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Abstract--This paper describes a level-of-detail generation 
approach for large scale models. To make LODs preserve 
the overall appearance of original data, the presented 
approach is to perform uniform sampling in geodesic metric, 
resulting in adaptive meshes or points in Euclidean metric. 
Geometric attribute such as curvature help to establish 
geodesic metric and therefore control the sampling ratios in 
different regions. This method is rather simple and LODs 
are very fit for display. Some cases are provided to illustrate 
the capability and feasibility of the method for both meshes 
and unorganized points.  
 
Index Terms--LOD, Geodesic Metric, Poisson Disk, FPS, 
Adaptive Sampling 
 

Ⅰ. INTRODUCTION 

The fast growing popularity of laser scanners makes 
capturing 3D information of object simple and efficient. 
Visualizing and processing large amount of data have 
been a challenge due to the limitation of computer’s 
capacity. Therefore, building LODs retaining fine details 
for the unorganized points and meshes can make 
rendering suffer little loss in details and be processed 
faster (Luebke, 2003).  

Many approaches about LOD generation have been 
proposed in computer graphics society during past 
decade (Garland, 1997; Hoppe 1996; 1997; Hu, 2009; 
2010). Their main purpose is to improve rendering speed, 
to compress models, to transfer data efficiently and to 
reduce the cost of geometric calculation. To date, most of 
those approaches are devised for generating LODs of 
meshes. For unorganized points, less related reports can 
be found. The main reason, we think, is that the original 
mesh can provide some basis for mesh models’ LOD 
generation which isn’t existed in unorganized points. 
Thus, generating LODs of unorganized points is the main 
motivation of this paper. 

 

The rest of this paper is organized as follows. Section 
2 simply reviews LOD generation methods. Section 3 
presents two famous uniform sampling algorithms which 
can be used in our method. In section 4, we apply 
uniform sampling to generate adaptive results by 
introducing weighted geodesic metric. Some experiments 
are conducted and results are discussed in section 5. At 
last, conclusion and possible future research are listed in 
section 6.  

.Ⅱ  RELATED WORK 

This review tries to include important LOD generation 
methods. View-dependent approaches allow localized 
changes in resolution according to the viewing position 
in rendering. Their objectives are different from this 
paper, so we will not include them. Iteratively remove 
part of vertexes is a natural approach for LOD generation 
which is firstly introduced in (Schroeder, 1992). The 
decision whether to remove a vertex or not is based on 
the distance from the vertex to the plane determined by 
its neighbors. Vertices in smooth regions are preferred 
for removal. Simplification envelope is another similar 
approach (Low, 1997). Vertex clustering is to build a 
uniform grid of rectilinear cells, merge all vertices within 
a cell, and then compute a representative vertex to merge 
all triangles and edges. Each time a vertex and its 
incident triangles are removed, a hole is created, which 
should then be remeshed (Tan, 2004).  

Edge collapse may be the most popular mesh’s 
coarsening operation (Hoppe, 1996; 1997). The edge’s 
vertices are contracted to a single one, thereby deleting 
this edge and its incident triangles. The merits are that the 
position of new vertex can be freely chosen and no 
further triangulation is needed. In general, it involves two 
decisions: where to place the new vertex; determining the 
sequence of collapses. This is usually performed 
implicitly by specifying an error metric (Tan, 2004). 
Hierarchical clustering is used to partition mesh into 
locally connected blocks. Hoppe creates a block 
hierarchy and simplifies the mesh portions in the leaf 
blocks. After the simplification, the leaf blocks are 
hierarchically merged and then simplified again. The 
process is repeated till the whole mesh is stored in the 
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root cluster (Hoppe, 1998). The drawback is that all 
determinations are strictly based on local decisions and 
thus an assignment made early in the process mayn’t be 
correct. 

The idea behind those coarsening methods is to merge 
nearly coplanar faces into a large face or cluster vertexes 
into a new vertex. When multi-factors are involved in 
optimizing substitute vertex or modifying mesh, the 
computation is usually complex. Then, various 
techniques about management of memory and data 
structure have been researched.  Even so, those 
algorithms are still not flexible and effective. To 
overcome them, this paper will investigate a sampling 
strategy which is uniform sampling under geodesic 
metric. It is not the different of sampling method in 
different metric, but we place the points or meshes into a 
new metric in which the distribution of points is related 
to the surface’s variations of object. Compared with other 
methods, it is rather simple and robust results can be 
easily obtained.   

