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Abstract—Energy efficiency is a major concern in the 
General Programming on Graphic Process Unit. Recent 
research focus on the measurement approach and energy 
optimization of Graphic Process Unit. Few studies provide 
insight to where and how power is consumed from the 
program perspective. The aim of this research was to build 
power consumption model to estimate the energy 
consumption for the application programmers. Program 
slicing was used to decompose the programs into slice set. 
The program slice as basic unit was to measure and analyze 
the program power consumption. We consider the 
computation intensity and the number of active SMs that 
have directly impact on energy consumption. Aiming to the 
sparseness-branch and denseness-branch programs, two 
power consumption prediction models were proposed. The 
experimental results show that the average relative error of 
the two prediction models are less than 6 percent. We 
conclude that the power consumption prediction models can 
effectively estimate the energy consumption of applications. 
 
Index Terms—Power Consumption Model, GPU 
Computing, CUDA, Program Slicing 
 

I.  INTRODUCTION 

With Compute Unified Device Architecture (CUDA) 
launched by NVIDIA and the development of 
applications of GPU (Graphic Process Unit) in the High 
Performance computing field the power consumption of 
GPUs increase rapidly. The energy measurement and 
optimization for GPUs has received much attentions in 
recent years due to the development of Green 
Computing[1]. Jiao. et al. showed the different power 
characterizations of GPU computing and investigated the 
relationship between power consumption and different 
computational patterns under various voltage and 
frequency levels[2]. Shaikh et al. measured the power 
consumption of different instructions in GPU computing. 
The results provide valuable data for the GPU power 
optimization[3]. One attempt to improve our 
understanding of power and performance is the research 
work to propose a prediction model for GPU computing. 
The prediction model can optimize the power 
consumption by setting the optimal number of active 
cores to execute the computing tasks[4]. In addition, 
some researchers have studied the power efficiency of 

GPUs clustering. Jeremy et al. used one technique to 
measure the GPU clustering power that is a very 
inexpensive, non-intrusive method for GPUs clustering 
monitoring system  in order to improve the performance-
per-watt of GPU applications[5]. PowerPack is a 
comprehensive hardware-software framework for 
performing an in-depth analysis of the energy 
consumption of parallel applications on a multi-core 
systems. The PowerPack no longer measures the 
componet power consumption alone and considers the 
correlation between the power consumption of a 
component and the software executing on the system[6]. 

To improve the energy efficiency of GPU computing 
systems and applications, it is critical to profile the power 
consumption from the software perspective. The 
instruction level is the first level to measure and optimize 
the power consumption. Sylvain et al. measured the 
power consumption of the arithmetic operations and 
memory accessing operations on three typical GPU 
architectures[7]. The function or procedure level is the 
second level to analyze the processor energy consumption. 
Some researchers had analyzed and quantified the CPU 
power consumption[8]. Wang et al. proposed kernel 
fusion method to reduce energy consumption and 
improve power efficiency on GPU architecture[9]. 
However, measuring and analyzing power consumption 
at the instruction level is fine-grained approach that is 
difficult to apply into the practice. On the other hand, it is 
course-grained power analyzing approach from the 
function level that has poor accuracy. The program 
slicing between the instruction and the function level is 
an effective way to analyze the power consumption of 
GPUs from the software perspective in practice. To our 
best knowledge, little attention has been paid to the 
program slice level of granularity to analyze the power 
consumption model. 

Our goal is to build a power consumption model for 
the GPU applications and allow the programmers to 
estimate their program’s power consumption by scanning 
the source code. So our research work belongs to the 
GPU power measurement and analysis from the software 
perspective. To address this issure, we build the power 
consumption model at the program slice level. Compared 
to the instruction and the function levels, our approach is 
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more practical than the former. And it is a more accurate 
way than the one from the function level. In this paper, 
the programs are decomposed by the program slicing 
technology. The program slice as power consumption 
unit is to measure the whole power consumption of GPU 
programs. Aiming to the sparseness-branch programs and 
denseness-branch programs, we proposed two different 
power consumption models that can support the power 
managment and the optimization of the GPU computing.  

