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Abstract—Domain-Specific Modeling has been widely and structural properties; the latter concerns exeautio
successfully used in software system modeling of exific ~ semantics of domain metamodels, focusing on the
domains. In spite of its general important, due toits  dynamic behavior of the metamodels. Although stmadt
informal — definition,  Domain-Specific  Metamodeling  gamantics is very important, research in structural
Language (DSMML) cannot strictly represent its strucural semantics is not as extensivé and deep as behaviora

semantics, so its properties such as consistencynoat be tics’ thi v studi tructuealant
systematically verified. In response, the paper pmoses a Semantics, So this paper only studies Strucilealatics

formal representation of the structural semantics © of DSMML.
DSMML named XMML based on first-order logic. Firstly, There are several problems that have not beendolve

XMML is introduced, secondly, we illustrate our approach ~ well for DSMML, which include precise formal

by formalization of attachment relationship and refnement  description of its semantics, method of verificatiof

relationship and typed constraints of XMML based onfirst- properties of domain metamodels based on formalizat

order logic, based on this, the approach of cons&tcy and automatic translation from metamodels to

verification of XMML itself and metamodels built based on corresponding formal semantic domain.

XMMI'_ is prgsented, finally, the .for.malization automatic The paper proposes a formal representation of the

mapping engine for metamodels is introduced to showhe . .

application of formalization of XMML. structural semantics of DSMML n_amed XMML des_lgned
by us based on first-order logic, based on thig th

Index Terms—Domain-Specific Metamodeling Language, @approach of consistency verification of XMML and

structural semantics, attachment, refinement, constency = metamodels is presented, and then design and

verification implementation of corresponding formalization auddia
mapping engine for metamodels is introduced to sti@w
application of formalization of XMML.

I. INTRODUCTION

Compared with the uniformity and standardization of II. RELATED WORKS

MDA [1], DSM [2] focuses on simplicity, practicaiif Within the domain-specific language community,
and flexibility. As a metamodeling language for DSM graph-theoretic formalisms have received the most
DSMML plays an important role in system modeling ofresearch attention [4]. The majority of work focsisen
specific areas. model transformations based on graph, but anabysis
DSMML is a metalanguage used to build Domain-yalidation of properties of models has not receiveel
Specific Modeling Languages (DSMLs); this procds®tt same attention. For example, the model transfoomati
we use DSMML to build domain metamodels indicatingtoo| VIATRA [5] Supports executable Horn |Ogic to
the structural semantics of DSMLs is calledspecify transformations, but does not focus orrinsisty
metamodeling. Correspondingly, DSML is modelingexpressiveness for the purpose of analysis.
language used to build domain application modéis t  Because UML includes many diagrams including
process that we use DSML to build domain applicatio metamodeling, state machines, activities, sequehags
models is called application modeling. and so on, approaches for formalizing UML must kack
Semantics of DSMML can be grouped into structurathe temporal nature of its various behavioral setosan
semantics [3] and behavioral semantics. The formefecessitating more expressive formal methods. Hebé
concerns static semantic constraints of relatignshiapproaches must make trade-offs between expressiven
between modeling elements, focusing on the statignd the degree of automated analysis. For exarif],
or B [7] formalizations of UML could be a vehiclerf
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There are much typical work on formalization of Metamodeling element of entity type contains four
modeling language, such as Andre’s formalizatiod antypes such as model type, entity type, referenddyen
verification of UML class diagram based on ADT [8], type and relationship type; metamodeling element of
Kaneiwa's formalization of UML class diagram based association type includes the following six typeste
first-order logic [9], Paige’s formalization of BObased assignment association used to establish the ctane
on PVS [10] and Jackson.E.K’s formalization of DSML between the entity type and relationship type, rhode
based on Horn logic [11] and so on. Without condgide  containment relationship used to build the relatfop
formalization of metamodeling language and autoenatithat model contain all entity type modeling elensent
translation from metamodels to the correspondimghéd  attachment relationship used to describe close
semantic domain, these approaches have lower tdvel containment relationship between entity type maudgli

automated analysis and verification. elements, entity containment relationship used to
describe loose containment relationship betweeityent
I1l. ANINTRODUCTIONTO XMML type modeling elements, reference relationship used

