
Formalizing Domain-Specific Metamodeling
Language XMML Based on First-order Logic

Tao Jiang

School of Mathematics and Computer Science, Yunnan University of Nationalities, Kunming, P.R.China
Email: jtzwy123@gmail.com

Xin Wang

School of Mathematics and Computer Science, Yunnan University of Nationalities, Kunming, P.R.China
Email: wxkmyn@yahoo.com.cn

Abstract—Domain-Specific Modeling has been widely and
successfully used in software system modeling of specific
domains. In spite of its general important, due to its
informal definition, Domain-Specific Metamodeling
Language (DSMML) cannot strictly represent its structural
semantics, so its properties such as consistency cannot be
systematically verified. In response, the paper proposes a
formal representation of the structural semantics of
DSMML named XMML based on first-order logic. Firstl y,
XMML is introduced, secondly, we illustrate our approach
by formalization of attachment relationship and refinement
relationship and typed constraints of XMML based on first-
order logic, based on this, the approach of consistency
verification of XMML itself and metamodels built based on
XMML is presented, finally, the formalization automatic
mapping engine for metamodels is introduced to show the
application of formalization of XMML.

Index Terms—Domain-Specific Metamodeling Language,
structural semantics, attachment, refinement, consistency
verification

I. INTRODUCTION

Compared with the uniformity and standardization of
MDA [1], DSM [2] focuses on simplicity, practicability
and flexibility. As a metamodeling language for DSM,
DSMML plays an important role in system modeling of
specific areas.

DSMML is a metalanguage used to build Domain-
Specific Modeling Languages (DSMLs); this process that
we use DSMML to build domain metamodels indicating
the structural semantics of DSMLs is called
metamodeling. Correspondingly, DSML is modeling
language used to build domain application models; this
process that we use DSML to build domain application
models is called application modeling.

Semantics of DSMML can be grouped into structural
semantics [3] and behavioral semantics. The former
concerns static semantic constraints of relationship
between modeling elements, focusing on the static

structural properties; the latter concerns execution
semantics of domain metamodels, focusing on the
dynamic behavior of the metamodels. Although structural
semantics is very important, research in structural
semantics is not as extensive and deep as behavioral
semantics’, so this paper only studies structural semantics
of DSMML.

There are several problems that have not been solved
well for DSMML, which include precise formal
description of its semantics, method of verification of
properties of domain metamodels based on formalization
and automatic translation from metamodels to
corresponding formal semantic domain.

The paper proposes a formal representation of the
structural semantics of DSMML named XMML designed
by us based on first-order logic, based on this, the
approach of consistency verification of XMML and
metamodels is presented, and then design and
implementation of corresponding formalization automatic
mapping engine for metamodels is introduced to show the
application of formalization of XMML.

II. RELATED WORKS

Within the domain-specific language community,
graph-theoretic formalisms have received the most
research attention [4]. The majority of work focuses on
model transformations based on graph, but analysis and
validation of properties of models has not received the
same attention. For example, the model transformation
tool VIATRA [5] supports executable Horn logic to
specify transformations, but does not focus on restricting
expressiveness for the purpose of analysis.

Because UML includes many diagrams including
metamodeling, state machines, activities, sequence charts
and so on, approaches for formalizing UML must tackle
the temporal nature of its various behavioral semantics,
necessitating more expressive formal methods. All these
approaches must make trade-offs between expressiveness
and the degree of automated analysis. For example, Z [6]
or B [7] formalizations of UML could be a vehicle for
studying rich syntax, but automated analysis and
verification is less likely to be found.

Supported by Yunnan Provincial Department of Education Research
Fund Key Project (No. 2011z025) and General Project (No. 2011y214)
Corresponding author: E-mail addresses: jtzwy123@gmail.com

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1321

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.6.1321-1328

Figure 1. Layered architecture of XMML

There are much typical work on formalization of
modeling language, such as Andre’s formalization and
verification of UML class diagram based on ADT [8],
Kaneiwa’s formalization of UML class diagram based on
first-order logic [9], Paige’s formalization of BON based
on PVS [10] and Jackson.E.K’s formalization of DSML
based on Horn logic [11] and so on. Without considering
formalization of metamodeling language and automatic
translation from metamodels to the corresponding formal
semantic domain, these approaches have lower level of
automated analysis and verification.

III. AN INTRODUCTION TO XMML

We begin by introducing layered architecture of
XMML and then an overview of abstract syntax of
XMML is showed.