The remainder of this paper is organized as follows: 
Section 2 presents the power consumption measurement 
scheme for GPUs and the program slicing technology. 
The detailed power consumption models for the two 
different kind programs are provided in section 3. Next, 
we analyze the validity of the power consumption models 
through the experiments in section 4. Finally summarizes 
our research and future work. 

II.  RELATION WORKS 

A.  Measurement Description 
The power measurement is the basic problem to the 

power consumption model. The power supplies of High-
End GPU come from the PCI-E and the extra power. We 
only consider the external power supply due to 
inaccessibility to the PCI-E interface power pin. A simple 
current data acquisition card was designed and used to 
measure the energy consumption. The probe sensor in the 
current acquisition card converts the measured current to 
corresponding voltage signals through the current sensor 
ACS713-20T. The microprocessor Atmega168 of the data 
acquisition card is responsible to convey the AC signal to 
DC signal. And the USB controller FTDI 232RL send the 
signal data to the computer system to record the variation 
of the power of  the GPUs.  

 

B. Program Slicing 
Program slicing is a well known program analysis 

technique that is widely used in program comprehension, 
testing, debugging, re-engineering and software 
maintenance fields[10]. A program slice is a statements 
set affected given variables. So the program slicing is a 
program decompose technique to reduce the scope of the 
program analysis and understanding.  

The applications of GPUs is a set of Kernel functions, 
namely P = {K1,K2,…,Km}. And the kernel function is a 
set of program slice. K = {C1,C2,Ci,…}, Ci represents the 
ith program slice, K denotes the kernel function running 
on the GPUs. Ci is triple (K, S, V), K represents the 
kernel function, S is the statements set relating to V and 
V is the variable affected in S. Then we explain how to 
slice a Kernel function by an concrete example.  

We decompose the kernel function shown in Fig.1(a) 
by mean of the static sclicing. A slice is denoted as C1 = 
( K, S, patlen ) shown in Fig.1(b). Patlen is the variable in 
the slice C1 and S is the statement set affected this 
variable. This kernel function may be decomposed as K = 
( C1,C2,C3 ), C1 = ( K, S1, patlen ), C2 = ( K, S2, charnum ) 
and C3 = ( K, S3, pchar ). However the slicing form is not 

constant. This kernel function may be decomposed in 
other forms. Such as, K = ( C1,C2 ), C1 = ( K, S1, 
patlen ),C2 = ( K, S2, charnum, pchar ).  

 

 
Figure1. (a). Source code of Kernel Function 

 
 Figure1. (b). Program Slice 

To determine the slicing form for the kernel function, 
we use the variable type to divide the slices. There are 
global memory, shared memory, constant memory and 
texture memory in GPUs and denoted as GM, SHM, CM 
and TM respectively. The variable set in the GPU 
program can be grouped into four different types 
according to the memory locations. Regardless the 
register file in GPUs, the kernel function should be 
decomposed as a constant form, namely K = 
( CGM ,CSHM,CCM, CTM ).  

Being different in the energy consumption of accessing 
the different memory areas, we should measure the power 
consumption of memory accessing slices by experiments. 
The NVIDIA Geforce GTX280 GPU was selected in our 
experiments. For the sake of simplicity, we replace the 
program slices with specific kernel functions that contain 
the identical accessing statements. In order to record the 
experimental results accurately, the executing time of 
each kernel fucntion should be above 50ms. The four 
memory accessing kernels denote as GM,SHM,CM and 
TM, As shown in Figure 2. The peak value of shared 
memory accessing reaches to 135W. The global memory 

if ( inner_id != block_per_group -1) 
{ 

charnum = tex2D(x1)-tex2D(x2); 
patlen = tex2D(x2)- tex2D(x3); 
pchar = tex2D(x4) * tex2d(x1); 