We begin by introducing layered architecture c)fbuil_d reference_between refe_rence_ entity and ratee _

XMML and then an overview of abstract svnt fentlty, and refinement relationship used to essabli

yntax o . - )

XMML is showed. correspo_ndence betwe_zen the entity and its refinedem

for multi-layer modeling and model refinement. The

A. Layered Architecture of XMML structural semantics of XMML will be formalized leak
Similar to structure of UML, XMML is divided into ©n the above ten types of metamodeling elements.

the following four layers: metamodeling languaggela

used to define different DSMLs where XMML is locate IV. FORMALIZATION OF XMML BASED ON FIRSFORDER

DSML layer used to build concrete domain appligatio LOGIC

models, domain application model layer used to make \yq give a formal definition of XMML, based on this,

corresponding source codes of target system by codgchment relationship, refinement relationshipd an
generator, and target application system layer .[12},,0q constraints of XMML is formalized based orsti
Layered Architecture of XMML is shown in Figure 1. order logic to show our approach for formalizinge th

XMMLmetamodeling language layer | \MML m(«;t;r:;o:iye;gg element structural semantics of XMML.
————————————————————————————— l R A. AFormal Definition of XMML
define ..
XMML can be regarded as composition of the
DSML layer ‘ domain modeling element ‘ . . . .
______________________________________ following five parts: a set of predicate symbdfguwe
build denoting corresponding metamodeling elements, an
domain application modellayer | domain model clement | extended set of predicate symbgils used to derive
input properties, a set of closed first-order logic folasu
Z,. denoting constraints over all metamodels built
output based on XMML, a set of constan@u.. denoting
domain application model layer \ System source codes public properties, a set of terms symbgls, ~denoting
Figure 1. Layered architecture of XMML modeling elements constituting metamodel. Amongithe

XMML

¢ and Oxyw May be empty#  is defined using
In order to distinguish between model elements oFy X

different levels of abstraction, we require thaneént of
XMML is called metamodeling element and element of Sxmme
DSML built based on metamodeling is called domaincharacterization of structural properties of XMML,
modeling element and domain object built based ofilocusing on description of constraint relationshgiween
domain application modeling is called domain modeimodeling elements. So XMML is defined as following.
element. Among them, metamodeling element is als®efinition 1 (XMML ). DSMML named XMML Bm.
called meta-type and type of model element is nafme is a 5-tuple of the
modeling element and type of modeling element imea form¢s, = 8 Q.. O, u>Fuu . CONSisting of
of meta-type. S, JXCMML OxmmL, Fy and Qo -

B. Abstract Syntax of XMML Swm. and g¢ as a group of predicate symbols,
We extend and refine abstfact_ syntax of XMML 10O as a group of constant symbols, agg, as a
meet the needs of formalization and consistenc M-
verification. Metamodeling element of improved XMML
is divided into two types: entity type and assadoiatype,
the former is used to describe modeling entitiedamain
metamodel and the latter concerns relationshipaeest

modeling entities.

irst-order logic implication formulas based ofmL,
and Oyuyw.. The definition concerns formal

roup of constraint axioms are all added to finsten
logic formalized system called predicate calculus Q
[13][14] to form formalized system of XMML called
TxwmL based on predicate calculus Q. The powerset of the

term algebra Moy = P (T ) OVET Smu

SxmmL

generated by xm= Q. Y OxumL is considered as a
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group of interpretations ofyyy. to determine whether
any metamodel s, 0OM is well-formed for

XMML
XMML. Once Smmi, 55, » Oxam and z

XMML
derived, we finish formalization o based on first-
order logic.

