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Abstract—Hancock and Setzer [10] describe how Haskell’s
monolithic IO monad can be decomposed into worlds when
working in a dependently typed language, like Martin-Löf’s type
theory [15].

This paper introduces the notion of world map and shows
that worlds and world maps form a category with arbitrary
products. The construction of the category is carried out entirely
in type theory and directly implementable in dependently typed
programming languages.

If we let the notion of world replace the standard notion of
interface, and the notion of world map replace the standard
notion of component, we get a rigorous paradigm for component-
based development. This new paradigm is investigated and
several applications are given. For example, the problem of
session state is given a very clean solution (p. 8).

Index Terms—functional constructs, components, functional
programming, semantics of programming languages

INTRODUCTION

H ISTORICALLY, IO has been a weak spot for pure

(side effect free) functional programming languages.

The seminal functional programming language FP [3] com-

pletely lacked IO facilities; early versions of Haskell used

stream based IO [12]; and there is still no consensus about

how to perform IO in Martin-Löf’s type theory [15].

This paper builds on the work of Hancock and Setzer [10]

on worlds and interactive programs. Their work builds on

Moggi’s work [17] on monads in functional programming and

is presented in the language of Martin-Löf’s type theory [15].

Today, monads are at the core of Haskell’s IO system,

and any computation with side effects has to be wrapped

in a monad. Haskell monads have been very successful, but

monads’ unwillingness to compose has been an obstacle.

[14]: Soon, however, it became clear that despite the

undoubted value of monads from both the semantic

and programming perspectives, composing monads

would prove to be a significant challenge. Put briefly,

monads just do not seem to compose in any general

manner.

Worlds were originally an attempt to solve these problems,

i.e., to provide compositional IO and state manipulation based

on dependent type theory. World maps, introduced in this

paper, takes this idea one step further and suggests a whole

new component-based paradigm based on a category of worlds

and world maps.

My grand vision is that the component-based paradigm

eventually will replace the object-oriented paradigm as the

leading paradigm of software development. Every long journey

starts with one step. . .

Email: georg.granstrom@gmail.com. Current affiliation: Google Zürich
Gmbh, Brandschenkestrasse 110, 8002 Zürich.

Main results
A world w is a dependently typed pair

(x : |w|, w@x),

where |w| is a set and w@x is a set, for any x : |w|.
For a world w, there is a monad whose type constructor

maps a set A to the set

w ⇒ A

of interactive programs over w (Thm. 2). The intuition behind

the notation w ⇒ A is that an object of this type maps a

realization of w to an element of A.
Given two worlds w1 and w2, an object of the dependent

function type

w1 � w2 ≡≡≡ (x : |w2|) → (w1 ⇒ w2@x)

is called a world map (p. 4). The intuition behind the notation

w1 � w2 is that an object of this type maps a realization of

w1 to a realization of w2.
There is a category Wm of worlds and world maps, and

this category has arbitrary products (Thms. 5, 6).
There is a full and faithful contravariant functor from the

category Wm to the category Mnd of monads and monad

morphisms (Thm. 7).
The notion of world generalizes the standard notion of

interface (p. 6) familiar from object-oriented programming;

and a world map

c : r � p,

where r and p are interfaces (worlds), can be viewed as a

component with required interface r and provided interface p.
Several natural applications of worlds and world maps to

component-based development are given in Section III. For

example, the problem of session state is given a very clean

solution (p. 8).

Notation
This paper uses standard notation from functional program-

ming and type theory, summarized in Table I. The usual

conventions of functional programming are that application is

left associative and binds higher than infix operations, and that

arrows are right associative. The priority of infix operations

should always be clear from the context, but, as a general

rule, relational operators have lowest priority, then arrows, and

finally arithmetic operators. For abstraction, I have revived the

notation x̂ b from Russell [18, p. 250]. As usual, the scope of

the bound variable is as far right as possible.
In Martin-Löf’s type theory, it is customary to employ the

full Curry-Howard correspondence between propositions and

sets, and treat the notions ‘set’ and ‘prop’ as synonymous.

However, the gist of this paper can be appreciated without

knowledge of the Curry-Howard correspondence.
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TABLE I
SUMMARY OF TYPE-THEORETIC NOTATION FOR SETS, CANONICAL ELEMENTS, IMPORTANT OPERATIONS, AND THE LOGICAL CONNECTIVE

CORRESPONDING TO THE SET UNDER THE CURRY-HOWARD CORRESPONDENCE.

Construct Notation Canonical elements Operations Logical connective
Dependent sum (Σ x : A) B x (a, b) fst, snd Existential quantifier
Dependent product (x : A) → B x x̂ b (application) Universal quantifier
Disjoint union A+B left a, right b (pattern matching) Disjunction
Unit set unit () — True proposition
Empty set ∅ — abort False proposition

Outline of paper

Section I contains a summary of the paper by Hancock

and Setzer [10], with a new treatment of equality between

interactive programs.

The main theoretical contribution of this paper, i.e., the

notion of world map, is presented in Section II. This Section is

somewhat technical and the details may be skipped at a casual

reading of the paper.

The identification of worlds with interfaces and world maps

with components is made in Section III. Moreover, several

examples of how world maps can be used in programming

are given in this Section.

In Section IV, worlds and world maps are related to work

on containers, monads, and component-based development.

Finally, some conclusions are drawn in Section V.

The paper is rounded off by an Appendix with a note

on program recursion and detailed proofs of the important

theorems.

Throughout, the reader is assumed to be broadly familiar

with Martin-Löf’s type theory, but concepts such as monad,

world, and interactive program will be explained.

I. THE MONAD OF A WORLD

Definition of monad

The importance of the category-theoretical concept of

monad for semantics of programming languages was first

explained by Moggi [17]: monads unify things like exceptions,

global state, input and output.

In functional programming, a monad is typically defined

as a type constructor M , with two operations, called return

and bind, satisfying certain laws. Subsequently, return will be

abbreviated ‘ret’, and the binary bind operation will be written

m �= f . The following type-theoretic definition of the notion

of monad will be used.1

A monad is a quadruple, with components

M : set → set,

(
.
=) : (A : set) → M A → M A → prop,

ret : (A : set) → A → M A,

(�=) : (A : set) → (B : set) → M A →
(A → M B) → M B,

1The notion of monad used in functional programming is not the category-
theoretical notion. Instead it is more akin to the notion of Kleisli triple, also
from category theory. But there is a one-one correspondence between monads
and Kleisli triples, so this ambiguity is mostly harmless.

together with a number of proof objects (described below).

The following abbreviations will be used:

a
.
=A b ≡≡≡ (

.
=) A a b,

retA a ≡≡≡ ret A a,

p �=B
A f ≡≡≡ (�=) A B p f.

Eventually, the subscript A and the superscript B will be

dropped (though they can always be inferred from the context).

A monad satisfies the three monad laws,

p �=A
A retA

.
=A p,

retA a �=B
A f

.
=B f a,

(p �=B
A f) �=C

B g
.
=C p �=C

A (x̂ f x �=C
B g),

where p : M A, a : A, f : A → M B, g : B → M C, and

the hat on the x denotes abstraction. These laws are called,

respectively, right identity, left identity, and associativity.