} 
else{ 

if ( threadIdx.x < patNum-inner_group) 
{ 

charnum = tex2D(x4)-tex2D(x6); 
patlen = tex2D(x5)- tex2D(x7); 
pchar = tex2D(x3) - tex2d(x1); 

 
} 
else 
{ 

patlen = tex2D(x8)- tex2D(x9); 
} 

if ( inner_id != block_per_group -1)               
{                                          
        patlen = tex2D(x2)- tex2D(x3); 
 }                                          
else{                                       

if ( threadIdx.x < patNum-inner_group)         
{                                        

        patlen = tex2D(x5)- tex2D(x7);              
}                                                                      
else                                      
{                                        

patlen = tex2D(x8)- tex2D(x9);              
  }                         
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accessing and texture memory accessing are between 
71W and 75W. In the most case the energy consumption 
of texture memory accessing is lower than the global 
memory accessing due to the cache. The constant 
memory energy consumption fluctuates between 65W 
and 68W and is the minimum value among the four 
memory accessing patterns.                                 
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 Figure 2 Energy Consumption of four Accessing Patterns 
 

In order to normalize the four different memory 
accessing patterns, we unify the different memory 
accessing statements into unified form by mean of the 
proportional coefficient. The proportional coefficient for 
GM,SHM,CM,TM represent λ0, λ1, λ2 and λ3 respectively.. 
Setting the global memory accessing pattern is norm 
pattern, namely λ0 =1, since the global memory accessing 
operations occur most frequently in the GPGPU programs. 
Assume that a program slice Ci includes GM accessing 
statements x1, SHM accessing statements x2, CM 
accessing statements x3 and TM accessing statesment x4. 
Expressed in a formula, the number of unified memory 
accessing statements X can be written as . 

 0 1 1 2 2 3 3 4 X =  λ   x  +  λ   x  + λ   x  + λ   x           (1)  
The proportional coefficients for GTX 280 obtained 
through the experiments are set as follows, λ1 = 1.67, λ2 = 
0.91, λ3 = 0.95. 
C.Computation Intensity 

The computation intensity was introduced to quantify 
the GPUs performance. It is defined by the ratio between 
the number of arithmetic operations and the number of 
memory accessing operations[11]. Here we take the 
power consumption as an important factor to redefine the 
computation intensity. Different in the power 
consumption incurred by the different memory accessing 
patterns, we don’t treat the different memory accessing 
statements as the same one compared to the definition of 
computation intensity in literature[11]. So the 
computation intensity from the power consumption 
perspective can be  defined as equation 2. 

( )0 1 2 3

#AA = 
#A+λ GM + λ SHM + λ CM+ λ TM ∑ ∑ ∑ ∑

      (2)  

Where A denotes the computation intensity from the  
power consumption perspective, the number of the 
arithmetic statements represents #A and 

0 1 2 3λ GM + λ SHM + λ CM+ λ TM ∑ ∑ ∑ ∑ is the number of 
memory accessing statements.  

III.  POWER CONSUMPTION MODEL BASED ON SLICE 

A. Regreesion Model of Program Slice 
To build power consumption model for applications, 

the power consumption of program slicing should be 
considered and measured due to the fact that  the program 
is composed of many slices. The computation intensity of 
applications changing, the power consumption will 
change as well. So we investigated the power 
consumption of slices and built a prediction model for the 
slices. It is difficult to directly measure the power 
consumption of program slices. Then we use the kernel 
function to substitute the program slice with the identical 
computation intensity. Many different computation 
intensity kernels are designed in the experiments, theirs 
executing time being greater than 50ms. 