are

B. Formalization of Meta-type of Entity Type

For eachModel, a unary predicat@odel (x) is defined
to denote meta-type of modeling elements Model,
i.e. Model (x) 0 8, - Model can contain other two
modeling elements of entity type. For e&atiity, a unary
predicateEntity(x) is defined to denote meta-type of
modeling elementx is Entity, i.e. Entity(x) 0 S, -
Entity canbe contained inmodel by model containment

relationship or point to refinednodel by refinement
relationship or establish association with otbatity by

role assignment association or form containmenh wit
entity

other entity by attachment relationship or
containment relationship. For eaéteference Entity, a
unary predicat@efeEntity(x) is defined to denote meta-

type of modeling elemenk is Reference Entity, i.e.
RefEntity(x) 0.5, - Reference Entity can point to
referenced entity by reference relationship. Siryilefor
each Relationship, a unary predicatrelationship(x) iS
defined to denote meta-type of modeling elemeris
Relationship, i.e. Rdationship(x)[.%,,, - Relationship can

be used to establish explicit association betweé€igure2. An example of metamodel

modeling element of entity type combined withle
assignment association.

C. Formalization of Attachment Relationship

For each attachment relationship (denoitdchment)
from modeling element of entity type to y, a binary
predicate Attachment(x,y) is defined to represent that
element x is attached to element y, i.e.

Attachment(x, y) 0S8,y - In the metamodel shown in

Figure 2, modeling element of entity typeterface is
attached to Component, SO

Attachment(Interface,Component) is a legal binary

predicate symbol of attachment meta-type. As can be

seen from Figure 3, there exist the following saler
constraint relationships.

1) Type Constraint: Attachment edge must start from
and also end with modeling element of entity typkis

can be expressed as an implication formula named‘Aﬁa%mem»

Attachl in the form
of 0x, y.Attachment (x, y) — Entity (x) O Entity (y).

2) Sdf-attached Constraint: Due to its close containment,

the same modeling element of entity type cannot bigure 6. Attachment path

attached to itself. For example, self-attachednodrface
in Figure 4 is not allowed. We can express thisaas
predicate formula namedAttach2 in the form

of Ox.— Attachment (x, x) .

Figure 4. Self-attached
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Interface and Component in Figure 5 is illegal. This can
be expressed as an implication formula navach3 in
the form ofllx, y.Attachment(x,y) — - Attachment (y,x).

4) Attachment Path: To maintain well-formedness and
reduce the complexity, we require that only onestagf
attachment path between two entities is legal amldr
more layers of attachment path formed betweeniestit
are prohibited. For example, two layers of attachime
path formed bylnterface attached toComponent and
Component attached toSubsystem in Figure 6 is not
allowed. Assume that two layers of attachment path
formed byx attached ty andy attached tais denoted as

AttaPath(x,y,2), ie.  AttaPath(x,y,2)0S8gu.
AttaPath(x,y,Z) can be defined byAttachment as an
implication formula in the form of
0x,y, z.Attachment (x, y) O Attachment(y, z)

O(x# y)d(y# z)d(x# z) - AttaPath(x,y, z) ’
SO we can express this constraint as a predicateufa
namedAttach4 in the form of[lx, y, z~ AttaPath(x,y,z).

<<Entity>>

<<Entity>>
Component
AttachlaToCom <<Attachment>>
<<Attacpment>> <<TRoleAssginRela>>
<<Entity>> [~ T <<Relationship>>
Interface | -------zoooooo-o- InfAssociation
<<SRoIeAssginReIa>>> Y

Figure 3. Attachment

<<Entity>>
Interface

<<Attachment>>
<<Attachment>>

<<Entity>> <<Attachment>> <<Entity>>
Interface Component

Figure 5. Attachment loop

<<Entity>>
Inter:
nterface <<Entity>>
Interface
<<Attachment>>
<<Entity>> <<Attachrfent>>  <<Attachigent>>
Component
<<Entity>> <<Entity>>
<<Entity>> Component Connection
Subsystem

Figure 7. e&ample of attachment

According to theAttachl, both ends connected by
attachment edge are all modeling elements of etytig,