A. Layered Architecture of XMML

Similar to structure of UML, XMML is divided into
the following four layers: metamodeling language layer
used to define different DSMLs where XMML is located,
DSML layer used to build concrete domain application
models, domain application model layer used to make
corresponding source codes of target system by code
generator, and target application system layer [12].
Layered Architecture of XMML is shown in Figure 1.

In order to distinguish between model elements of
different levels of abstraction, we require that element of
XMML is called metamodeling element and element of
DSML built based on metamodeling is called domain
modeling element and domain object built based on
domain application modeling is called domain model
element. Among them, metamodeling element is also
called meta-type and type of model element is name of
modeling element and type of modeling element is name
of meta-type.

B. Abstract Syntax of XMML

We extend and refine abstract syntax of XMML to
meet the needs of formalization and consistency
verification. Metamodeling element of improved XMML
is divided into two types: entity type and association type,
the former is used to describe modeling entities in domain
metamodel and the latter concerns relationships between
modeling entities.

Metamodeling element of entity type contains four
types such as model type, entity type, reference entity
type and relationship type; metamodeling element of
association type includes the following six types: role
assignment association used to establish the connection
between the entity type and relationship type, model
containment relationship used to build the relationship
that model contain all entity type modeling elements,
attachment relationship used to describe close
containment relationship between entity type modeling
elements, entity containment relationship used to
describe loose containment relationship between entity
type modeling elements, reference relationship used to
build reference between reference entity and referenced
entity, and refinement relationship used to establish
correspondence between the entity and its refined model
for multi-layer modeling and model refinement. The
structural semantics of XMML will be formalized based
on the above ten types of metamodeling elements.

IV. FORMALIZATION OF XMML BASED ON FIRST-ORDER

LOGIC

We give a formal definition of XMML, based on this,
attachment relationship, refinement relationship and
typed constraints of XMML is formalized based on first-
order logic to show our approach for formalizing the
structural semantics of XMML.

A. A Formal Definition of XMML

XMML can be regarded as composition of the
following five parts: a set of predicate symbols SXMML
denoting corresponding metamodeling elements, an
extended set of predicate symbols C

X M M LS used to derive

properties, a set of closed first-order logic formulas

XMMLF denoting constraints over all metamodels built

based on XMML, a set of constants OXMML denoting
public properties, a set of terms symbols

XMMLΩ denoting

modeling elements constituting metamodel. Among them,
C

X M M LS and OXMML may be empty,
XMMLF is defined using

first-order logic implication formulas based on SXMML,
C

X M M LS and OXMML. The definition concerns formal

characterization of structural properties of XMML,
focusing on description of constraint relationship between
modeling elements. So XMML is defined as following.
Definition 1 (XMML). DSMML named XMML LXMML
is a 5-tuple of the
form , , , ,C

XM M L XM M L XM M L XM M L X M M LOΩ〈 〉S S F, consisting of

SXMML, C
XMMLS ,OXMML, XMMLF and

XMMLΩ .

SXMML and C
X M M LS as a group of predicate symbols,

OXMML as a group of constant symbols, and
XMMLF as a

group of constraint axioms are all added to first-order
logic formalized system called predicate calculus Q
[13][14] to form formalized system of XMML called
TXMML based on predicate calculus Q. The powerset of the
term algebra = ())

XM M LX M M L XM M LT(ΣSM P over SXMML

generated by ∑XMML=
X M M LΩ ∪OXMML is considered as a

1322 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Figure 2. An example of metamodel Figure 3. Attachment

Figure 4. Self-attached Figure 5. Attachment loop

Figure 6. Attachment path Figure 7. An example of attachment

group of interpretations of TXMML to determine whether
any metamodel XMML XMML∈Mm is well-formed for

XMML. Once SXMML, C
X M M LS , OXMML and

XMMLF are

derived, we finish formalization of LXMML based on first-
order logic.

B. Formalization of Meta-type of Entity Type

For each Model, a unary predicate ()Model x is defined

to denote meta-type of modeling element x is Model,
i.e. () XMMLModel x ∈S . Model can contain other two

modeling elements of entity type. For each Entity, a unary
predicate ()Entity x is defined to denote meta-type of

modeling element x is Entity, i.e. () XMMLEntity x ∈S .