Computation Intensity
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Figure 3 Variation of Power Consumption with Different Computation 
Intensity on GTX280 
 

Fig.3 shows the variation of power consumption with 
the different computation intensity to the kernel functions. 
We obtain the following observations from this figure: 1) 
when the computation intensity is greater than 0.2, the 
power consumption increases proportionally. 2) when the 
computation intensity is less than 0.17, the power 
consumption drops noticeably from 138W down to 83W, 
indicating that these memory-intensive computation 
kernels include more shared memory accessing 
operations that consume much more energy. In general, 
there are few computation tasks in practice whose 
computation intensity are less than 0.2 because such 
computation tasks are unsuitable for the GPUs. So we 
neglect the tasks whose computation intensity are less 
than 0.2 and  consider the computation intensity from 0.2 
to 0.9 to build the power consumption model through 
linear regression analysis. Given the computation 
intensity is independent variable x and the power 
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consumption is dependent variable y. Then the regression 
function shown in Equ.3 is obtained with least square 
method. 

( ) 69.4 34.5f x x= +                                 (3) 

B. Active number of SMs 
The number of active cores inside a chip, especially in 

GPUs, is an important factor to be considered for the 
energy consumption, because we can achieve speedup by 
launching more active cores but with increased total 
energy consumption. Then we investigate the correlation 
between the number of active stream multiprocessor and 
the power consumption. Currently, the number of Stream 
Multiprocessor (SM) in the GPUs is increasing 
dramatically. For example, NVIDIA GeForce GTX 280 
has 30 streaming multiprocessors with 240 Stream 
Processors (SP). The computing performance increases 
with more SMs, but the power consumption increases 
accordingly[4]. To further improve the accuracy of the 
power consumption model, the number of active SMs 
should be considered and investigated the variation of 
energy consumption with changing the number of active 
SMs. In the experiment, the matrix multiplication whose 
computation intensity is 0.506 is selected to measure the 
power consumption with different SMs. 
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 Figure 4 GTX 280 Power Consumption vs. Active SMs 
As shown in Fig.4, the maxinum power delta between 

using only one SM and all SMs is about 30W. This can 
prove that the number of active SMs is an significant 
factor  to the power consumption model. It is evident that 
the power consumption does not increase linearly as 
increasing the number of active SMs. The curve indicates 
a Non-linear relationship between the energy 
consumption and the number of active SMs. 
Consequently, the Non-linear regression function is built 
as follows. 

0 10( ) log ( )P n b nμ α β= + +                      (4) 
Where b0 is the initial value and b0 = 90, μ is scale factor 
that relies on the GPU architecture, n is the number of 
active SMs, the coefficients parameters α, β set 
respectively to 4.5 and 2.1. Then the same experiments 
were performed on the Low-End GPU NVIDIA GT200 
with six SMs. The maxinum power delta between one 

SM and all SMs is only about 3.2W. Comparing Fig. 4 
and 5 show that the number of active SMs has different 
impact on the power consumption to the different GPU 
architectures. The Nonlinear regression function for 
GT200 is as follows. 

10( ) 64.5 3.3log (2 2.1)P n n= + +                      (5) 
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Figure 5 GT200 Power Consumption vs. Active SMs 

C. Power Consumption Model of Slice 
The approach used in this study aims to predict the 

power consumption of applications by the program slices. 
The program slice is a fine-grained power measurement 
level. Using the computation intensity based on energy 
consumption, we distinguished the power consumption 
between the computation instructions and the accessing 
instructions. Finally, the power consumption can be 
modeled by taking the computation intensity and the 
number of active SMs as shown in Equation 6. 

i i active
10

bench

#SM
P (x,n) = f (x) + [ log ( )]

#SM
i i inμ α β+        (6) 

The final power consumption model is composed of 
two parts. The first part is obtained by the equation 3 and 
the input parameter is the slices computation intensity. 
The second part can adjust the power consumption 
accordingly to the number of active SMs for different 
applications and the input parameter is the number of 
active SMs. In the equation 6, #SMbench is the number of 
SMs used in the experiments that determines the 
regression analysis function. #SMactive denotes the number 
of active SMs in the program slices.  

