula 
subset of typed constraints named TypedSet is comprised 
of Type1 and Type2, i.e.  TypedSet = {Type1, Type2}. 

TypedSet makes it explicit that a metamodel as an 
instance of XMML must have its modeling elements of 
entity type completely and uniquely classified by four 
types of meta-types. This reflects strict meta-modeling 
principle proposed in the literature [15]. 

F.  Formalization of Other Meta-type of Association Type 

By formalizing other meta-types of association type in 
the same way, we can establish formula subset of role 
assignment association constraints named 
RoleAssginRelaSet, formula subset of model containment 
constraints named ContainmentSet, formula subset of 
entity  containment constraints named EntiContSet and 
formula subset of reference constraints named 
ReferenceSet one by one. Based on this, formula subset of 
exclusion constraints named ExclusionSet is created to 
represent exclusive constraints among all meta-types. 
Therefore, set of constraint axioms of TXMML named 

XMMLF can be considered as union of all of the above 

subsets, i.e.  

XMMLF = ContainmentSet∪AttachmentSet∪EntiContSet∪ 

RoleAssginRelaSet∪RefinementSet∪ 
ReferenceSet∪ExclusionSet∪TypedSet. 

V.   CONSISTENCY AND VERIFICATION OF XMML  AND ITS 

METAMODELS 

Formalized system of XMML called TXMML based on 
predicate calculus Q is established by formalization of all 
meta-types of XMML. The semantic interpretation of 
TXMML is a metamodel built based on XMML, universe of 
discourse of interpretation is the set of all entity modeling 
elements and constants contained in the metamodel. 
Similarly, metamodel built based on XMML can be 
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Figure 17.  Logical architecture of MapM 

 
Figure 18.  Running interface of MapM 

formalized via metamodel mapping from metamodel to a 
set of predicate statements. 

Once XMML and metamodel are formalized based on 
first-order logic, we can implement logical consistency 
verification of XMML and its metamodel based on first-
order logical inference. 

A.  Consistency and Verification of XMML 

It is not easy to find a true interpretation for constraint 
axiom set 

XMMLF of TXMML to prove semantic consistency 

of TXMML , on the other hand, It is very difficult to derive 
grammatical consistency of 

XMMLF by hand-proving due to 

too many formulas contained in 
XMMLF , so we can only 

prove logical consistency of TXMML based on automatic 
theorem prover. Reference to the literature [15], we give 
the following definition. 
Definition 2 (logical consistency of XMML). XMML is 
logically consistent iff the constraint axiom set 

XMMLF of 

TXMML is proved to be logically consistent in the 
automatic theorem prover; XMML is logically 
inconsistent iff the constraint axiom set 

XMMLF of TXMML is 

proved to be contradictory in the automatic theorem 
prover, denoted 

XMMLF ├ False. 

B.  Consistency and Verification of Metamodel 

If TXMML is proved to logically consistent, then XMML 
must have an interpretation that can be satisfied, thus it is 
meaningful to discuss properties of metamodels built 
based on XMML. From the point of view of 
formalization, a legal metamodel is an interpretation that 
satisfies all constraint formulas of

XMMLF , so the 

relationship that metamodel satisfies XMML is 
equivalent to the relationship that the interpretation of 
TXMML satisfies TXMML. By equivalence of satisfaction 
relationship and logical consistency, we can obtain 
determination method of consistency of metamodel built 
based on XMML. 
Inference 1 (logical consistency of metamodel). If 
union of constraint axiom set 

XMMLF of TXMML and set of 

first-order predicate statements TL(M) generated via 
metamodel M is logically consistent, then the metamodel 
M is consistent; instead, if union of constraint axiom set 

XMMLF of TXMML and set of first-order predicate statements 

TL(M) generated via metamodel M is logically 
inconsistent, denoted 

XMMLF ∪TL(M)├False, then the 

metamodel M is inconsistent. 

VI.   DESIGN AND IMPLEMENTATION OF MAPM 

Formalization automatic mapping engine for 
metamodel called MapM (Mapping of Metamodels) is 
designed and implemented to finish automatic translation 
from metamodel based on XMML concrete syntax scheme 
to the corresponding set of first-order predicate 
statements TL(M) in SPASS format [16], thus we can 
realize automatic process of analysis and verification of 
consistency of metamodel built based on XMML. Logical 
architecture of MapM is shown in Figure 17. 

Based on .net 2.0 platform, by using C#.net as 
development language, we implement the corresponding 
prototype system for MapM and integrate them in the 
modeling environment named Archware [12] of XMML, 
thus it becomes possible for Archware to verify 
metamodels built based on XMML. Running interface of 
MapM is shown in Figure 18, its left window shows 
XML format document of metamodel produced by 
Archware and the corresponding first-order logic system 
in SPASS format generated by translation of MapM is 
showed in right window. 

VII.   CONCLUSIONS 

The paper’s work derives from Yunnan Province 
Department of Education Research Fund Key Project 
(No.2011z025). DSMML defined in the informal way 
cannot precisely describe its structural semantics, which 
makes it difficult to systematically verify its properties 
such as consistency. In response, the paper proposes a 
formal representation of the structural semantics of 
DSMML named XMML designed by us based on first-
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order logic. And then we illustrate our approach by 
formalization of attachment relationship and refinement 
relationship and typed constraints of XMML based on 
first-order logic. Based on this, the approach of 
consistency verification of XMML itself and metamodels 
is presented. Finally, we design and implement the 
corresponding formalization automatic mapping engine 
for metamodel to show the application of formalization of 
XMML. 
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