3) Attachment Loop: Attachment loop formed between thus, from the perspective the semantics of firgeo
two modeling elements of entity type is not allowedlogic, we can prove the semantic non-implicatioondr
because it expresses a contradictory and meaningle8ttachl to Attach2, Attach3 and Attach4 by finding a
modeling intent. For example, attachment loop betwe
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counter-example interpretation that mak&tachl true  semantic interpretation that satisfies the formess, or
and makegttach?, Attach3 and Attach4 false. the formula set is satisfiable. By related defors of
Theorem 1 (Semantic non-implication of attachment first-order logic, theorem is proved.
constraint). FormulaAttachl cannot semantically entail ~ According to related theorems of first-order loffid],
formula Attach2, Attach3 and Attach4, i.e. Attachl|# the formula set is grammatical consistent, thusjsit
Attach2, Attachl|+# Attach3 andAttachl | # Attach4. consistent. So the formula subset of attachment
Proof. As a semantic interpretation of formula setconstraints namedttachmentSet is comprised ofttachi,
composed ofittachl ~Attach4, the metamodel shown in Attach3 and Attach4, ie. AttachmentSet= {Attachl,
Figure 4 can be expressed as a set of predicasenstats Attach3, Attach4}.
composed of Attachment(InterfaceInterface) and p  Eormalization of Refinement Relationship
Entity(Interface) that makesAttachl true and makes
Attach2 false due to self-attached bfterface, so we can
derive Attachl|# Attach2. Similarly, the metamodel
shown in Figure 5 can be expressed as a set oicpted that elemenk pointsto element by refinement edge, i.e
statements composed Attachment(l nterface,Component) ) P
and  Attachment(Component,Interface) that makes FeEfinemMent(x, y)Us,, - In the metamodel shown in
Attachl true and makesAttach3 false due to attachment Figure 8, the  edge Refinement(Component,
loop formed betweennterface and Componennt, thus,  SoftwareArchitecture) built by modeling element of
Attachl|# Attach3 can be derived. In addition, entity type Component pointing to its refined model
Attachment(I nterface, Component) and SoftwareArchitecture is a legal binary predicate symbol
Attachment(Component,Subsystem) corresponding to the of refinement meta-type. As can be seen from Figure 9,
metamodel in Figure 6 all satisbpttachl but make there exist the following several constraint rules.
Attach4 false due to two layers of attachment path formed) Type Constraint: refinement edge must start from
among|nterface, Componennt and Subsystem, therefore, modeling element of entity type and end with mautgli
we can derivéttachl | # Attach4. element of model type. This can be expressed as an
Are there grammatical inference relationships amongmnplication formula named Refinel in the form
Attach2, Attach3 and Attach4? We find thatAttach2 can  of 0x, y.Refinement (x,y) - Entity (x) OModel (y)-
be derived fromAttach3 based on natural deduction rules 2) Uniqueness Constraint: the same modeling element
for quantifiers (NDRQ) which include premise of entity type cannot point to two or more refiraddels,
introduction rule (denoted P), separation rule (ded S) , otherwise ambiguity will be produced. For examthe
return false rule (denoted N) and quantifier rderfoted metamodel in Figure 13 is illegal because the mogdel
Q) and so on [14]. Therefore, we can derive thie¥dhg  element Component points to two different refined
theorem. models SoftwareArchitectureA and
Theorem 2 (Grammatical inference relationship of  SoftwareArchitectureB. We can express this as an
attachment constrainf). FormulaAttach2 can be derived implication formula name®&efine2 in the form of

from FormulaAttach3, i.e. 0x, y, z.Refinement (x, y) ORefinement(x,z) - (y=12).

For each refinement relationship (denoRsfi nement)
from modeling element of entity typeto model typey, a
binary predicateRefinement(x,y) is defined to represent

[, y.Attachment (x,y) — ~Attachment (y,x) [x-Attachment (X X) ~ 3) |dentity Constraint: the refined model that the