D. Average Computation Intensity Model (ACIM) 
The purpose of our study is to build power 

consumption model for programs. Suppose that the 
program P = {C1,C2,…,Cn}, where iC is the slice length 
calculated by counting the statement number in the slice 
Ci. iA represents the computation intensity of slice Ci. 
Then the power consumption of P is shown in Equation 7. 

n
i

i=1
GPU_P = (A , n) ti iP ×∑                        (7) 

 From this equation, we can see that the program 
energy consumption is the sum of all the slices’ power 
consumption. However this power consumption model is 
ideal scheme due to the fact that is difficult to apply into 
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the practice. The reason is that the executing time of each 
slices can not to be measured. To address this problem, 
the average computation intensity metric is introduced to 
evaluate energy consumption of programs. As shown in 
Equation 8, A denotes the Average Computation 
Intensity (ACI). 

1 2 n1 2 n

i i i
1 1 1

C C C
A ( A A ... A )

C C C
n n n= + + +

∑ ∑ ∑
       (8) 

Suppose the executing time is T, the average computation 
intensity power consumption model (ACIM) is 

GPU_P = P ( A , n ) T×                       (9) 

TABLE I.   

 Identifier Maching 
Target Identifier 

Kernel Function __global__,__device__ 
Shared Memory __shared__ 

Constant Memory __constant__ 
Texture Memory texture,cudaArray 
Global Memory cudaMalloc 等 

Arithmetic Operation +,-,*,/,<<,>>,% 
Memroy Accessing = 

In this work, we should explore an approach for 
calculating average computation intensity of program that 
need to solve three key problems as follows. (1) How to 
distinguish the different memory accessing patterns. Our 
apporach is to scan and match the identifiers which are 
used to direct the CUDA complier. These identifiers are 
listed in the tableⅠ  [12]. For example, the variables 
located in the shared memory can be determined by the 
identifier __shared___. (2) How to distinguish the 
arithmetic and the memory accessing operations. In most 
cases the arithmetic operations and the memory accessing 
operations couple with closely. So the program statement 
may be transformed several logical statements 
accordingly to the operator symbols. Such as, (*Vect0) = 
m0 + m3. This statement may be decompsed two logical 
statements. The first one is a arithmetic logic statement, 
m0 + m3. And the other one is a memory accessing logic 
statement. (3) The last problem is to unroll the loop 
structure in a program in order to count the statements in 
loop body. Initially each slice is divided into many 
smaller blocks. Subsequently the loop body in each 
blocks are extracted by scanning the source code. After 
the unrolling process each statement in loop is added a 
count field recorded cycle index. The loop unrolling 
algorithm is as follows. 
Algorithm3.1 Loop Unrolling in Slice 
Input: Slice C = {B1,B2,...,Bk} 
Output: Unrolled Slice C = {S1,S2,...,Sn} 

1.For Bi = B1 to Bk do  
2. For each Sj in Bi do 
3.  Sj.count = 1; 
4. Endfor 
5.Endfor 
6. For Bi = B1 to Bk do 
7. If Bi is LoopBlock then  
8.  Search the iteration_number in Bi; 
9.  For each Sj in Bi do  

10.  Sj.count = cycle index; 
11.  Endfor  
12. Endfor  
13. return C{ S1,S2,...,Sn} 

In the loop unrooling algorithm, firstly each statement 
initializes the count field (line 1-5). Then matching the 
loop keywords is to extract the loop body (line7). When a 
loop is identified in the block, the cycle index is 
calculated by analyzing the source code (line 8). The next 
step is to set  the count field of each statement by the 
cycle index (line 9-11). When the algorithm stops, the 
result is a set of the logic statements that have no loop 
body (line 13).  
Algorithm3.2 Average Computation Intensity 
calculating  
Input: Slice Set{Cgm,Cshm,Ccm,Ctm}, Operator Sets 
OPc,OPm； 
Output: average computation intensity A ； 

1.For Ci = Cgm to Ctm do  
2.  For each Cij in Ci do  
3.   For each Si in Cij do  
4.     If Si.op ∈OPc then  
5.      #c = #c+ Si.count; 
6.     Elseif Si.op ∈OPm 
7.      #m = #m+ Si.count; 
8.    Endfor 
9. Endfor  
10. A = #c/#m; 
11. Return A . 