Moreover, the relation (
.
=A) is an equivalence relation, for

any set A, and the bind operation is extensional, i.e.,

p �=B
A f

.
=B q �=B

A g,

provided that

p
.
=A q and f x

.
=B g x for all x : A.

Thus, to fully define a monad, seven proof objects have to

be provided, in addition to the quadruple: three to prove the

monad laws, three to prove that equality is an equivalence

relation, and one to prove that bind is extensional.

Definition of world

The notion of world is defined as follows by Hancock and

Setzer [10, p. 320]. A world consists of a set C together with a

family of sets R over the set C. An element c of the set C is a

command, and the set (R c) is the set of possible responses to

the command c. That w is a world will be written w : world.

If w is a world, the set of commands of w is denoted |w| and

the set of responses to a command c is written w@c. The world

with commands C and responses R is written (x : C,R x),
i.e., { |(x : C,R x)| ≡≡≡ C : set,

(x : C,R x)@c ≡≡≡ R c : set.

A realization of a world w is an interactive device, external

to type theory, which one can invoke with an element c of

|w|, wait for a while, and get back an element of w@c. The

concept of realization is not a part of the formal theory of

worlds and word maps, and plays no rôle in it: the concept is

only used to guide the reader’s intuition. Informally, a world

now becomes the “signature” of concrete interactive devices

or the “type” of its realizations.
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Example

The simple world ‘io’ of console applications, supporting

only input and output of character strings, is defined as

follows. Its set of commands is called ‘cio’ and the response

to a command c is the set (rio c). That is,

io ≡≡≡ (x : cio, rio x) : world.

The constant ‘cio’ has two constructors, read : cio, and write :
string → cio. The constant ‘rio’ is defined by

{
rio read ≡≡≡ string : set,
rio (write s) ≡≡≡ unit : set.

That is, ‘read’ is a command that returns a string and

(write s), where s is a string, is a command that returns

an element of the one-element set ‘unit’ (i.e., it returns

no information). Informally, the above information can be

encoded by

io ≡≡≡
{

read :: string,
write (x : string) :: unit.

A similar notation will be used whenever it is clear how to

encode the “methods” of a world into a set of commands and

a family of responses to commands.

Definition of interactive program

The notion of interactive program is also taken from Han-

cock and Setzer [10, p. 321]. Given that w is a world and that

A is a set, one can form the set of interactive programs over

this world with results in A. This set is written w ⇒ A and

has formation rule

w : world A : set

w ⇒ A : set
.

The intuition behind the notation w ⇒ A that an interactive

program takes a realization of w and gives an element of A as

result. How can this be translated into an inductive definition?

First, the program needs not interact with the world, i.e., it

may directly return element of A. This program will be written

(ret a) and has introduction rule

w : world a : A

ret a : w ⇒ A
.

Next, the program must be able to interact with the world by

invoking any command c and get access to the response x
of the command. Put differently, given any command c : |w|,
and any program (t x), where x ranges over the set w@c,
a new program (invk c t) can be formed. To execute this

program, given a realization of the world, invoke the world on

the command c and wait for the response r, then continue by

executing (t r). The above explanation justifies the inference

rule
w : world c : |w| t : w@c → w ⇒ A

invk c t : w ⇒ A
,

connecting the three notions command, response, and program.

Example

A program ‘pw’ over the ‘io’ world that asks for a password

and compares it to a given password, returning a Boolean,

would have type

pw : string → io ⇒ bool,

and can be defined by

pw x ≡≡≡ invk (write ”enter password:”)

(̂· invk read (ŷ ret (equals x y))) : io ⇒ bool.

Clearly, this syntax is not optimal for writing large programs,

but it can be simplified by nominal definitions, or, even better,

by something similar to Haskell’s do-notation.

The bind operation

The ‘bind’ operation, familiar from functional programming

with monads, has typing rule

a : w ⇒ A f : A → w ⇒ B

a �= f : w ⇒ B

and is defined by the equations [10, p. 322]:{
(ret a) �= f ≡≡≡ f a : w ⇒ B,

(invk c t) �= f ≡≡≡ invk c (x̂ t x �= f) : w ⇒ B.

Incidentally, the first of these equalities is the monad law of

left identity, which thus holds up to definitional equality in the

program monad.

The bind operation p �= f has a natural interpretation in

terms of program trees: it represents the tree p with all leaves

(ret a) replaced by (f a).

Equality between programs

The usual type-theoretic propositional equality is unsuit-

able for equality between programs, because it is too strict.

Hancock and Setzer [10, p. 324] introduce non-well-founded

programs before they investigate equality, and resort to bisimi-

larity for equality between programs. In contrast, the notion of

equality proposed here is well-founded and a new primitive of

type theory. The formation rule for program equality is given

by
p : w ⇒ A q : w ⇒ A

p
.
= q : prop

.

Neither bisimilarity, nor the equality relation p
.
= q, is

substitutive.

There are two ways of demonstrating that two programs are

equal, corresponding to the two forms of canonical programs.

First, two programs (ret a) and (ret b) are equal if a and b
are definitionally equal. Since definitional equality is implicit

in all inference rules, the program equality between (ret a)
and (ret b) is captured by the inference rule

a : A

rret a : ret a
.
= ret a

.

Next, let c and d be equal commands (elements of |w|), let s
be a continuation for c and t is a continuation for d — the

programs (invk c s) and (invk d t) ought to be equal if (s x)
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and (t x) are equal programs under the assumption that x is

an element of the set w@c ≡≡≡ w@d. Again, since definitional

equality is implicit in inference rules, this definition is captured

by

c : |w| s, t : w@c → w ⇒ A h : (x : w@c) → s x
.
= t x

rinvk h : invk c s
.
= invk c t

.

This definition, as well as the definition of the program set,

falls under the general scheme for inductive families laid down

by Dybjer [6]. The elimination rule for program equality will

not be spelled out. Instead, proofs involving program equality

will use induction, often without explicit proof objects.

Proposition 1: Program equality is an equivalence relation.

Proof: The proofs of reflexivity and symmetry are st-

raightforward. The proof of transitivity is trickier. We like to

define the constant

trans p q v r v′ : p .
= r,

where p, q, r : w ⇒ A, v : p
.
= q and v′ : q .

= r. The proof is

by double induction, first on v, and then on r. The details are

deferred to the Appendix.

Theorem 2 (Hancock and Setzer): Given that w is a world,

(w ⇒) is a monad satisfying the monad laws (p. 2) up to

program equality.

Proof: The notation (w ⇒) stands for the function of type

set → set that takes a set A to the set w ⇒ A. As seen above,

left identity holds up to definitional equality. Since program

equality is reflexive, it holds up to program equality as well.

Right identity and associativity are demonstrated by induction

on p. The details are deferred to the Appendix.