Entity can be contained in model by model containment
relationship or point to refined model by refinement
relationship or establish association with other entity by
role assignment association or form containment with
other entity by attachment relationship or entity
containment relationship. For each Reference Entity, a
unary predicate ()RefEntity x is defined to denote meta-

type of modeling element x is Reference Entity, i.e.
() XMMLRefEntity x ∈S . Reference Entity can point to

referenced entity by reference relationship. Similarly, for
each Relationship, a unary predicatee ()R lationship x is

defined to denote meta-type of modeling element x is
Relationship, i.e. () XMMLRelationship x ∈S . Relationship can

be used to establish explicit association between
modeling element of entity type combined with role
assignment association.

C. Formalization of Attachment Relationship

For each attachment relationship (denoted Attachment)
from modeling element of entity type x to y, a binary
predicate Attachment(x,y) is defined to represent that
element x is attached to element y, i.e.

(,) XMMLAttachment x y ∈S . In the metamodel shown in

Figure 2, modeling element of entity type Interface is
attached to Component, so
Attachment(Interface,Component) is a legal binary
predicate symbol of attachment meta-type. As can be
seen from Figure 3, there exist the following several
constraint relationships.
1) Type Constraint: Attachment edge must start from
and also end with modeling element of entity type. This
can be expressed as an implication formula named
Attach1 in the form
of , . (,) () ()x y Attachment x y Entity x Entity y∀ → ∧ .

2) Self-attached Constraint: Due to its close containment,
the same modeling element of entity type cannot be
attached to itself. For example, self-attached of Interface
in Figure 4 is not allowed. We can express this as a
predicate formula named Attach2 in the form
of . (,)x Attachment x x∀ ¬ .

3) Attachment Loop: Attachment loop formed between
two modeling elements of entity type is not allowed
because it expresses a contradictory and meaningless
modeling intent. For example, attachment loop between

Interface and Component in Figure 5 is illegal. This can
be expressed as an implication formula named Attach3 in
the form of , . (,) (,)x y Attachment x y Attachment y x∀ → ¬ .

4) Attachment Path: To maintain well-formedness and
reduce the complexity, we require that only one layer of
attachment path between two entities is legal and two or
more layers of attachment path formed between entities
are prohibited. For example, two layers of attachment
path formed by Interface attached to Component and
Component attached to Subsystem in Figure 6 is not
allowed. Assume that two layers of attachment path
formed by x attached to y and y attached to z is denoted as
AttaPath(x,y,z), i.e. (, ,) C

XMMLAttaPath x y z ∈S ,

AttaPath(x,y,z) can be defined by Attachment as an
implication formula in the form of

, , . (,) (,)

() () () (, ,)

x y z Attachment x y Attachment y z

x y y z x z AttaPath x y z

∀ ∧
∧ ≠ ∧ ≠ ∧ ≠ →

,

so we can express this constraint as a predicate formula
named Attach4 in the form of , , . (, ,)x y z AttaPath x y z∀ ¬ .

According to the Attach1, both ends connected by
attachment edge are all modeling elements of entity type,
thus, from the perspective the semantics of first-order
logic, we can prove the semantic non-implication from
Attach1 to Attach2, Attach3 and Attach4 by finding a

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1323

© 2012 ACADEMY PUBLISHER

counter-example interpretation that makes Attach1 true
and makes Attach2, Attach3 and Attach4 false.
Theorem 1 (Semantic non-implication of attachment
constraint). Formula Attach1 cannot semantically entail
formula Attach2, Attach3 and Attach4, i.e. Attach1|≠
Attach2, Attach1|≠ Attach3 and Attach1|≠ Attach4.
Proof. As a semantic interpretation of formula set
composed of Attach1～Attach4, the metamodel shown in
Figure 4 can be expressed as a set of predicate statements
composed of Attachment(Interface,Interface) and
Entity(Interface) that makes Attach1 true and makes
Attach2 false due to self-attached of Interface, so we can
derive Attach1|≠ Attach2. Similarly, the metamodel
shown in Figure 5 can be expressed as a set of predicate
statements composed of Attachment(Interface,Component)
and Attachment(Component,Interface) that makes
Attach1 true and makes Attach3 false due to attachment
loop formed between Interface and Componennt, thus,
Attach1|≠ Attach3 can be derived. In addition,
Attachment(Interface,Component) and
Attachment(Component,Subsystem) corresponding to the
metamodel in Figure 6 all satisfy Attach1 but make
Attach4 false due to two layers of attachment path formed
among Interface, Componennt and Subsystem, therefore,
we can derive Attach1|≠ Attach4.