 
Assume that the program P consists of four different 

slice sets, P = {Cgm,Cshm,Ccm,Ctm}, Cgm
i∩Cgm

j = Ф. The 
arithmetic operator set and the memory accessing 
operator set denote OPc and OPm respectively.  

In the algorithm 3.2, the loop is to traverse each 
statements in each slice (line 1-3). If the statement has 
arithmetic operator, the arithmetic counter variable #c 
will be added (line 4-5). If the statement has memory 
accessing operator, the memory accessing counter 
variable #m will be increased (line 6-7). Finally, the 
average computation intensity is the ratio of the variable 
#c and the variable #m (line 10).  

E. Probabilistic Slicing Model (PSM) 
The average computation intensity model remains a 

significantly limitation that is unsuitable to predict the 
power consumption of the denseness-branch programs. In 
fact, there are plenty of denseness-branch programs due 
to the diversity and complexity of applications. The 
limitation of average computation intensity model will be 
discussed as follows. 
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Figure 6. Denseness-branch Program 

 
   Figure 6 shows a denseness-branch kernel which will 
motivate the probabilistic slicing[13]. The energy 
consumption of this slice is the product between the 
execution time and the average computation intensity. 
The average computation intensity is calcuated the mean 
value of the statements in line 7, 8 and 10. Table 2 shows 
the branch outcome frequencies.  

TABLE II.   

 Probabilities of Conditional Branch Outcomes 
Line Test #executions #then’s  #else’s 

5 condition1 10000 1570 8430 
6 condition2 1570 1560 10 

 
    From table II, the statement at line 8 has a executing 
probability of 0.001, so we may ignore the infrequent 
branch statement. However, this statement at line in 
ACIM make more contribution to the average 
computation intensity. This example illustrates that the 
average computation intensity model is not suitable for 
the denseness-branch programs.  

The Probability Slicing Model (PSM) is proposed to 
handle the denseness-branch programs. The main idea of 
PSM is to calculate the computation intensity of program 
by incorporating probability information. It will be 
possible to remove infrequent statements as well as 
irrelevant statements in calculating the computation 
intensity process. Assume that the slice Ci in the program 
P includes two sub-slices Ci1 and Ci2. If the executing 
probability of Ci2 is less than specific threshold. The 
computation intensity of Ci2 will be ignored and only use 
the Ci1’s computation intensity as the whole program’s 
computation intensity. 

Then we discuss how to obtain the probability of the 
branches. The main idea of the approach is used the 
historical data to predict the future data. Firstly, select 
some data to calculate the braches probability of the 
specific programs. Assume that the probability results 
obtained by the test data will be available to future data 
that are in the executing phase of the specific programs. 
   Given P contains program slice sets, P = (C1,C2,...,Cn). 
The probability vector pi <pi1,pi2,...,pim> is the executing 
probability for each sub-slices Ci (Ci1,Ci2,...,Cim). The 
computation intensity of all the sub-slices for Ci 
represents <ai1,ai2,...,aim>. Then the computation intensity 
calculating algorithm is as follows. 
 

Algorithm3.3 Computation Intensity calculating of 
PSM 
Input: <p1,p2,...,pi,...,pn>, <ai,ai,...,ai> δ ; 
Output: the computation intensity of Program A; 

1.For Ci = C1 to Cn do  
2.  For Cij = Ci1 to Cim do  
3.   If Pij > δ  then 

4. 
1

A += 
m

ij ij ij
j

p p a
=

×∑  

5.  End for  
6.End for 

 
Finally, PSM is as shown in Equation 10. 