.Ⅲ  UNIFORM SAMPLING METHODS 

Two popular sampling algorithms in image processing 
should be Poisson disk sampling and farthest point 
strategy (FPS). FPS iteratively places a new point at a 
time in the center of the emptiest region, which should be 
with largest amount of information (Elder, 1993). As 
shown in Fig.1, Voronoi diagram is devised to find this 
center in 2D Euclidean space. In non-Euclidean metric, 
Moenning proposed fast marching to find the farthest 
points on meshes. Its basic sampling process is as follows. 
Each sample can be taken as a source and its fronts 
approach outwards. When several fronts meet, meeting 
points can be saved in a max-heap according to the time 
they meet. The root of the max-heap is the farthest point 
and taken as the new sample (Moenning, 2003).  

Poisson disk sampling intends to obtain samples that 
the distance between two arbitrary samples is more than a 
given value. It means that samples’ distribution is 
random and uniform. Dart-throwing keeps throwing point 
onto the space to be sampled randomly one by one, 
rejects if it doesn’t satisfy the specified separation from 
generated points. This process continues till no more 
points can be inserted. As shown in Fig.2, each black 
disk is a sample’s disk, which is also the forbidden area 
for the new samples. When the plane is wholly filled with 
black, the sampling process is over. This method is 
straightforward, yet it may be too slow when lots of 
samples are required. Then, some alterations have been 
proposed which include tile-based methods, relaxation 
schemes and etc (Lagae, 2007). In our application, the 
situation has some difference from the common 
circumstances in that the pooled samples are finite. That 
is to say, the thrown sample must be one of original 
points. Thus, we can determine if the thrown point can be 
accepted or not according to the point’s mark which 
represents if the point is located in forbidden regions. 
Accordingly, we can see those two sampling methods are 
substantially identical that is the new sample should be 
far from existed points. In practical applications, they can 

obtain similar results. Yet, the computation complexity of 
FPS is much more than that of Poisson disk which will be 
discussed in section 5. 

 

 

 
Figure 2.  Poisson disk sampling. 

Next Sample

 
Figure 1.  FPS sampling. 

Ⅳ. UNIFORM SAMPLING IN GEODESIC METRIC 

When uniform sampling methods are used to perform 
coarsening for meshes or unorganized points in sense of 
Euclidean metric, LODs with uniformly distributed 
samples can be obtained. Yet, this isn’t an efficient way 
since LOD means the degree of closeness between 
original and simplified model. In another word, the 
desired LODs should have more samples in regions with 
details, and vice verse. So, the nature idea for LOD 
generation is to establish a non-Euclidean metric in 
which the distribution of points can represent surface’s 
variations of object. When uniform sampling is 
performed in new metric, adaptive samples can then be 
obtained in Euclidean metric. Geodesic distance builds a 
surface metric for unorganized points and meshes. In 
geodesic metric, if two points with certain Euclidean 
distance are located in smooth regions, the geodesic 
distance is close to their Euclidean distance; if they are 
located in rugged regions, it should be more than their 
Euclidean distance. Considering that, our method comes 
into nature by combining uniform sampling method and 
geodesic metric.  

A.  Weighted Geodesic Distance 
In general, geodesic distance between two neighbor 

points  and i j  is approximated with their Euclidean 
distance. Geodesic distance between two arbitrary points 
can be estimated by adding up all geodesic distances 
along the shortest path connecting them. To further 
control the sampling ratios in different regions, we prefer 
to weighted geodesic distance. The weight is related to 
geometric attributes and can be easily adjusted. As an 
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example, we take point’s curvature to compute weight. 
For each point, its curvature is 

knnv
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⋅−= .                       (1) 

In formula (1), k is the number of neighbors, and 

is the normal of point i and 
in

jn j , j represents neighbor 

of . Then, weighted geodesic distance between i and i j  
is defined as 

ijjiij Svvfg ⋅−= )( .                             (2) 

In equation (2), and  are the curvature of andiv jv i j , 

,  represents the weighted geodesic distance, 
Euclidean distance between them. Consequently, 
weighted geodesic distance between two arbitrary points 
can be approximated by adding up all weighted geodesic 
distances along the shortest path connecting them. In the 
experiments, formula (3) is used to compute weight in 
this paper, in which c adjusts the sampling ratios in 
different regions.  

ijg ijS
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B.  Weighted Geodesic Distance Computation  
Geodesic distance computation is a well-researched 

problem. Among all situations, we only concern the case 
of “one source, all destinations”. That is to say, we want 
to find the farthest point for FPS and find points within 
certain weighted geodesic distance from a point for 
Poisson disk sampling. This has been transformed into 
the problem of solving Eikonal equation (Falcidieno, 
1993). Fast marching considers upwind, entropy-
satisfying finite difference approximations to the 
equation. Then, it provides an efficient algorithm for 
geodesic distance computation on meshes. So, fast 
marching is used in mesh cased LOD generation in this 
paper.   