Are there grammatical inference relationships among
Attach2, Attach3 and Attach4? We find that Attach2 can
be derived from Attach3 based on natural deduction rules
for quantifiers (NDRQ) which include premise
introduction rule (denoted P), separation rule (denoted S) ,
return false rule (denoted N) and quantifier rule (denoted
Q) and so on [14]. Therefore, we can derive the following
theorem.
Theorem 2 (Grammatical inference relationship of
attachment constraint). Formula Attach2 can be derived
from Formula Attach3, i.e.

, . (,) (,) . (,)x y Attachment x y Attachment y x x Attachment x x∀ →¬ ∀ ¬ ┬

 Proof. (Derivation is omitted).
Because of Attach3├ Attach2, after Attach2 is

removed, there are only Attach1, Attach3 and Attach4
among which there are 6 pairs of semantic non-
implication relations. Similar to theorem 1, we can also
derive Attach3|≠ Attach4, Attach3|≠ Attach1, Attach4|≠
Attach1 and Attach4|≠ Attach3, so it is obvious that
Attach1, Attach3 and Attach4 are independent on
semantics. Therefore, the formula set of attachment
constraints only contains Attach1, Attach3 and Attach4.
Theorem 3 (Semantic consistency of formula set). The
formula set comprised of Attach1, Attach3 and Attach4 is
semantic consistent.
Proof. As a semantic interpretation of formula set
composed of Attach1, Attach3 and Attach4, the
metamodel shown in Figure 7 can be expressed as a set of
predicate statements composed of
Attachment(Interface,Component) and
Attachment(Interface,Connection). Because there do not
exist attachment loops and two or more layers of
attachment paths in the metamodel, both of them all
satisfy Attach1, Attach3 and Attach4. Therefore, the
metamodel shown in Figure 7 can be considered as a

semantic interpretation that satisfies the formula set, or
the formula set is satisfiable. By related definitions of
first-order logic, theorem is proved.

According to related theorems of first-order logic [14],
the formula set is grammatical consistent, thus, it is
consistent. So the formula subset of attachment
constraints named AttachmentSet is comprised of Attach1,
Attach3 and Attach4, i.e. AttachmentSet= {Attach1,
Attach3, Attach4}.

D. Formalization of Refinement Relationship

For each refinement relationship (denoted Refinement)
from modeling element of entity type x to model type y, a
binary predicate Refinement(x,y) is defined to represent
that element x points to element y by refinement edge, i.e.

(,) XMMLRefinement x y ∈S . In the metamodel shown in

Figure 8, the edge Refinement(Component,
SoftwareArchitecture) built by modeling element of
entity type Component pointing to its refined model
SoftwareArchitecture is a legal binary predicate symbol
of refinement meta-type. As can be seen from Figure 9,
there exist the following several constraint rules.
1) Type Constraint: refinement edge must start from
modeling element of entity type and end with modeling
element of model type. This can be expressed as an
implication formula named Refine1 in the form
of , . (,) () ()x y Refinement x y Entity x Model y∀ → ∧ .

2) Uniqueness Constraint: the same modeling element
of entity type cannot point to two or more refined models,
otherwise ambiguity will be produced. For example, the
metamodel in Figure 13 is illegal because the modeling
element Component points to two different refined
models SoftwareArchitectureA and
SoftwareArchitectureB. We can express this as an
implication formula named Refine2 in the form of

, , . (,) (,) ()x y z Refinement x y Refinement x z y z∀ ∧ → = .

3) Identity Constraint: the refined model that the
modeling element of entity type points to and the model
in which it is contained are identical to build multi-layer
model structure using recursive relationship. For example,
in Figure 14, the refined model SoftwareArchitectureB of
Component and the model SoftwareArchitectureA
containing it are different, so multi-layer model structure
cannot be built based on it. This can be expressed as an
implication formula named Refine3 in the form of

, , . (,) (,) ()x y z Refinement x y Containment x z y z∀ ∧ → =
. In formula Refine3, (,)Containment x y is a binary

predicate denoting model containment relationship in
which modeling element of entity type x is contained in
model type y.
4) Self-refinement Constraint: the same modeling
element of entity type cannot point to itself by refinement
edge. For example, self-refinement of Component in
Figure 10 is not allowed. We can express this as a
predicate formula named Refine4 in the form
of . (,)x Refinement x x∀ ¬ .