II. THE CATEGORY OF WORLDS AND WORLD MAPS

Definition of world map

Let w1 and w2 be worlds. The set of world maps from w1

to w2 will be written w1 � w2. The intuition behind a world

map m : w1 � w2 is that it maps a realization of w1 into a

realization of w2. That is, given that w1 is realized, m must be

able to provide a response to every command of w2, possibly

by interacting with the world w1. This intuition motivates the

definition

w1 � w2 ≡≡≡ (x : |w2|) → w1 ⇒ w2@x : set.

That is (m c), where c : |w2|, is an interactive program over

the world w1 giving as result an element of the set w2@c.
Equality between world maps is defined by universal quan-

tification over program equality. That is, if w1 and w2 are

worlds, and m,n : w1 � w2, the equality m � n is defined

by

m � n≡≡≡ (x : |w2|) → m x
.
= n x : prop.

Lifting

The most important property of a world map m : w1 � w2

is that it can be used to interpret programs over w2 in terms

of programs over w1. This process will be called lifting and

the corresponding type-theoretic constant has typing rule

w1, w2 : world m : w1 � w2 A : set

liftA m : (w2 ⇒ A) → (w1 ⇒ A)
.

This constant is defined by{
liftA m (ret a) ≡≡≡ ret a,
liftA m (invk c t) ≡≡≡ m c �= (x̂ liftA m (t x)).

Lifting is extensional in both arguments, as ‘bind’ is exten-

sional in both arguments.

Composition of world maps

World maps are composed using the inference rule

m : w1 � w2 n : w2 � w3

(m;n) : w1 � w3

.

Note that the order of the arguments is the opposite of the usual

order for composition of functions. Composition of world

maps is defined by

(m;n) c ≡≡≡ lift m (n c) : w1 ⇒ w3@c,

for c : |w3|. Note that (n c) : w2 ⇒ w3@c. Since

composition is defined in terms of lifting, it is extensional

in both arguments.

Lemma 3: The identity map idw : w � w, defined by

idw c ≡≡≡ invk c ret : w ⇒ w@c,

for c : |w|, is an identity with respect to composition.

Proof: Let m : w1 � w2 and n : w2 � w1. There are

two things to show. First that

(idw1 ;m) c ≡≡≡ lift idw1 (m c)

is equal to (m c), for c : |w2|, and next that

(n; idw2
) c ≡≡≡ lift n (idw2

c) ≡≡≡ lift n (invk c ret)

≡≡≡ n c �= (x̂ lift n (ret x)) ≡≡≡ n c �= ret

is equal to (n c), for c : |w1|. The second equality follows

directly from the monad law of right identity. To prove the

first equality, we prove that (lift idw) is equal to the identity

function. The proof is by induction on the (implicit) argument

p. The case when p ≡≡≡ ret a is trivial. In case p ≡≡≡ invk c t,
the result follows from

lift idw (invk c t) ≡≡≡ invk c (x̂ lift idw (t x)),

the induction hypothesis, and ‘rinvk’.

Lemma 4: Composition of world maps is associative.

Proof: What we need to prove is that the two ways of

composing up the world maps in

w1 f ◦ w2 g ◦ w3 h ◦ w4

are equal. By definition of equality between world maps, it

suffices to show that, for any command c of the world w4,

the two programs ((f ; g);h) c and (f ; (g;h)) c are equal. The

left hand side is equal to (lift (f ; g) (h c)) and the right

hand side is equal to (lift f (lift g (h c))). Thus, it suffices

to show that (lift (f ; g) p) and (lift f (lift g p)) are equal

programs for any p : w3 ⇒ A. In case p ≡≡≡ ret a, we have

lift (f ; g) (ret a) ≡≡≡ ret a : w1 ⇒ A, and

lift f (lift g (ret a)) ≡≡≡ lift f (ret a) ≡≡≡ ret a : w1 ⇒ A,
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for a : A. In case p ≡≡≡ invk c d : w3 ⇒ A, where c : |w3| and

d : w3@c → w3 ⇒ A, we have

lift (f ; g) (invk c d) ≡≡≡ lift f (g c) �= (x̂ lift (f ; g) (d x)),

and

lift f (lift g (invk c d)) ≡≡≡ lift f (g c �= (x̂ lift g (d x))).

To show that these two programs are equal we use induction

on (g c) and associativity of bind. The details are deferred to

the Appendix.

Theorem 5: There exists a category Wm of worlds and

world maps.2

Proof: By the previous two lemmata.

Point-free programming

Recall that the intuition behind the notation w1 � w2 is that

an object of this type maps a realization of w1 to a realization

of w2. Moreover, the intuition behind the notation w2 ⇒ A
is that an object of this type maps a realization of w2 to an

element of A.

Realizations of worlds cannot be brought into the language

of type theory, but one can program with realizations of worlds

in a tacit or point-free way, using “combinators” like bind,

composition, lifting, identity, and the projections and products

of world maps defined below.

Families of worlds

Given that A is a set, a family of worlds Ω over A is a pair

(CΩ, RΩ), where CΩ : A → set and RΩ : (x : A) → CΩ x →
set. If Ω ≡≡≡ (CΩ, RΩ) is a family of worlds over A, and a : A,

the world (Ω a) is, by definition, (CΩ a,RΩ a). Let Ω be a

family of worlds over a set A and define the world (Π A Ω)
by

|Π A Ω| ≡≡≡ (Σ x : A) |Ω x| : set,
(Π A Ω)@(x, y) ≡≡≡ (Ω x)@y : set,

where x : A and y : |Ω x|. Note that this definition can be

written

Π A Ω ≡≡≡
(z : (Σ x : A) |Ω x| , (Ω (fst z))@(snd z)) : world,

so there is no size problem, i.e., the family of response sets

is not defined by pattern matching.

The projections πi : Π A Ω � Ω i, for i : A, are defined

by

πi b ≡≡≡ invk (i, b) ret : Π A Ω ⇒ (Ω i)@b,

for b : |Ω i|. This definition is well-formed since the set

(Π A Ω)@(i, b) is equal to the set (Ω i)@b.
Theorem 6: The product of a family of worlds is a categor-

ical product in the category of worlds and world maps.

2To be precise, this Theorem establishes that Wm is an E-category — the
type-theoretical notion of category — with the additional caveat that its class
of objects is not a set or type, but the telescope ‘world’. The reader is referred
to a paper by Buisse and Dybjer [5] for the exact definition of the notion of
E-category.

Proof: Let A : set and a family of worlds Ω over A be

fixed. Assume that w is an arbitrary world and that gi : w �
Ω i for i : A. We must show that there is a unique world map

〈gj〉Aj : w � Π A Ω such that (〈gj〉Aj ;πi) � gi, for any i : A.

Recall that

w � Π A Ω ≡≡≡
(x : (Σ y : A) |Ω y|) → w ⇒ (Π A Ω)@x : set.

Define 〈gj〉Aj by

〈gj〉Aj (i, b) ≡≡≡ gi b : w ⇒ (Ω i)@b,

for i : A and b : |Ω i|. For an arbitrary h : w � Π A Ω, i : A,

and c : |Ω i|, we have (h;πi) : w � Ω i, and

(h;πi) c ≡≡≡ lift h (πi c) ≡≡≡ lift h (invk (i, c) ret) ≡≡≡
h (i, c) �= (x̂ lift h (ret x)) ≡≡≡ h (i, c) �= ret

: w ⇒ (Ω i)@c,

whence, by right identity, the proposition

(h;πi) c
.
= h (i, c) : prop

is true. This shows both that 〈gj〉Aj is unique up to equality

between world maps, and that (〈gj〉Aj ;πi) � gi.