Dijkstra is a graph search algorithm that solves the 
single-source shortest path problem for a graph with 
nonnegative edge path costs (Cormen, 2001). It is 
therefore an efficient algorithm for computing geodesic 
distance in case of unorganized points. When the data is 
in great amount, Dijkstra can’t be used due to great 
memory and computation time is demanded. So, it is 
mainly applied when Poisson disk sampling in 
unorganized points since the computation complex and 
memory consumption is relative less. In this case, 
Dijkstra is to find the shortest paths from a source node 
to other nodes by stopping propagation when the 
geodesic distances of the current nodes exceed the radius 
of disk.  Note that propagation should approach on point 
set using k-NN strategy.  

Fast marching and Dijkstra share same idea that is 
information just propagates from smaller one to large one. 
For unorganized points, neighbors refer to points in 

notion of Euclidean vicinity. Yet, in case of mesh, 
neighbors represent points which are directly connected 
with current point. This is the main difference between 
them.  

C.  Outline of Algorithm 
The implementation of FPS sampling in geodesic 

metric can be devised according to (Moenning, 2003; 
Peyre, 2006), we will not discuss it. The main steps of 
Poisson disk sampling for LOD generation are as follows: 

• Establish k-d tree for point set and set disk’s 
radius. 

• Mark all nodes as unvisited. Randomly sample a 
point from points. Set this point as current and 
accepted. 

• Take current as source, finding points whose 
geodesic distance to the source is less than radius 
using Dijkstra for unorganized points and fast 
marching for meshes. Set those points as visited. 

• Randomly sample a point from unvisited points, 
set it as current and accepted, return back to step 3. 
If there are no unvisited points, break loop. 

• Accepted points are the sampling results.  
Finding the points within geodesic distance from a 

point using fast marching or Dijkstra can be described as 
follows.  

• Assign to each node a geodesic distance. Set it to 
zero for source node and to infinity for all other 
nodes. 

• Mark all nodes as unvisited. Set source node as 
current. 

• For current node, calculate its 
neighbors’ tentative weighted geodesic distances. 
If each of geodesic distances is less than the 
previously recorded value, overwrite it.  

• If the geodesic distances of current node’s 
neighbors are all not infinity, mark current node as 
visited. Visited node will not be checked again, its 
geodesic distance recorded now is the final.  

• If all nodes have been visited, or the geodesic 
distance of current point is more than radius of 
disk, finish. Otherwise, set unvisited node with the 
smallest geodesic distance as the next current 
node and return to step 3. 

In step 5, if point which has smallest geodesic distance 
is taken as current node only, it will result in more 
computation time. We usually take some nodes with less 
geodesic distances from unvisited nodes as current nodes 
in the algorithm’s implementation. This may be the 
compromise between computation efficiency and 
accuracy of geodesic distance. 

Ⅴ. EXPERIMENTS AND ANALYSIS 

Experiments on different 3D point sets and meshes are 
provided to illustrate the effectiveness of our idea. 
Formula (3) is used to compute weighted geodesic 
distance and  is set to 1.0. In computing the normal and 
curvature of point, we treat all data as unorganized points 
and set the number of neighbors is 20. When Dijkstra is 

c
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used to compute geodesic distance in unorganized points, 
the number of neighbors is set to be 10. Experiments on 
different parameters will not be discussed since we 
mainly intend to introduce our idea.  

A.  Uniform Sampling in Geodesic Metric 
Fig.3 shows our idea taking Poisson disk sampling as 

an example. Randomly distributed red points on the 
model represent the samples and regions with different 
color are their corresponding disks. Different regions are 
usually overlapped and each sample is inside its disk only. 
So, the geodesic distance between neighbor samples must 
be more than disk’s radius. In geodesic metric, the shapes 
of disks are all circle with same radius. As we can see in 
Euclidean metric, the disk in smooth region covers larger 
range which makes the sampling chance be less than that 
in rugged regions. This is what we propose that 
uniformly sampling in geodesic metric,    resulting with 
adaptive samples in Euclidean space.  