5) Refinement Loop Constraint: the refinement loop
formed between two modeling elements is not allowed
because it expresses a contradictory and meaningless

1324 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Figure 8. An example of metamodel

Figure 9. Refinement Figure 10. Self- refinement

Figure 11. Refinement loop Figure 12. Refinement path of two layers

Figure 13. Refinement ambiguity Figure 14.Refined and containing model

Figure 15. An example of violating Refine1

Figure 16. Refine3 and Con5 deriving Refine2

modeling intent. For example, refinement loop formed by
Component and SoftwareArchitecture pointing to each
other in Figure 11 is illegal. This can be expressed as an
implication formula named Refine5 in the form
of , . (,) () (,)x y Refinement x y x y Refinement y x∀ ∧ ≠ → ¬ .

6) Refinement Path Constraint: To maintain well-
formedness and reduce the complexity, we require that
only one layer of refinement path between two entities is
legal and two or more layers of refinement path are
prohibited. For example, two layers of refinement path
formed by ComponentA pointing to SoftwareArchitecture
and SoftwareArchitecture pointing to ComponentB in
Figure 12 is not allowed. Assume that two layers of
refinement path formed by x pointing to y and y pointing
to z is denoted as (, ,)RefinePath x y z , i.e.

(, ,) C
XMMLRefinePath x y z ∈S , (, ,)RefinePath x y z can be defined

by refinement as an implication formula in the form of
, , . (,) (,)

() () () (, ,)

x y z Refinement x y Refinement y z

x y y z x z RefinePath x y z

∀ ∧
∧ ≠ ∧ ≠ ∧ ≠ →

, so

we can express this constraint as a predicate formula
named Refine6 in the form of

, , . (, ,)x y z RefinePath x y z∀ ¬ .

Any modeling element belongs to one and only one
meta-type, on the other hand, according to the Refine1,
both ends connected by refinement edge belong to
different meta-type, therefore from the perspective the
semantics of first-order logic, we can prove the semantic
implication from Refine1 to Refine4, Refine5 and Refine6.
Theorem 4 (Semantic implication of refinement
constraint). Formula Refine1 can semantically entail
formula Refine4, Refine5 and Refine6, i.e.
Refine1╞Refine4, Refine1╞Refine5 and Refine1╞Refine6.
Proof. Any semantic interpretation that makes Refine1
true prompts refinement to satisfy the relationship that
both ends of refinement belong to different meta-type in
which one end is modeling element of entity type and the
other end is modeling element of model type; obviously,
the relationship excludes the possibility of self-
refinement of the same modeling element and also makes
it impossible to form refinement loop and two or more
layers of refinement path, thus, this interpretation
certainly makes Refine4, Refine5 and Refine6 true,
according to related definition of semantic implication of
first-order logic, theorem is proved.

Now formula set of refinement constraints contains
only Refine1, Refine2 and Refine3, are there semantic
implication relationships among them? We find that
Refine2 can be derived by identity of refinement named
Refine3 and uniqueness of the models in which the same
modeling element of entity type is contained named cont5.
In Figure 16, the modeling element x points to two
different refined models R1 and R2 by two different
refinement edges and the model M that can contain x is
unique by cont5, thus by Refine3 R1 and M are the same
modeling element of model type, i.e. R1=M, similarly, R2
and M are the same modeling element of model type, i.e.
R2=M, so R1= R2.

Only Refine1 and Refine3 left in the set and among
them there are two kinds of semantic implication
relationship. Although syntax derivation between them
cannot be directly proved, we can explain the semantic
non-implication from Refine1 to Refine3 by finding a
counter-example interpretation that makes Refine1 true
and makes Refine3 false from the perspective the