Proof. (Derivation is omitted). modeling element of entity type points to and thedei
Because of Attach3} Attach2, after Attach2 is  in which it is contained are identical to build tihyer
removed, there are onljttachl, Attach3 and Attach4  model structure using recursive relationship. Bameple,
among which there are 6 pairs of semantic nonin Figure 14, theefined modelSoftwareArchitectureB of
implication relations. Similar to theorem 1, we c@lso Component and the model SoftwareArchitectureA
derive Attach3 | # Attach4, Attach3|+# Attachl, Attach4 |+ containing it are different, so multi-layer modé&iusture
Attachl and Attach4|+# Attach3, so it is obvious that cannot be built based on it. This can be expressean
Attachl, Attach3 and Attach4 are independent on implication formula name&efine3 in the form of
semantics. Therefore, the formula set of attachmenilx, y,z.Refinement(x,y)OContainment (x,z) - (y=2)
constraints only containittachl, Attach3 andAttach4. . In formula Refine3, Containment(x,y) is a binary
Theorem 3(Semantic consistency of formula sgtThe 5 ogicate denoting model containment relationship i
formula. set compnsed dittachl, Attach3 andAttach4is | 1.-p modeling element of entity typeis contained in
semantic consistent. . model typey.
Proof. As a semantic interpretation of formula set4) Salf-refinement
composed of Attachl, Attach3 and Attach4, the
metamodel shown in Figure 7 can be expressed etsod s
predicate statements composed
Attachment(I nterface,Component) an

Congraint: the same modeling
element of entity type cannot point to itself t&finement
edge. For example, self-refinement Gbmponent in
OfFigure 10 is not allowed. We can express this as a

) predicate formula namedRefine4 in the form
Attachment(I nterface,Connection). Becausehere do not

. of Ox.— i .
exist attachment loopand two or more layers of Dx.~ Refinement (x, X)

attachment paths in the metamodel, both of them aff) Refinement Loop Constraint: the refinement loop
satisfy Attachl, Attach3 and Attach4. Therefore, the formed between two modeling elements is not allowed
metamodel shown in Figure 7 can be considered asPgcause it expresses a contradictory and meantngles
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modeling intent. For example, refinement loop fodntxy
Component and SoftwareArchitecture pointing to each
other in Figure 11 is illegal. This can be exprdsas an
implication formula namedRefine5 in the form
of Ox, y.Refinement (x,y) O (X # y) — = Refinement (y,x)-

; <<Containment>>
<<Entity>> |——@ <<Model>>

Component |-------caaanmon- SoftwareArchitecture
<<Refinement>>

Figure 8. An example of metamodel

<<Refinement>%" | [ __ ol leceeooeaon

<<Entity>> |----2---0 0 <<Model>> <<Entity>> | Refinement>>
Component & --------
Figure 9. Refinement Figure 10. Self- refinement
<<Entity>>
ComponentA
<<Refinfement>>
<<Entity>> v
Component <<Model>>

SoftwareArchitecture

<<Refinement>> <<Refi >> -
: R:eflnement <<Refinement>>

<<Model>> <<Entity>>
SoftwareArchitecture ComponentB

Figure 11. Refinement loop Figure 12. Rafirent path of two layers

<<Model>>
SoftwareArchitectureA
<<Entity>>
Component <<Contajnment>>
S A <<Entity>>
<<Refineff{ent>> <<Reffhement>> Comeonent
ﬁ Q <<Refinement>>
<<Model>> <<Model>> <<Model>>
SoftwareArchitectureA| | SoftwareArchitectureB SoftwareArchitectureB

Figure 13. Refinement ambiguity Figure 14.Refiaad containing model

<<Containment>>
<<Entity>> <<Entity>>

ComponentA  |------------- ComponentB
2 <<Reﬁnement>>-|> 2

Figure 15. An example of violatirgefinel

<<Model>>
M

<<Conta¥ment>>

<<Entity>>
X

<<Ref£em’ént>> <<F€eﬂqument>>

<<Model>> <<Model>>
R1 R2

Figure 16. Refine3 andCon5 deriving Refine2
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6) Refinement Path Congraint: To maintain  well-
formedness and reduce the complexity, we requia¢ th
only one layer of refinement path between two m#its
legal and two or more layers of refinement path are
prohibited. For example, two layers of refinemeathp
formed byComponentA pointing to SoftwareArchitecture
and SoftwareArchitecture pointing to ComponentB in
Figure 12 is not allowed. Assume that two layers of
refinement path formed by pointing toy andy pointing
to z is denoted as RdinePath(x,y,z) , i.e.

RefinePath(x, y,2) 055, » RefinePath(x y,z) can be defined

by refinement as an implication formula in the form of
0x, y, z.Refinement (x, y) O Refinement (y,z)

O(x# y)O(y # 2) O(x # z) - RefinePath(x, y,z)'
we can express this constraint as a predicate farmu
named Refine6 in the form of

0x, y, z~ RefinePath(x, y, z) .