GPU_P = P ( A , n ) T×                      (10) 
 Where T is the executing time of program, A is the 
Computation Intensity of the Probability Slicing (PSCI) 
obtained by the algorithm 3.3. And n is the number of 
active SMs. 

IV.  EXPERIMENTS 

The goal of the experiments is to verify the accuracy of 
the power consumption model by comparing the 
prediction value and the measured one. Our testbed is an 
Intel Core 2 processors, 2G DDR RAM, 320G SeaGate 
HardDisk and NIVIDA GeForce GTX280 card with 602 
MHZ core frequency and 1107 MHZ memory frequency. 
The operation system is Windows XP Profession with 
CUDA toolkit2.3 and the driver version is CUDA 190.29. 
A.Average Computation Intensity Model 

 In this experiment, we selected four GPGPU 
applications to verify the power consumption model for 
the sparseness-branch programs[14]. As shown in Table 
Ⅲ, these applications are the sparseness-branch programs. 
The computation intensity of these applications range 
from 0.18 to 0.93 on a 0 to 1 scale. The experimental 
results show that the relative error between the prediction 
value and the meassured value are not more than 6%. 
These  data enable us to conclude  that ACIM is available 
for the sparseness-branch programs.  

TABLE III.   

Experimental data of average computation intensity model 

 
B. Probability Slicing Model 

 To verfiy the probability slicing model, these 
applications Discrete Cosine Transform (DCT), String 
greping and H.264 decoding were selected in this 
experiments. Compare to the DCT algorithm, the string 
greping algorithm and H.264 decoding algorithm have  
more branch statements[15]. From the table �, the 
computation intensity of DCT based on probability is less 
than the average computation intensity. So the estimated 
value of probability model is less than the ACI value and 
the relative error is 2.4% that is also less than the average 

Bench
mark 

Description ACI ACIM Messured 

Dotp Matrix dotproduct 0.574 114.6 119.5 
Madd Matrix multiply-add 0.921 101.2 105.6 

Dmadd Matrix double multiply add 0.927 102.1 108.2 
Mtrans Matrix Transpose 0.182 86.8 92.3 

1：int v1,v2,v3,v4 
2:  v4 = input(); 
3:  v2 = 0; 
4:  v3 = -2; 
5：if (condition1) 
6： then if (condition2) 
7:       then v1 =3; 
8:       else v2 = 5 * v4/v1; 
9:   else  
10:      v1 = 10; 
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computation model 3.8%. The relative error delta in the 
string greping algorithm and H.264 decoding algorithm 
are more greater than the DCT algorithm due to more 
branch statements. We can conclud that PSM is prior to 
ACIM to the denseness-branch programs. 

TABLE IV.   

Experimental Data of PSM 
Benchmark Description ACI PSCI ACIM  PSM  Messured 

DCT Discrete 
Cosine 
Transform 

0.724 0.676 125.4 123.5 120.6

cugrep String 
greping 

0.532 0.725 110.5 117.1 114.2 

cuh264 H.264 
decoding  

0.623 0.9478 108.14 119.7 122.3 

V.  CONCLUSION 

We presented program slicing method for power 
profiling and evaluation of General-Computing GPU 
applications at the program slice granularity. With the aid 
of static program slicing technique, we quantified the 
power consumption of applications on the current and 
emerging GPU high-performance computing field. Two 
important factors that are the number of branch 
statements and active SMs are considered. The GPGPU 
programmers can use this power consumption model to 
analyze theirs application’s energy consumption profile. 
So it also be used to optimize the power consumption in 
the GPGPU field. In our future work, we will improve the 
power consumption model to adapt to various GPU 
architectures and further enhance the prototype 
functionalities. Such as extracting the code area that 
comsume more energy than other areas will be designed. 
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