Binary products

It may seem like a paradox, but Wm does not have all

binary products. This is because arbitrary products are defined

in terms of families of worlds, and given two worlds w1 and

w2, there is no guarantee that there exists a family of worlds

Ω over {1, 2} with Ω 1≡≡≡ w1 and Ω 2≡≡≡ w2.

However, when both w1 and w2 are small, the binary

product is guaranteed to exist. A world w is small if there

is a code for |w| and a family of codes for w@x in a suitable

type-theoretic universe. When w1 and w2 are small worlds,

the usual notation w1 × w2 is used for their product. If the

objects of the category Wm are restricted to small worlds, the

resulting category has binary products.

Comparison with the category of monads

The category Wm will now be compared to the category

Mndop of monads and reverse monad morphisms. A monad

morphism between monads M and N is a family of functions

fA : M A → N A that respect the return and bind operations

up to the monad equalities. Two morphisms f and g in Mnd
are equal if fA x

.
= gA x for all sets A, and x : M A — this

will be written f ∼= g. It will be accepted without proof that

there exists an E-category of monads and monad morphisms.

Theorem 7: There exists a full and faithful functor from the

category Wm to the category Mndop of monads and reverse

monad morphisms, mapping a world w to the monad (w ⇒)
and a world map m : w1 � w2 to the monad morphism

(lift m).
Proof: There are several things to establish. First, that

the above mapping defines a functor from Wm to Mndop.

The proof that idw is an identity with respect to composition

of world maps also shows that lift idw is equal to the

1140 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER



identity function. The proof that composition of world maps is

associative shows that lift (f ; g) ∼= (lift f)◦(liftg), where (∼=)
denotes equality of monad morphisms. To establish that we

have a functor, one more thing is required, viz., that (lift m)
indeed is a monad morphism, i.e., that the proposition

liftB m (n �= f)
.
= liftA m n �= (x̂ liftB m (f x)) : prop

is true, for any n : w2 ⇒ A and f : A → w2 ⇒ B. The proof

is by induction on n. The details are deferred to the Appendix.

To show the functor is full, i.e., that any morphism between

world-based monads arises from a world map by lifting,

assume that w1 and w2 are worlds, and that we have monad

morphism fA : (w2 ⇒ A) → (w1 ⇒ A), with fA (ret a)
.
=

(ret a), and fB (a �= g)
.
= fA a �= (x̂ fB (g x)). If c : |w2|

and t : w2@c → w1 ⇒ B, we have

fB (invk c t) ≡≡≡ fB (invk c ret �= t)
.
=

fw2@c (invk c ret) �= (x̂ fB (t x)).

If we make the definition m c ≡≡≡ fw2@c (invk c ret), the

definition of ‘lift’ gives extensional equality between fB and

liftB m, as liftA m (ret a) ≡≡≡ ret a, and

liftB m (invk c t) ≡≡≡ m c �= (x̂ liftB m (t x)).

That is, f satisfies the equations that define lift m, but up to

program equality instead of definitional equality.

To show that the functor is faithful, assume that lift m ∼=
lift n, for world maps m,n : w1 � w2. For any c : |w2|, we

have lift m (invk c ret) ≡≡≡ m c �= ret, and similarly for n.

It follows by identity that m c
.
= n c, as required.

III. PROGRAMMING WITH WORLD MAPS

Component-based software engineering

One of the main problems in software architecture is how

to gain a composable understanding of large software systems.

[7]: As the size of software systems increases, the

algorithms and data structures of the computation no

longer constitute the major design problems. When

systems are constructed from many components, the

organization of the overall system — the software

architecture — presents a new set of design prob-

lems.

The composability problem is often approached through the

notion of component. To see how worlds and world maps

can be applied to the field of software architecture, make the

identifications

world ≡≡≡ interface,

world map ≡≡≡ component.

Just by making these identifications, interfaces and compo-

nents form a category. This ensures that well-behaved compo-

nent diagrams will have a unique interpretation. For example,

associativity ensures that there is a unique way of composing

three morphisms f , g, h, where f : a � b, g : b � c, and

h : c � d. A component diagram like

b

a
f

◦

g
◦

h ◦ d

c

is interpreted as follows: a, b, c, and d are interfaces; f : a �
b, g : a � c, and h : b × c � d are components; and the

diagram stands for the component (〈f, g〉;h) : a � d.

If c : r � p is a component, r is called its required interface
and p is called its provided interface. That is, p is the interface

that clients of c use, and r is the interface that c requires to be

able to provide its functionality. From an object-oriented point

of view, the component c is a stateless adapter that implements

the interface p in terms of the interface r.

One distinguishing feature of this notion of component

is that components (world maps) are stateless, i.e., they

have no internal state. Nevertheless, a stateful component

c : r �S p, with states drawn from a set S, can be represented

by c : r × stS � p (the world stS is defined below).

For a large composite of stateful components, this means

that the internal state of every component will be visible in

the required interface of the composite component. This has

clear advantages for monitoring, debugging, and performance

analysis, as it is easy to inspect a running component’s state.

The disadvantage is similar to the disadvantage that pure

functional programming had over imperative programming

before the introduction of monads, viz., that the state had to

be mentioned everywhere and manipulated explicitly.

World-based equivalents of standard monads

Many basic worlds can be derived from Haskell’s monad

system.

Standard monads, like the state and list monads, cannot

be directly represented by world-based monads. However, the

following trick, due to Swierstra [19, p. 431], can be used.

Even though the state monad is not isomorphic to a world-

based monad, it is covered by one. That is, there is a monad

epimorphism from the monad of the world

stS ≡≡≡
{

get :: S,
set (x : S) :: unit

to the standard state monad. This epimorphism, state : (stS ⇒
A) → (S → A× S), is defined by

⎧⎨
⎩

state (ret a) s ≡≡≡ (a, s) : A× S,
state (invk (set t) d) s ≡≡≡ state (d ()) t : A× S,
state (invk get d) s ≡≡≡ state (d s) s : A× S.

This can be generalized to a function statew : (stS × w ⇒
A) → S → w ⇒ A× S. Similarly, the list monad is covered

by the monad of the world

lst ≡≡≡
{

join :: unit + unit,
empty :: ∅,
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TABLE II
WORLDS CORRESPONDING TO SOME OF THE STANDARD MONADS OF

HASKELL, WITH THEIR SETS OF COMMANDS AND RESPONSES.

Monad / World w |w| w@x
Exception exnE E ∅
Reader rdU unit U
Writer wrU U unit
Terminal (null) term ∅ ∅

by means of the monad epimorphism flatten : (lst ⇒ A) →
A list, defined by⎧⎨
⎩

flatten (ret a) ≡≡≡ [a],
flatten (invk join d) ≡≡≡ d (left ())⊕ d (right ()),
flatten (invk empty d) ≡≡≡ [],

where ⊕ denotes list concatenation.