Any modeling element belongs to one and only one
meta-type, on the other hand, according to Rafnel,
both ends connected by refinement edge belong to
different meta-type, therefore from the perspectifre
semantics of first-order logic, we can prove thmaetic
implication fromRefinel to Refined, Refineb andRefine6.
Theorem 4 (Semantic implication of refinement
constraint). Formula Refinel can semantically entalil
formula Refine4, Refine5 and Refine6, i.e.
Refinel Refined, Refinel FRefine5 andRefinel FRefineb.
Proof. Any semantic interpretation that makesfinel
true promptsrefinement to satisfy the relationship that
both ends ofefinement belong to different meta-type in
which one end is modeling element of entity typd #re
other end is modeling element of model type; obsipu
the relationship excludes the possibility of self-
refinement of the same modeling element and aldema
it impossible to form refinement loop and two or mno
layers of refinement path, thus, this interpretatio
certainly makesRefined4, Refine5 and Refine6 true,
according to related definition of semantic implioa of
first-order logic, theorem is proved.

Now formula set of refinement constraints contains
only Refinel, Refine2 and Refine3, are there semantic
implication relationships among them? We find that
Refine2 can be derived by identity of refinememamed
Refine3 and uniqueness of the models in which the same
modeling element of entity type is contained namwadb.

In Figure 16, the modeling element points to two
different refined modelsR; and R, by two different
refinement edges and the modélthat can contaix is
unique bycont5, thus byRefine3 R, andM are the same
modeling element of model type, iR=M, similarly, R,
andM are the same modeling element of model type, i.e.
RZZM, SOR]_Z Rz.

Only Refinel and Refine3 left in the set and among
them there are two kinds of semantic implication
relationship. Although syntax derivation betweernth
cannot be directly proved, we can explain the seiman
non-implication fromRefinel to Refine3 by finding a
counter-example interpretation that makeefinel true
and makesRefine3 false from the perspective the

SO
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semantics of first-order logic. Similarly, the sertia  because it contains elements not belonging to agtgm
non-implication fromRefine3 to Refinel can also be type of entity type. We can express this as a patei
explained. formula named  Typel in the form
Theorem 5 (Semantic non-implication of refinement  of [xModel (x) 0Entity(x) 0 Relationship (x) [ RefEntity (x) -
constraint). FormulaRefinel cannot semantically entail Tyne1 denotesthat any modeling element of entity type
formula  Refine3,  otherwise the same, i.e. muystbelong to one of the above four meta-types.
Refinel | #Refine3 and Refine3 | £Refinel. 2) Unigueness of Classification

Proof. As a semantic interpretation of formula set The classification of modeling elements of entitpe
composed oRefinel andRefine3, the metamodel shown myst be unique because allowing a modeling elerent
in Figure 14 can be expressed as a set of predicaigiong to more than one meta-type leads to ambiguou
statements composed of interpretation of the element, so we require tharg
Refinement(Component, Softwar eAr chitectureB) and  modeling element belongs to one and only one nygta-t

Containment(Component, SoftwareArchitectureA)  that  Thjs can be expressed as a group of implicatiomdtas
makes Refinel true and makesRefine3 false due t0 npamedType2 in the form of

violation of identity constraint, so we can derive Ox.Model (x) - - Entity(x)
Refinel | #Refine3. Similarly, the metamodel shown in qy podel (x) - - Relationship(x)
Figure 15 can be expressed as a set of predlcaﬁleodel(x) . - RefEntity(x)
statements composed of ) ) .
Refinement(ComponentA,ComponentB) and Dx.Entfty(x) - ~Rel atlgnsh|p(x)
Containment(ComponentA,ComponentB) ~ that makes ~ DXEntity(x) ~ - RefEntity(x)