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1325

© 2012 ACADEMY PUBLISHER

semantics of first-order logic. Similarly, the semantic
non-implication from Refine3 to Refine1 can also be
explained.
Theorem 5 (Semantic non-implication of refinement
constraint). Formula Refine1 cannot semantically entail
formula Refine3, otherwise the same, i.e.
Refine1|≠Refine3 and Refine3|≠Refine1.
Proof. As a semantic interpretation of formula set
composed of Refine1 and Refine3, the metamodel shown
in Figure 14 can be expressed as a set of predicate
statements composed of
Refinement(Component,SoftwareArchitectureB) and
Containment(Component,SoftwareArchitectureA) that
makes Refine1 true and makes Refine3 false due to
violation of identity constraint, so we can derive
Refine1|≠Refine3. Similarly, the metamodel shown in
Figure 15 can be expressed as a set of predicate
statements composed of
Refinement(ComponentA,ComponentB) and
Containment(ComponentA,ComponentB) that makes
Refine3 true and makes Refine1 false due to violation of
type constraint, so Refine3|≠Refine1 can be derived.
Theorem 6 (Semantic consistency of formula set). The
formula set comprised of Refine1 and Refine3 is semantic
consistent.
Proof. As a semantic interpretation of formula set
composed of Refine1 and Refine3, the metamodel shown
in Figure 8 can be expressed as a set of predicate
statements composed of
Refinement(Component,SoftwareArchitecture) and
Containment(Component,SoftwareArchitecture). Because
Compoment belongs to entity type and
SoftwareArchitecture is an element of model type and the
refined model that Compoment points to and the model in
which it is contained are same SoftwareArchitecture, both
of them all satisfy Refine1 and Refine3. Therefore, the
metamodel shown in Figure 8 can be considered as a
semantic interpretation that satisfies the formula set, or
the formula set is satisfiable. By related definitions of
first-order logic, theorem is proved.

According to related theorems of first-order logic [12],
the formula set is grammatical consistent, thus, it is
consistent. So the formula subset of refinement
constraints named RefinementSet is comprised of Refine1
and Refine3, i.e. RefinementSet = {Refine1, Refine3}.

E. Formalization of Typed Constraints

XMML is one of typed metamodeling languages, so
the metamodels built based XMML are well-typed. On
the basis of the relevant literatures [15], we characterize
typed constraints of XMML from completeness and
uniqueness of classification of modeling elements of
entity type.
1) Completeness of Classification

Four types of meta-types of entity type are defined in
XMML to build metamodels, so their classification is
also established. Such a classification must be complete
in the sense that every modeling element of entity type
must be an instance of one meta-type of entity type;
otherwise the metamodel will become meaningless

because it contains elements not belonging to any meta-
type of entity type. We can express this as a predicate
formula named Type1 in the form
of . () () e () ()x Model x Entity x R lationship x RefEntity x∀ ∨ ∨ ∨ .

Type1 denotes that any modeling element of entity type
must belong to one of the above four meta-types.
2) Uniqueness of Classification

The classification of modeling elements of entity type
must be unique because allowing a modeling element to
belong to more than one meta-type leads to ambiguous
interpretation of the element, so we require that every
modeling element belongs to one and only one meta-type.
This can be expressed as a group of implication formulas
named Type2 in the form of

. () ()

. () ()

. () ()

. () ()

. () ()

. () ()

x Model x Entity x

x Model x Relationship x

x Model x RefEntity x

x Entity x Relationship x

x Entity x RefEntity x

x Relationship x RefEntity x

∀ → ¬
∀ → ¬
∀ → ¬
∀ → ¬
∀ → ¬
∀ → ¬

.

Number of formulas numtype2 in Type2 is combination
number produced by taking any two elements from six
elements, i.e. numtype2=4×(4-1)×0.5=6. So the formula
subset of typed constraints named TypedSet is comprised
of Type1 and Type2, i.e. TypedSet = {Type1, Type2}.

TypedSet makes it explicit that a metamodel as an
instance of XMML must have its modeling elements of
entity type completely and uniquely classified by four
types of meta-types. This reflects strict meta-modeling
principle proposed in the literature [15].

F. Formalization of Other Meta-type of Association Type

By formalizing other meta-types of association type in
the same way, we can establish formula subset of role
assignment association constraints named
RoleAssginRelaSet, formula subset of model containment
constraints named ContainmentSet, formula subset of
entity containment constraints named EntiContSet and
formula subset of reference constraints named
ReferenceSet one by one. Based on this, formula subset of
exclusion constraints named ExclusionSet is created to
represent exclusive constraints among all meta-types.
Therefore, set of constraint axioms of TXMML named

XMMLF can be considered as union of all of the above

subsets, i.e.

XMMLF = ContainmentSet∪AttachmentSet∪EntiContSet∪

RoleAssginRelaSet∪RefinementSet∪
ReferenceSet∪ExclusionSet∪TypedSet.