The exception, reader, and writer monad are isomorphic to

world-based monads. The corresponding worlds, exnE , rdU ,

and wrU , have command and response sets given by Table

II. The last line of this Table introduces the terminal world,

which is a terminal object in the category Wm.

The response set of these worlds does not depend on

the command. However, when combining two or more such

worlds using the Π-construction, the response set of the

resulting world depends on the command. This fits with the

identification of worlds and interfaces, made above: an inter-

face is the (world) product of its methods (also represented by

worlds).

Event-driven programs

The approach to interactive programming used in Haskell,

and extended to Martin-Löf’s type theory by Hancock and

Setzer [10], is based on the idea that a deployable program

is an object of type w ⇒ unit, for a suitable world w (e.g.,

w ≡≡≡ io, def. on p. 3) — much like the ‘main’ procedure of a

C program. Hancock and Setzer are forced to introduce non-

well-founded ‘while’ programs to be able to write programs

that run indefinitely.

I envision that platforms will execute components in cus-

tomizable component containers. An interactive program of

type io ⇒ unit is replaced by an event-driven program of

type wr � wr (where wr ≡≡≡ wrstring), i.e., with a world map

or component.

For example, a very simple platform, supporting only com-

mand line applications, could have a component container

that executes components of type stS × wr � wr, for any

(small) set S of states. This is sufficient to implement, e.g.,

a calculator. A simple event-driven program ‘main’ of type

stnat × wr � wr is defined by

main x ≡≡≡ invk (left get) �= ẑ invk (left (set (z + 1)))

�= ·̂ invk (right (greeting x z))

: stnat × wr ⇒ unit,

for x : string, where greeting : string → nat → string is

defined by

greeting x z ≡≡≡
”Hello ” ⊕ x⊕ ”, you have number ” ⊕ str z : string.

I leave to the reader to figure out what this program actually

does. It is easy to construct more elaborate examples of

components.

If a component needs to wake up at regular intervals (e.g.,

when polling), it can add the interface wrunit to its provided

interfaces and let the component container provide it with

“ticks” at specified intervals.

Short circuiting components

Given a component c : s × r � s × p, one may like to

“short circuit” the component c by, as it were, connecting

the provided interface s to the required interface s. This is

of course not possible in general, but it is not too difficult to

come up with a suitable proof obligation (scable c). Given any

command d : |p|, the program (c;π2) d : s × r ⇒ p@d must

be accessible with respect to a relation that orders programs

according to how many times they produce commands from s
when piped through the component (c;π1) : s×r � s. Given

a proof object a : scable c, the short circuited component

(sc c a) : r � p can be defined by recursion on the proof of

the accessibility predicate.

Asynchronous invocation

Consider a world (interface) a on which commands must be

invoked asynchronously. Let h be the world that must handle

the responses to the commands. Think, e.g., of a as a world

for making HTTP requests and of h as a world for updating

a graphical user interface.

Define a new world (asynch a h) that represents asyn-

chronous invocations of commands from a with responses

handled by h. A command of the world (asynch a h) consists

of a command c : |a| together with a response handler of type

a@c → h ⇒ unit, that takes the response to c and gives a

program over the world h. The response set of any command

of (asynch a h) is the unit set. That is,

asynch a h ≡≡≡
(x : (Σ c : |a|) a@c → h ⇒ unit , unit) : world.

A program over the world (asynch a h) can be translated into

a program over the world a×h, i.e., an asynchronous program

can be translated into a synchronous one using a world map

(component) of type

(a× h) � (asynch a h) ≡≡≡
((Σ c : |a|) a@c → h ⇒ unit) → (a× h) ⇒ unit : set.

To find its definition, assume that c : |a| and f : a@c → h ⇒
unit, and observe that

invk (left c) (x̂ lift π2 (f x)) : (a× h) ⇒ unit,

where π2 : (a× h) � h. This gives the required definition of

the translation.

A component container can run components with the inter-

face (asynch a h) amongst its required interfaces and execute

commands over this interface asynchronously.
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Session state

This example will demonstrate some of the “plasticity” of

programming with dependent types. A conventional program-

ming language (e.g., Java or C#) would have to use reflection

to define the ‘run’ function.

A publicly available interface for a message board, with

challenge-response authentication, could expose an interface

along the lines of

service ≡≡≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

challenge :: challenge,
response (res : response) :: cookie,
list (c : cookie) :: msgid list,
get (c : cookie, id : msgid) :: string option,
put (c : cookie,msg : string) :: msgid,
rm (c : cookie, id : msgid) :: bool.

where ‘challenge’, ‘response’, ‘cookie’, and ‘msgid’ are suit-

able datatypes (here left anonymous), and ‘list’ and ‘option’

are type-constructors like in ML.

It is somewhat cumbersome to program over an interface

like this, and, ideally, one would like to use an interface like

session ≡≡≡

⎧⎪⎪⎨
⎪⎪⎩

list :: msgid list,
get (id : msgid) :: string option,
put (msg : string) :: msgid,
rm (id : msgid) :: bool.

instead, as the cookie will remain the same for an entire

session.

Assuming that a cookie is given, a program over the

interface ‘session’ can be transformed into a program over

the interface ‘service’, by means of the function

ss : cookie → (session ⇒ a) → (service ⇒ a),

defined by

ss c (ret a) ≡≡≡ ret a,

ss c (invk list t) ≡≡≡ invk (list c) (x̂ ss c (t x)),

ss c (invk (get id) t) ≡≡≡ invk (get c id) (x̂ ss c (t x)),

ss c (invk (put msg) t) ≡≡≡ invk (put c msg) (x̂ ss c (t x)),

ss c (invk (rm id) t) ≡≡≡ invk (rm c id) (x̂ ss c (t x)).

That is, (ss c) simply “fills in” the cookie c as the first

argument of all methods.3

To complete the example, assume that the challenge-

response protocol requires the client to respond to a challenge

with a hash of its password concatenated with the challenge.

Now given a password p and a session program s of type

session ⇒ a, for some type a, we ought to be able to construct

a program (run p s) of type service ⇒ a option that tries

to log in, and, if successful, executes the program s, and, if

unsuccessful, returns ‘none’. The function ‘run’ should have

type

run : string → (session ⇒ a) → (service ⇒ a option).

3The attentive reader may note that function ‘ss’ is easy to generalize to
the case when we have a “container morphism” (p. 9) between two containers
(worlds).

Its definition is given by

run p s ≡≡≡ invk challenge

(ê invk (response (hash (e⊕ p))) (case s)),

where

case s none ≡≡≡ ret none

case s (some c) ≡≡≡ ss c s �= (x̂ ret (some x)).

Unit testing

Object-oriented programs are often difficult to test. Ideally,

one would like small unit tests, tightly coupled with the class

being tested. This is typically accomplished by a combination

of mock objects and dependency injection.