Refine3 true and makeRefinel false due to violation of Ux.Relationship(x) — - RefEntity(x)

type constraint, sRefine3 | #Refinel can be derived. Number of formulagiumtype2 in Type2 is combination
Theorem 6 (Semantic consistency of formula sgtThe number produced by taking any two elements from six
formula set comprised &efinel andRefine3 is semantic  elements, i.enumtype2=4X (4-1)X0.5=6. So the formula
consistent. subset of typed constraints nanmBgbedSet is comprised
Proof. As a semantic interpretation of formula setof Typel andType2, i.e. TypedSet = {Typel, Type2}.
composed oRefinel and Refine3, the metamodel shown  TypedSet makes it explicit that a metamodel as an
in Figure 8 can be expressed as a set of predicatestance of XMML must have its modeling elements of
statements composed of entity type completely and uniquely classified hyurf
Refinement(Component, Softwar eAr chitecture) and types of meta-types. This reflects strict meta-niinde
Containment(Component,Softwar eArchitecture). Because principle proposed in the literature [15].

Compoment belongs to entity  type and N L
SoftwareArchitecture is an element of model type and the F. Formalization of Other Meta-type of Association Type
refined model tha€ompoment points to and the model in By formalizing other meta-types of association type
which it is contained are sarSeftwareArchitecture, both ~ the same way, we can establish formula subset lef ro
of them all satisfyRefinel and Refine3. Therefore, the assignment association constraints named
metamodel shown in Figure 8 can be considered as RpleAssginRelaSet, formula subset of model containment

semantic interpretation that satisfies the formaga, or ~ constraints namedContainmentSet, formula subset of
the formula set is satisfiable. By related defoiis of ~entity containment constraints namedtiContSet and

first-order logic, theorem is proved. formula subset of referenceconstraints named
According to related theorems of first-order loffie], ~ ReferenceSet one by one. Based on this, formula subset of
the formula set is grammatical consistent, thusjsit €xclusion constraints nameiixclusionSet is created to

consistent. So the formula subset of refinementepresent exclusive constraints among all metastype
constraints nameBefinementSet is comprised oRefinel ~ Therefore, set of constraint axioms ®kuw. named
andRefine3, i.e. RefinementSet = {Refinel, Refine3}. Z,. CaN be considered as union of all of the above

E. Formalization of Typed Constraints Sfbsftz’ i'?'_ £9et U AftachrmentSet U EntiContSet U
XMML is one of typed metamodeling languages, sofam = ontainmen achmen Att-on

the metamodels built based XMML are well-typed. On RoleAssginRelaSet U RefinementSet U

the basis of the relevant literatures [15], we ahtarize ReferenceSet U ExclusionSet U TypedSet.

typed constraints of XMML from completeness and

uniqueness of classification of modeling elements 0 V. CONSISTENCY AND VERIFICATION ORXMML AND ITS
entity type. METAMODELS

1) Completeness of Classification

Four types of meta-types of entity type are defiired Formalized system of XMML calle@xuw. based on

XMML to build metamodels, so their classificatios i predicate calcfulus Qis esrt]ablished by formalizatiball f
: P meta-types of XMML. The semantic interpretation o
also established. Such a classification must beptetm T,um iS a metamodel built based on XMML, universe of

in the sense that every modeling element of enyipe ’ ; T . .
must be an instance of one meta-type of entity ;typedlscourse of interpretation is the set of_all gmntitodeling
elements and constants contained in the metamodel.

otherwise the metamodel will become meaninglesgimilalrly metamodel built based on XMML can be
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formalized via metamodel mapping from metamodedto  Based on .net 2.0 platform, by using C#.net as
set of predicate statements. development language, we implement the correspgndin
Once XMML and metamodel are formalized based omprototype system foMapM and integrate them in the
first-order logic, we can implement logical consisty = modeling environment nameichware [12] of XMML,
verification of XMML and its metamodel based orsfir thus it becomes possible foArchware to verify
order logical inference. metamodels built based on XMML. Running interfaée o
. e MapM is shown in Figure 18, its left window shows
A C@sstency and V?rlflcat|on O.f XMML ) ) XML format document of metamodel produced by
Itis not easy to find a true interpretation fomstaint  Archware and the corresponding first-order logic system
axiom setg  of Ty to prove semantic consistency in SPASS format generated by translationMdpM is

of TywmL , ON the other hand, It is very difficult to dexiv showed in right window.