 

B.  Poisson Disk Sampling in Unorganized Points 
In this section, we treat all data as unorganized points. 

Dijkstra is used to compute geodesic distances between 
points. Fig.4 shows the samples of Dragon using Poisson 
disk sampling under geodesic metric. 4(a) is the original 
points which are uniformly distributed. Samples in 4(b)-
(d) mostly preserve the original details with reduction of 
sampling rate. Many redundant points in smooth parts are 
removed.  

Fig.5 shows the simplified 3D models of Statuette. The 
original point’s number is about 5M. For the points of 
LODs, we recovered their 3D models using Geomagic 
which should be one of best software in computer 
graphics. There exist relatively less differences among 
the surface models of 5(a)-5(d), yet the numbers of points 
have distinctive differences. As shown in 5(e)-5(l), the 
distributions of samples are wholly adaptive to the 
surface’s variations, which make the LODs preserve the 
original details better.  

 

 

       
 (a)                              (b) 

       
(c)                              (d) 

       
(e)                              (f) 

       
(g)                              (h) 

 

 
(a)                              (b) 

    
       

(c)                              (d) 

Figure 4.  Recovered Model of Statuette. (a),(b),(c),(d): samples of 
100k, 150k, 300k and 600k. (e)-(l): parts of mesh models.. 

 
Figure 3.  Dragon Point Sets. (a): original 40k points; (b),(c),(d): 

samples of 20k 10k 5k. 
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(i)                              (j) 

       
(k)                              (l) 

Figure 5.  Recovered Model of Statuette. (a),(b),(c),(d): samples of 
100k, 150k, 300k and 600k. (e)-(l): parts of mesh models. 

s
models. 

Besides the adaptability, other merits of Poisson di k 
sampling in geodesic metric are that low memory is 
needed and high efficiency can be obtained. The original 
point’s number of Lucy is about 14M. Then, error metric 
based LOP generation methods almost can’t deal with 
this data. FPS still can’t handle it due to the great 
requirement for memory and computation. Compared 
with them, the demanded computation is greatly 
decreased in Poisson disk sampling. 6(a)-(d) show the 
LOD mesh models of Lucy. Similar to the results of 
Statuette, there exist slight differences among mesh 
models. However, the samples’ numbers have distinct 
differences. Parts of mesh models of Lucy are shown in 
6(e)-(l). From them, we can see that our method is 
actually to find the compromise between adaptive 
sampling and uniform sampling. Note that original 
meshes of the tested data aren’t used in this experiment. 

Besides the adaptability, other merits of Poisson disk 
sampling in geodesic metric are that low memory is 
needed and high efficiency can be obtained. The original 
point’s number of Lucy is about 14M. Then, error metric 
based LOP generation methods almost can’t deal with 
this data. FPS still can’t handle it due to the great 
requirement for memory and computation. Compared 
with them, the demanded computation is greatly 
decreased in Poisson disk sampling. 6(a)-(d) show the 
LOD mesh models of Lucy. Similar to the results of 
Statuette, there exist slight differences among mesh 
models. However, the samples’ numbers have distinct 
differences. Parts of mesh models of Lucy are shown in 
6(e)-(l). From them, we can see that our method is 
actually to find the compromise between adaptive 
sampling and uniform sampling. Note that original 
meshes of the tested data aren’t used in this experiment. 

  

  

  
  

 
(a)                                      (b) 

  
(c)                                      (d) 

      
(e)                                      (f) 

     
(g)                                      (h) 

   
(i)                                      (j) 

   
(k)                                      (l) 

 

Figure 6.  Recovered Model of Lucy. (a),(b),(c),(d): surface model with 
points of 100k, 200k, 400k and 900k. (e)-(l): local mesh models. 
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C.  Poisson Disk Sampling in Meshes 
Digital elevation model (DEM) is widely used in 

geography information system (GIS) to describe terrain’s 
information. In most situations, DEM is expressed with 
grid or TIN mesh. Then, fast marching can be used to 
compute weighted geodesic distance and 4 nearest 
neighbors strategy is adopted. In order to do comparison, 
we still perform sampling by taking the vertexes of DEM 
as unorganized points. The original grid mesh is with 
1500×1500 nodes. Fig.7(a)-(d) show the depth maps of 
terrain when considering the original mesh. 7(e)-(h) are 
the corresponding depth maps taking DEM as 
unorganized points. There exist slight differences among 
those simplified models, which demonstrates the 
geodesic distances obtained using Dijkstra and fast 
marching are almost same. In Fig.7, the color becomes 
duller with height decreasing and the meshes of samples 
are constructed according to 2D Delaunay rule. Samples 
can describe terrain with relatively less data. We believe 
it is a very useful method for terrain’s LOP generation.  