Component-based programs that are written according to the

paradigm proposed in this paper are already prepared for this

kind of testing. For example, given a component c : r � p, the

mocking would consist of implementing r in terms of some

simple interface, like the terminal interface or an interface

providing random numbers. The unit tests have type p ⇒ bool.
If we combine the mock m : test � r with the component c
and a unit test t, we get

lift (m; c) t : test ⇒ bool.

This object is directly testable. The interface ‘test’ can either

be the terminal (empty) interface, or an interface providing

methods for generating random data.

IV. RELATED WORK

Containers

The notion of world is related to the notion of container,

introduced by Hoogendijk and de Moor [11]. The connection

between containers and type theory is explained by Abbott,

Altenkirch, and Ghani [1]. A container in the latter’s sense is

nothing but a world, i.e,

container ≡≡≡ world.

Given a world w, the container functor (endofunctor on the

category of sets) corresponding to w is denoted �w� and is

defined by

�w� X ≡≡≡ (Σ x : |w|) w@x → X : set.

The use of the word container is explained as follows. Let a

container w ≡≡≡ (x : S, P x) be given. The set S is called the

set of shapes and (P s) is called the set of positions in shape

s : S. An element of �w�X consists of a shape s : |w| and a

function f : w@s → X that assigns an element of X to each

position in shape s.

Monads

As mentioned in the introduction, monads are difficult to

combine. One positive result is that the category Mnd, of

monads and monad morphisms, has binary coproducts [14],

but the construction is nontrivial to implement as it involves

a quotient. Ghani and Uustalu [8] give a simpler construction

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 1143

© 2012 ACADEMY PUBLISHER



for the coproducts of two ideal monads. Moreover, it is easy

to take the coproduct of free monads, and this construction

is at the heart of the approach to programming with monads

suggested by Swierstra [19].

In general, a free structure M over some underlying struc-

ture S is the “simplest” structure such that S can be “embed-

ded” in M . Examples include the free group and free monoid

over a set S of generators. A monad M is called free, over

an underlying endofunctor F , if M is the “simplest” monad

that admits a natural transformation from F to M . If the

free monad exists, it is the least fixed point of the recursive

equation

M A ∼= A+ F (M A),

cf., Ghani and Uustalu [8, Prop. 2.7].

It is not difficult to see that the monad (w ⇒) is the least

fixed point for the recursive equation corresponding to the

endofunctor �w�, i.e.,

w ⇒ A ∼= A+ (Σ x : |w|) w@x → w ⇒ A,

where ‘left’ corresponds to ‘ret’ and ‘right’ corresponds to

‘invk’. Thus, every world-based monad is free.

Every world-based monad is free, and every free monad is

ideal, so the category of world-based monads and monad mor-

phisms is a subcategory of the category of (free/ideal) monads

and monad morphisms. From this perspective, world-based

monads are less general than free monads. The constructions

of Swierstra [19] are formulated in terms of free monads, but

most of them work equally well over world-based monads.

Strong functional programming

Martin-Löf’s type theory is not only pure, but also total, i.e.,

all functions are terminating. This gives rise to what Turner

[20] calls strong functional programming. In a total functional

programming language, IO is typically approached through

coinductive sets, to allow for programs that run indefinitely.

For example, Hancock and Setzer [10] introduce non-well-

founded IO-trees into Martin-Löf’s type theory. However, the

approach suggested in this paper is entirely based on well-

founded sets.

Container morphisms

As pointed out to me by Peter Hancock, not only is the

notion of world related to the notion of container, but the

notion of world map is also related to the notion of container

morphism.

Given two containers (worlds) c and d, the set of container

morphisms (Cont c d) from c to d is given by

Cont c d ≡≡≡ (Σ f : |c| → |d|) (x : |c|) → d@(f x) → c@x.

Moreover, the free monad of a container c can be represented

by the container c∗, i.e., the monad (c ⇒) is isomorphic to the

monad �c∗�. The “star” of a container is defined by c∗ ≡≡≡ (x :
c ⇒ unit , pathc x) : world, where pathc : (c ⇒ unit) → set
is a function that gives the set of paths through a given tree that

end with a “return” node. Caveat: the path function can only

be defined for small worlds, unless type theory is strengthened

with a new construct.

Using these two notions, there is an isomorphism w1 �
w2

∼= Cont w2 w∗
1 , for a suitable (extensional) notion of

isomorphism. By the axiom of choice, used backwards,

Cont c d ≡≡≡ (Σ f : |c| → |d|) (x : |c|) → d@(f x) → c@x
∼= (x : |c|) → (Σ y : |d|) d@y → c@x

≡≡≡ (x : |c|) → �d� (c@x).

Now, since (w1 ⇒ w2@x) is isomorphic to �w∗
1� (w2@x), the

set w1 � w2 is isomorphic to the set Cont w2 w∗
1 .

Component-based software engineering

The first use of category theory for the purpose of large scale

system construction seems to be Goguen [9]. However, in that

work, components are objects of the category and morphisms

of the category represent communication between components.

The idea of considering a component as a morphism between

interfaces can be found in a PhD thesis due to Barbosa [4,

Ch. 5].

Event-driven programming

According to Lauer and Needham [13], there is a certain

duality between (operating) systems based on message passing

(“events”) and systems based on threads.

The programs presented in this paper are event-driven in

the naı̈ve sense that the flow of control is determined by user

actions translated into invocations of methods on the provided

interface. However, they are not based on message passing in

the sense of Lauer and Needham.

In fact, concurrent execution of component-based programs

fits best with the threaded model of execution. Nothing pre-

vents an interactive program of type a ⇒ i from blocking on

certain operations. For most applications, threads provides the

cleanest abstraction.

However, a component container can implement the re-

quired interface of a component using message passing with-

out affecting the intended semantics of the component-based

programming paradigm. Cf., the example of asynchronous

invocation given above.

The set of wellorderings

The program set is a generalization of the W-set introduced

by Martin-Löf [16, p. 79]. The following nominal definitions

can be used to define the W-set and its associated constructor

and destructor in terms of the program set:⎧⎨
⎩

W(C,R) ≡≡≡ (C,R) ⇒ ∅,
sup(c, t) ≡≡≡ invk c t,
T(p, d) ≡≡≡ pgrec abort d p,

where ‘pgrec’ is defined in the Appendix and abort : ∅ → A
is the polymorphic destructor of the empty set. The usual

computation rule for T(p, d) can be derived using the compu-

tation rules for ‘pgrec’, given below. However, the program

set cannot be defined in terms of the W-set, as ‘pgrec’ cannot
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be defined (its definition would require that every function

∅ → X is definitionally equal to ‘abort’).

An element of the set W(C,R) is an intuitionistic wellorder-

ing. A wellordering is a well-founded tree with the contents

of the nodes drawn from the set C and branching factor (R x)
for a node with contents x. This interpretation carries over to

the program set w ⇒ A, with the additional interpretation of

A as the set from which the contents of leaf nodes is drawn.

It is interesting to review what Martin-Löf [15, p. 172]

wrote: “The transfinite recursion form T(p, d) has not yet

found any applications in programming. It has, as far as I

know, no counterpart in other programming languages.” Inter-

active programming is an application of transfinite recursion!

V. CONCLUSION AND FUTURE WORK

This paper presents a new paradigm, based on world maps,

to component-based development in Martin-Löf’s type theory.