grammatical consistency gf, by hand-proving due to

too many formulas contained pg, , so we can only

prove logical consistency ofyuw. based on automatic

[Archware Metamodeling Tool]

theorem prover. Reference to the literature [19,give Additional
the following definition. (XML Format Metamodel] | <2 o8
Definition 2 (logical consistency of XMML). XMML s gzzrr ! J -

logically consistent iff the constraint axiom sgf,  of Constant Statement| | Formula
Twuve IS proved to be logically consistent in the Szneieiion I Coroeiion g SEEaioe

automatic theorem prover; XMML is logically

. . . . . . A h 4 A
inconsistent iff the constraint axiom sgf,  of TxwwL IS Formalized System M Et_ate/mgn\tl @’l‘ll
proved to be contradictory in the automatic theorem | [ *fXMML—Tuu

prover, denotedg, | False Logic system for metamodel

I
B. Consistency and Verification of Metamodel v

If Txmm is proved to logically consistent, then XMML <Aut0manc Theorem Prover SPASS)
must have an interpretation that can be satisffed it is Figure 17. Logical architecture bfapM
meaningful to discuss properties of metamodelst buil
based on XMML. From the point of view Qﬁ:"':m*“,:“:“:“ -y s

formalization, a legal metamodel is an interpretatihat =+, «. » ». aea. wcnnes.
satisfies all constraint formulas of,,, . = N

so the " Y
relationship that metamodel satisfies XMML Js |
equivalent to the relationship that the interpietatof | - ™
Txww Satisfies Tyyu.. By equivalence of satisfaction:
relationship and logical consistency, we can obtain
determination method of consistency of metamodét bu
based on XMML.

Inference 1 (logical consistency of metamodgl If
union of constraint axiom set = of Txww and set of

first-order predicate statement§ (M) generated via
metamodeM is logically consistent, then the metamodel
M is consistent; instead, if union of constraint axiost s

Fonn. Of Txume @nd set of first-order predicate stateme ts

T.(M) generated via metamodeM is logically
inconsistent, denotedgz UT(M) |—Fa|se, then the*

XMML
metamodeM is inconsistent.

siE-HEREE
2 i 1

e Thisadiirtge TR0 -

| 1 Ml | ¥

Figure 18. Running interface bfapM

VI. DESIGN ANDIMPLEMENTATION OF MAPM

o . . . VII. CONCLUSIONS
Formalization automatic mapping engine for

metamodel calledMapM (Mapping of Metamodels) is The paper's work derives from Yunnan Province
designed and implemented to finish automatic tegisi  Department of Education Research Fund Key Project
from metamodel based ofMML concrete syntax scheme (No.2011z025). DSMML defined in the informal way
to the corresponding set of first-order predicatecannot precisely describe its structural semantidsch
statementsT, (M) in SPASS format [16], thus we can makes it difficult to systematically verify its perties
realiz_e automatic process Of_anal)/SiS and Veriﬁﬂabf. such as Consistency_ In response, the paper p@Eose
consistency of metamodel built based on XMML. Ladjic formal representation of the structural semantids o
architectureof MapM is shown in Figure 17. DSMML named XMML designed by us based on first-
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order logic. And then we illustrate our approach by on Embedded Software (EMSOFT'06) (October 2006) 53-
formalization of attachment relationship and refivest 62. . . B
relationship and typed constraints of XMML based oft2] Sun XP, A Research of Visual Domain-Specific Meta-

first-order logic. Based on this, the approach of
consistency verification of XMML itself and metaneisl ]
is presented. Finally, we design and implement th[e

Modeling Language and Its Instantiation, Kunming:
Yunnan University.2008.

Gu TL, Formal methods of software development, idigh
Education Press, Beijing, 2005.

corresponding formalization automatic mapping eegini14] cheng Mz, Yu JW, Logic foundation—first-order logic
for metamodel to show the application of formalizatof and first-order theory, Chinese People UniversitgsBy

XMML. Beijing, 2003.

[15] H. Zhu, L. Shan, I. Bayley, and R. Amphlett, “A Foima
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