V. CONSISTENCY AND VERIFICATION OF XMML AND ITS

METAMODELS

Formalized system of XMML called TXMML based on
predicate calculus Q is established by formalization of all
meta-types of XMML. The semantic interpretation of
TXMML is a metamodel built based on XMML, universe of
discourse of interpretation is the set of all entity modeling
elements and constants contained in the metamodel.
Similarly, metamodel built based on XMML can be

1326 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Metamodel

Archware Metamodeling Tool

XML Format Metamodel

Constant
Generator

Formula
Generator

Statement
Generator

Additional

Semantics

Automatic Theorem Prover SPASS

Logic system for metamodel

Constant Statement Formula Formalized System

of XMML TXMML

MapM

Figure 17. Logical architecture of MapM

Figure 18. Running interface of MapM

formalized via metamodel mapping from metamodel to a
set of predicate statements.

Once XMML and metamodel are formalized based on
first-order logic, we can implement logical consistency
verification of XMML and its metamodel based on first-
order logical inference.

A. Consistency and Verification of XMML

It is not easy to find a true interpretation for constraint
axiom set

XMMLF of TXMML to prove semantic consistency

of TXMML , on the other hand, It is very difficult to derive
grammatical consistency of

XMMLF by hand-proving due to

too many formulas contained in
XMMLF , so we can only

prove logical consistency of TXMML based on automatic
theorem prover. Reference to the literature [15], we give
the following definition.
Definition 2 (logical consistency of XMML). XMML is
logically consistent iff the constraint axiom set

XMMLF of

TXMML is proved to be logically consistent in the
automatic theorem prover; XMML is logically
inconsistent iff the constraint axiom set

XMMLF of TXMML is

proved to be contradictory in the automatic theorem
prover, denoted

XMMLF ├ False.

B. Consistency and Verification of Metamodel

If TXMML is proved to logically consistent, then XMML
must have an interpretation that can be satisfied, thus it is
meaningful to discuss properties of metamodels built
based on XMML. From the point of view of
formalization, a legal metamodel is an interpretation that
satisfies all constraint formulas of

XMMLF , so the

relationship that metamodel satisfies XMML is
equivalent to the relationship that the interpretation of
TXMML satisfies TXMML. By equivalence of satisfaction
relationship and logical consistency, we can obtain
determination method of consistency of metamodel built
based on XMML.
Inference 1 (logical consistency of metamodel). If
union of constraint axiom set

XMMLF of TXMML and set of

first-order predicate statements TL(M) generated via
metamodel M is logically consistent, then the metamodel
M is consistent; instead, if union of constraint axiom set

XMMLF of TXMML and set of first-order predicate statements

TL(M) generated via metamodel M is logically
inconsistent, denoted

XMMLF ∪TL(M)├False, then the

metamodel M is inconsistent.

VI. DESIGN AND IMPLEMENTATION OF MAPM

Formalization automatic mapping engine for
metamodel called MapM (Mapping of Metamodels) is
designed and implemented to finish automatic translation
from metamodel based on XMML concrete syntax scheme
to the corresponding set of first-order predicate
statements TL(M) in SPASS format [16], thus we can
realize automatic process of analysis and verification of
consistency of metamodel built based on XMML. Logical
architecture of MapM is shown in Figure 17.

Based on .net 2.0 platform, by using C#.net as
development language, we implement the corresponding
prototype system for MapM and integrate them in the
modeling environment named Archware [12] of XMML,
thus it becomes possible for Archware to verify
metamodels built based on XMML. Running interface of
MapM is shown in Figure 18, its left window shows
XML format document of metamodel produced by
Archware and the corresponding first-order logic system
in SPASS format generated by translation of MapM is
showed in right window.

VII. CONCLUSIONS

The paper’s work derives from Yunnan Province
Department of Education Research Fund Key Project
(No.2011z025). DSMML defined in the informal way
cannot precisely describe its structural semantics, which
makes it difficult to systematically verify its properties
such as consistency. In response, the paper proposes a
formal representation of the structural semantics of
DSMML named XMML designed by us based on first-

JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012 1327

© 2012 ACADEMY PUBLISHER

order logic. And then we illustrate our approach by
formalization of attachment relationship and refinement
relationship and typed constraints of XMML based on
first-order logic. Based on this, the approach of
consistency verification of XMML itself and metamodels
is presented. Finally, we design and implement the
corresponding formalization automatic mapping engine
for metamodel to show the application of formalization of
XMML.

ACKNOWLEDGMENT

The author would like to thank Prof. Hua Zhou, Dr.
Xinping Sun and Dr. Yong Yu for valuable discussions.
This work was supported by Yunnan Provincial
Department of Education Research Fund Key Project (No.
2011z025) and General Project (No. 2011y214).