The constructions are made in a fully intensional framework,

and thus directly implementable — something which is not

always the case with constructions in category theory.

Although based on inductive sets, world maps can represent

(event-driven) programs that run indefinitely. Using the monad

based approach to IO, the ‘main’ program has type main :
io ⇒ unit, i.e., it is a program over the ‘io’ monad without

significant return value. Under the new paradigm, the ‘main’

program would instead have type main : out � in, where

‘in’ is the world of events that the program responds to and

‘out’ is the world the program uses to perform its job.

Thus, it is possible to view ‘main’ as a component with

provided interface ‘in’ and required interface ‘out’. The op-

erating system provides the component’s required functionality

and propagates events to the component’s provided interface.

In this way, Martin-Löf’s type theory is sufficient for systems

programming, even without the addition of coinductive sets.

Event-driven programming fits hand in glove with Martin-

Löf’s type theory, because event handlers are supposed to be

terminating.

Several applications of the proposed component-based para-

digm were given, but larger scale experiments are left as future

work. Eventually, this component-based paradigm should be

quantitatively compared to the object-oriented paradigm with

respect to measures such as testability, reusability, and com-

posability.
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APPENDIX

Program recursion

Functions on wellorderings are defined by transfinite re-

cursion. The corresponding recursion principle for interactive

programs will be called program recursion. The constant

‘pgrec’, for program recursion, has typing rule

D : (w ⇒ A) → set
r : (x : A) → D (ret x)
i : (x : |w|) → (y : w@x → w ⇒ A) →

((u : w@x) → D (y u)) → D (invk x y)
p : w ⇒ A

pgrecD r i p : D p
.

The introduction of the constant ‘pgrec’ is justified by the

computation rules{
pgrecD r i (ret a) ≡≡≡ (r a),
pgrecD r i (invk c t) ≡≡≡ i c t (x̂ pgrecD r i (t x)),

where the two sides of the first equation have type D (ret a),
and the two sides of the second equation both have type

D (invk c t). Note that the recursive invocation of ‘pgrec’

is on the program (t x) which is smaller than (invk c t), as

the program tree is well-founded.

In this paper, definitions by program recursion are given in

equational form — but any such definition can be translated

into an equivalent definition in terms of ‘pgrec’. For example,

using the constant ‘pgrec’, the definition of �= (p. 3) becomes

a �= f ≡≡≡ pgrec f (ĉ ·̂ n̂ invk c n) a : w ⇒ B,

which, admittedly, is less readable than the original definition.

Proof of Proposition 1

The proofs of reflexivity and symmetry are straightforward.

The proof of transitivity is trickier. Let a world w be fixed,

and let P stand for the set w ⇒ A. We like to define the

constant

trans p q v r v′ : p .
= r,

where p, q, r : P , v : p
.
= q and v′ : q .

= r. The first lemma is

that program of invoke-form cannot be equal to a program on

ret-form,

lemma1 c s a : (invk c s
.
= ret a) → ∅,

where c : |w|, s : w@c → P , and a : A. The proof of

this lemma is straightforward. The next lemma is that, if

two programs of invoke-form are equal, their commands are

propositionally equal,

lemma2 c s d t : (invk c s
.
= invk d t) → (c = d),

where c, d : |w|, s : w@c → P , and t : w@d → P . Moreover,

if two programs of invoke-form are equal, their continuations

are extensionally equal,

lemma3 c s d t : (p : invk c s
.
= invk d t) →

(r : w@c) → s r
.
= t (substR (lemma2 c s d t p) r),

where c, d, s, and t are as above. Next, two programs where

the commands are equal and the continuations are equal for

all responses are equal,

lemma4 c s d t l m : invk c s
.
= invk d t,
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where c, d, s, and t are as above, l : c = d, and m : (x :
w@c) → s x

.
= t (substR l x). None of these lemmata are

difficult to show.

The proof of transitivity now proceeds by a double induc-

tion. First, in the case when p ≡≡≡ q ≡≡≡ ret a and v ≡≡≡ rret a,

we have v′ : ret a .
= r and

trans (ret a) (ret a) (rret a) r v′ ≡≡≡ v′ : (ret a) .
= r.

The second case is where the four lemmata must be used —

here we have to find a definition for

trans (invk c s) (invk c t) (rinvk h) r v′ : invk c s
.
= r.

This proof continues by program induction on r. The case

when r is of ret-form is handled by lemma1:

trans (invk c s) (invk c t) (rinvk h) (ret b) v′ ≡≡≡
abort (lemma1 d t b v′) : invk c s

.
= r.

The final and most difficult case is to define

trans (invk c s) (invk c t) (rinvk h) (invk d u) v′

: invk c s
.
= invk d u,

where v′ : invk c t
.
= invk d u. First we make the abbreviation

l ≡≡≡ lemma2 c t d u v′ : c = d.

Next, note that

lemma4 c s d u l m : invk c s
.
= invk d u

provided that

m : (x : w@c) → s x
.
= u (substR l x).

To find the value of m we use the outer induction hypothesis

together with lemma3. Assume that x : w@c, then

trans (s x) (t x) (hx) (u (substR l x)) (lemma3 c t d u v
′)

: s x
.
= u (substR l x).

Abstraction on x gives the definition of m.

Proof of Theorem 2

The notation (w ⇒) stands for the function of type

set → set that takes a set A to the set w ⇒ A. As seen

above, left identity holds up to definitional equality. Since

program equality is reflexive, it holds up to program equality

as well. That right identity holds up to program equality is

demonstrated by induction on p. The case when p ≡≡≡ ret a is

trivial. In case p≡≡≡ invk c t,

invk c t �= ret ≡≡≡ invk c (x̂ t x �= ret) : w ⇒ A,

and the result follows from ‘rinvk’ and the induction hypothe-

sis. The proof of associativity is also by induction on p. Again,

the case p≡≡≡ ret a is trivial. In case p≡≡≡ invk c t, we compute

(invk c t �= f) �= g ≡≡≡ invk c (x̂ t x �= f) �= g ≡≡≡
invk c (ŷ (t y �= f) �= g) : w ⇒ C,

and

invk c t �= (x̂ f x �= g) ≡≡≡
invk c (ŷ t y �= (x̂ f x �= g)) : w ⇒ C.

Again, the result follows from ‘rinvk’ and the induction

hypothesis.

Finally, we must show that the bind operation is extensional

with respect to program equality. Assume (α) that p
.
= q and

(β) that f x
.
= g x for x : A. We must show that

p �= f
.
= q �= g.

The proof is by induction on the proof (α) of p
.
= q. In the first

case, p ≡≡≡ q ≡≡≡ ret a. Then p �= f ≡≡≡ f a and q �= g ≡≡≡ g a,

and f a
.
= g a by (β). In the second case, p ≡≡≡ invk c s and

q ≡≡≡ invk c t. By the induction hypothesis,

s x �= f
.
= t x �= g,

for any x. But p �= f ≡≡≡ invk c (x̂ s x �= f) and q �= g ≡≡≡
invk c (x̂ t x �= g). The two right hand sides are equal by

the induction hypothesis and ‘rinvk’.