 

 

   D.  FPS Sampling in Meshes 
As stated above, FPS sampling will cost more 

computation and memory. So, we make FPS sampling 
for mesh models of Golf and Foot which have relatively 
less data. Fast marching is used to compute the geodesic 
distances from source(s) to other points. In each step, the 
point with longest distances from the sampled points will 
be next sample. Compared with Poisson disk sampling, 
FPS can accurately control the number of samples. Fig.8 
shows the simplified mesh models.  

 
E.  Quantitative Analysis 

For quantitative analysis, we establish LODs of the 
points of Bunny, Dragon, Happy Recon, Armadillo, Lucy, 
Statuette (Stanford, 2011) and DEM (Geographx, 2011) 
with Poisson disk sampling method. Mesh models of all 
sampling sets are obtained using Geomagic. Then, we 
evaluate the performance of our method by comparing 
the differences between the original meshes and the 
simplified models. In this paper, we estimate two 
models’ difference according to the following way.  Let 

,  be the coordinate and normal of a point i  from 

original point set. The projection of  along  on a 

simplified model  can be obtained by computing the 

intersection between line

ip in

ip in

jM

ii np ,  and . Then, the 

difference of M  from original model can be estimated 

by averaging the distances between  and its projection 
point. Further discussion about estimation of the 
difference is beyond this paper. Yet, we think this way is 
an unbiased and reliable strategy.  

jM

i

j

p

As shown in Tab.1, the value in each cell’s top denotes 
the difference between the original data and our 
simplified model, the bottom value is the difference 
between original model and simplified model obtained 

  
(a)                                        (b) 

   
(c)                                        (d) 

Figure 8.  Recovered Mesh Model of Samples. (a), (b) the golf models 
with samples of 3k and 5k;  (c), (d) the foot models with samples of 2k 

and 5k. 

        
(a)                                      (b) 

        
(c)                                      (d) 

        
(e)                                      (f) 

        
(g)                                      (h) 

Figure 7.  Depth Map of Terrain. (a)-(d): mesh cased simplified models
with samples of 1%, 2%, 5% and 25%; (e)-(h): unorganized points 

cased simplified results corresponding to (a)-(d). 
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using the function “curvature  sampling” of Geomagic. 
For Dragon, the mesh models can’t be reasonably 
constructed when sampling rate is below 10%, so we 
don’t list the related data in Tab.1. The error should be 
overestimated since it includes the error of establishing 
mesh, but we think this quantitative evaluation is still 
informative. From this table, we can come to a 
conclusion that our method can preserve the details better. 
The accuracy’s differences between our method and 
Geomagic are obviously increased with the increasing of 
sampling rate, which illustrates our method can sample 
key points with more chance. Tab.2 lists the computation 
times to perform above operations. When the point’s 
number is less than 1M, the process is very quickly. For 
great amount of data such as Lucy, the computation is 
still not costly even when sampling rate is 50%. All 
experiments were conducted with program under VC 6.0 
on an Intel 2 Core, 2.83GHZ, 4GB, windows XP 
machine. As the samples number is hard to be controlled 
precisely in Poisson disk method, approximated number 
of samples obtained by adjusting disk radius are shown 
instead in this experiments.  

 

 

.Ⅵ  CONCLUSION  

This paper presents LOD generation method for 
unorganized points and meshes with uniform sampling 

method by taking geodesic distance as a basis. Poisson 
disk sampling, FPS and other uniform sampling 
algorithms can be applied in our method. Compared with 
FPS, Poisson disk sampling can get more efficiency with 
similar results. Experiments show that adaptive results 
can be obtained with desired effects. Comparison and 
evaluation for the reconstructed models demonstrate the 
effectiveness of our method.  

The main contribution of this paper is that it introduces 
an idea of uniformly sampling in non-Euclidean metric 
for LOD generation. The distribution of samples is 
locally uniform and wholly adaptive in Euclidean metric, 
and therefore obtains better display effect. However, 
there is still other research work to do. Geodesic distance 
plays an important role in our method, so some new 
computation methods should be studied in future, which 
can further improve computation efficiency. The 
sampling number can’t be controlled in Poisson disk 
sampling, then how to estimate the relationship between 
sampling number and radius of disk should be attractive. 
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