REFERENCES

[1] Miller J, Mukerji J, MDA guide version 1.0.1.
http://www.omg.org/ docs/omg/03- 06-01.pdf, 2003.

[2] dsmforum, Enterprise apps in smartphones,
http://www.dsmforum.org/phone.html..

[3] Jackson.E.K, Sztipanovits.J, “Formalizing the Structural
Semantics of Domain-Specific Modeling Languages”,
Journal of Software and Systems Modeling, 2008.

[4] B´E ZIVIN, J., AND GERB´E, O, “Towards a precise
definition of the omg/mda framework”, in Proceedings of
the 16th Conference on Automated Software Engineering
(ASE 01) (2001), pp. 273–280.

[5] CSERT´A N, G., HUSZERL, G., MAJZIK, I., PAP, Z.,
PATARICZA,A., AND VARR´O, D. “Viatra - visual
automated transformations for formal verification and
validation of uml models”, in ASE (2002), pp. 267–270.

[6] EVANS, A., FRANCE, R. B., AND GRANT, E. S,
“Towards formal reasoning with uml models”, in
Proceedings of the Eighth OOPSLA Workshop on
Behavioral Semantics.

[7] MARCANO, R., AND LEVY, N, “Using b formal
specifications for analysis and verification of uml/ocl
models”, in Workshop on consistency problems in UML-
based software development.5th International Conference
on the Unified Modeling Language (2002), pp. 91–105.

[8] W.Andreopoulos, “Defining Formal Semantics for the
Unified Modeling Language”, in Technique Report of
University of Toronto[C], 2000, Toronto.

[9] K. Kaneiwa and K. Satoh, “Consistency Checking
Algorithms for Restricted UML Class Diagrams”, in 4th
International Symposium on Foundations of Information
and Knowledge Systems (FoIKS 2006)[C], LNCS 3861,
2006. p.19 - 239.

[10] R. F. Paige, B. P. J, “Metamodel-Based Model
Conformance and Multiview Consistency Checking”,
ACM Transactions on Software Engineering and
Methodology, 2007. 16(3): p. 1-49.

[11] Jackson.E.K, Sztipanovits.J, “Towards a formal
foundation for domain specific modeling languages”,
Proceedings of the Sixth ACM International Conference

on Embedded Software (EMSOFT'06) (October 2006) 53-
62.

[12] Sun XP, A Research of Visual Domain-Specific Meta-
Modeling Language and Its Instantiation, Kunming:
Yunnan University.2008.

[13] Gu TL, Formal methods of software development, Higher
Education Press, Beijing, 2005.

[14] Cheng MZ, Yu JW, Logic foundation—first-order logic
and first-order theory, Chinese People University Press,
Beijing, 2003.

[15] H. Zhu, L. Shan, I. Bayley, and R. Amphlett, “A Formal
Descriptive Semantics of UML and Its Applications”, in
UML 2 Semantics and Applications, K. Lano (Eds). 2008,
John Wiley & Sons, Inc.

[16] Christoph Weidenbach, SPASS: Tutorial, 2000.

Tao Jiang was born in Kunming, China,
in 1973. He received his B.Sc. degree in
Computer Software from Nanjing
University, China in 1995 and received
his M.Sc. degree in Computer Software
and Theory from Yunnan University,
China in 2003 and received his Ph.D.
degree in Information Systems Analysis
and Integration from Yunnan University,

China in 2010. The major fields of his studies involve multiple
branches of Software Engineering.

During 1996-2005, he worked as a Software Engineer in the
Department of Information Technology, China Construction
Bank. Currently, he is an Associate Professor in School of
Mathematics and Computer Science, Yunnan University of
Nationalities.

His research areas cover Domain-Specific Visual Modeling,
Modeling Formalization, Model Verification, Formal Method of
Software Development and Web Application and so on. He has
more than 20 published scientific papers in international
conferences and journals.

Xin Wang was born in Kunming, China,
in 1963. He received his M.Sc. degree in
Software Enigeering from Yunnan
University, China in 2006. The major
fields of his studies involve Software
Engineering and Data Mining and so on.
Currently, he is a Professor in School of
Mathematics and Computer Science,
Yunnan University of Nationalities. His

research areas cover Model Checking, Formal Method of
Software Development, Database Application and Data Ming
and so on. He has more than 10 published scientific papers in
international conferences and journals.

1328 JOURNAL OF SOFTWARE, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