Proof of Lemma 4

What we need to prove is that the two ways of composing

up the world maps in the diagram

w1 f ◦ w2 g ◦ w3 h ◦ w4

are equal. By definition of equality between world maps, it

suffices to show that, for any command c of the world w4,

the two programs ((f ; g);h) c and (f ; (g;h)) c are equal. The

left hand side is equal to (lift (f ; g) (h c)) and the right hand

side is equal to (lift f (lift g (h c))). Thus, it suffices to show

that (lift (f ; g) p) and (lift f (lift g p)) are equal programs

for any p : w3 ⇒ A. In case p≡≡≡ ret a, we have

lift (f ; g) (ret a) ≡≡≡ ret a : w1 ⇒ A

and

lift f (lift g (ret a)) ≡≡≡ lift f (ret a) ≡≡≡ ret a : w1 ⇒ A,

for a : A. In case p ≡≡≡ invk c d : w3 ⇒ A, where c : |w3| and

d : w3@c → w3 ⇒ A, we have

lift (f ; g) (invk c d) ≡≡≡
lift f (g c) �= (x̂ lift (f ; g) (d x)) : w1 ⇒ A,

and

lift f (lift g (invk c d)) ≡≡≡
lift f (g c �= (x̂ lift g (d x))) : w1 ⇒ A.

To show that these two programs are equal we use induction

on (g c). Thus, we prove that the proposition

lift f m �= (x̂ lift (f ; g) (d x))
.
=

lift f (m �= x̂ lift g (d x)) : prop (†)
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is true for any m : w2 ⇒ A, provided that the proposition we

are about to prove holds for any (d x), i.e., the proposition is

proved under the assumption that the induction hypothesis

lift (f ; g) (d x)
.
= lift f (lift g (d x)) : prop (‡)

is true for all x : w3@c. First m≡≡≡ ret a : w2 ⇒ A, for a : A,

lift f (ret a) �= x̂ lift (f ; g) (d x) ≡≡≡
(ret a) �= x̂ lift (f ; g) (d x) ≡≡≡

lift (f ; g) (d a) : w1 ⇒ A,

whereas

lift f ((ret a) �= x̂ lift g (d x)) ≡≡≡
lift f (lift g (d a)) : w1 ⇒ A,

and the equality follows from the induction hypothesis (‡).

Next, let m ≡≡≡ invk u v : w2 ⇒ A, and let L and R stand for

the two sides that we must prove equal, i.e.,

L≡≡≡ (lift f (invk u v)) �= x̂ lift (f ; g) (d x) ≡≡≡
(f u �= ŷ lift f (v y)) �= ẑ lift (f ; g) (d z) : w1 ⇒ A,

and

R≡≡≡ lift f ((invk u v) �= ẑ lift g (d z) ≡≡≡
lift f (invk u (ŷ (v y) �= ẑ lift g (d z))) ≡≡≡

f u �= (ŷ lift f ((v y) �= ẑ lift g (d z))) : w1 ⇒ A.

Now recall the monad law of associativity, viz., that the

proposition

(n �= α) �= β
.
= n �= (ŷ α y �= β) : prop

is true for any n, α, and β. Put n ≡≡≡ f u, α y ≡≡≡ lift f (v y),
β z ≡≡≡ lift (f ; g) (d z), so that

L≡≡≡ (n �= α) �= β : w1 ⇒ A

and

M ≡≡≡ n �= (ŷ α y �= β) : w1 ⇒ A.

are equal. To complete the proof, we need to show that M
and R are equal and appeal to transitivity of program equality.

Substituting the definitions of n, α, and β into M gives

M ≡≡≡
f u �= (ŷ lift f (v y) �= ẑ lift (f ; g) (d z)) : w1 ⇒ A.

By comparing with R, we see that we require extensionality

of bind and the equality

lift f (v y) �= ẑ lift (f ; g) (d z)
.
=

lift f (v y �= ẑ lift g (d z)),

but this is just the induction hypothesis of the induction on

m, i.e., (†) with m≡≡≡ v y.

Proof of Theorem 7

There are several things to establish. First, that the above

mapping defines a functor from Wm to Mndop. The proof that

idw is an identity with respect to composition of world maps

also shows that lift idw is equal to the identity function. The

proof that composition of world maps is associative shows that

lift (f ; g) ∼= (lift f) ◦ (lift g), where (∼=) denotes equality of

monad morphisms. To establish that we have a functor, one

more thing is required, viz., that (lift m) indeed is a monad

morphism, i.e., is that the proposition

liftB m (n �= f)
.
= liftA m n �= (x̂ liftB m (f x)) : prop

is true, for any n : w2 ⇒ A and f : A → w2 ⇒ B. The proof

is by induction on n. The case when n ≡≡≡ ret a is proved by

liftB m (ret a �= f) ≡≡≡ liftB m (f a)

and

liftA m (ret a) �= (x̂ liftB m (f x)) ≡≡≡
ret a �= (x̂ liftB m (f x)) ≡≡≡ liftB m (f a).

Let n ≡≡≡ invk c t. The induction hypothesis is that the

proposition

liftB m (t x �= f)
.
=

liftA m (t x) �= (x̂ liftB m (f x)) : prop (†)

is true for any x : w2@c. We compute:

liftB m (invk c t �= f)

≡≡≡ liftB m (invk c �=(x̂ t x �= f))

≡≡≡ m c �= (x̂ liftB m (t x �= f))

(†) .
= m c �= (x̂ liftA m (t x) �= (x̂ liftB m (f x))),

and

liftA m (invk c t) �= (x̂ liftB m (f x))

≡≡≡ (m c �= (x̂ liftA m (t x))) �= (x̂ liftB m (f x))

(assoc.)
.
= m c �= (x̂ liftA m (t x) �= (x̂ liftB m (f x))),

and the two right hand sides are equal.

To show the functor is full, i.e., that any morphism between

world-based monads arises from a world map by lifting,

assume that w1 and w2 are worlds, and that we have monad

morphism

fA : (w2 ⇒ A) → (w1 ⇒ A),

with

fA (ret a)
.
= (ret a), and

fB (a �= g)
.
= fA a �= (x̂ fB (g x)).

If c : |w2| and t : w2@c → w1 ⇒ B, we have

fB (invk c t) ≡≡≡ fB (invk c ret �= t)
.
=

fw2@c (invk c ret) �= (x̂ fB (t x)).

If we make the definition m c ≡≡≡ fw2@c (invk c ret), the

definition of ‘lift’ gives extensional equality between fB and

liftB m as liftA m (ret a) ≡≡≡ ret a, and

liftB m (invk c t) ≡≡≡ m c �= (x̂ liftB m (t x)).
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That is f satisfies the equations that define lift m, but up to

program equality instead of definitional equality.

To show that the functor is faithful, assume that lift m ∼=
lift n, for world maps m,n : w1 � w2. For any c : |w2|, we

have lift m (invk c ret) ≡≡≡ m c �= ret, and similarly for n.

It follows by right associativity that m c
.
= n c, as required.
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