
Continuous-time MAXQ Algorithm for Web
Service Composition

Hao Tang

School of Electrical Engineering and Automation, Hefei University of Technology, Tunxi Road No.193,
Hefei, Anhui 230009, P.R. China

Email: htang@hfut.edu.cn

Wenjing Liu, Wenjuan Cheng and Lei Zhou
School of Computer and Information, Hefei University of Technology, Tunxi Road No.193,

Hefei, Anhui 230009, P.R. China
Email: {winnykris, zhouleizhl, wj_cheng}@163.com

Abstract—Web services composition present a technology to
compose complex service applications from individual
(atomic) services, that is, through web services composition,
distributed applications and enterprise business processes
can be integrated by individual service components
developed independently. In this paper, we concentrate on
the optimization problems of dynamic web service
composition, and our goal is to find an optimal composite
policy. Different from many traditional composite methods
that do not scale to large continuous-time processes, we
introduce a hierarchical reinforcement learning technique,
i.e., a continuous-time unified MAXQ algorithm, to solve
large-scale web service composition problems in the context
of continuous-time semi-Markov decision process (SMDP)
model under either average- or discounted-cost criteria. The
proposed algorithm can avoid the “curse of modeling” and
the “curse of dimensionality” existing in the optimization
process. Finally, we use a travel reservation as an example
to illustrate the high effectiveness of the proposed algorithm,
and the simulation results show that, it has better
optimization performance and faster learning speed than
the flat Q-learning.

Index Terms—web service composition, hierarchical
reinforcement learning, semi-Markov decision process
(SMDP), MAXQ

I. INTRODUCTION

 Web services are considered as self-contained, self-
describing, and plat-form-independent applications that
can be published (Web Services Description Language,
WSDL), discovered (Universal Description Discovery
and Integration, UDDI) and invoked (Simple Object
Access Protocol, SOAP) over the internet [1, 2]. A single
web service usually can not fulfill the requirements of a
user, while web service compositions provide a way to
combine a set of simple web services into more powerful
services or new value-added services that can satisfy the
user’s needs. So, in modern high-tech world, web service

composition has played more and more important role in
many domains, typically in e-commerce and enterprise
application integration, and has attracted many
researchers’ attention.

The composition process of web services has been
divided into static and dynamic [3, 4]. Static composition
is purely manual, whose process model should be built
before run time, and each web service is executed one by
one so as to achieve the desired requirement. It is a time-
consuming task that requires a lot of effort. However,
web service requests are always stochastic, and the
environment in which web service composition operation
is often dynamic. So, it is inappropriate to select and
compose web services statically in such cases, and the
dynamic composition process is more competitive. The
later creates a process model and selects primitive
(atomic) services automatically during the run time, so as
to make the composite service adaptable in a high
dynamic environment.

In this paper, we consider the dynamic web service
composition and focus on how to compose services
according to a user’s request as well as some quality of
service (QoS) properties, that is, given a set of possibly
candidate web services and an optimization goal, how to
achieve this goal by composing these web services into a
web process (workflow) [2]. The QoS model for web
service usually includes reliability, cost, response time,
availability, and so on. So far, a number of methods have
been proposed to achieve dynamic web service
composition. For example, Gao et al. has discussed a
composition method based on Markov decision process
(MDP) [5], and introduced two value iteration algorithms
for computing the optimal policy: one is backward
recursive iteration and the other is forward iteration. But
both algorithms are numerical and model-based, which
suffers from the curse of modeling, and can not be used
in a model-free case.

In [6], a new algorithm is applied for dynamic service
composition based on reinforcement learning (RL) and
logic of preference. However, in large-scale web service
composition problems, current tabular reinforcement
learning methods suffer from the “curse of

Partially supported by the Nature Science Foundation of Anhui
Province (090412046), the Nature Science Foundation of Education
Department of Anhui Province (KJ2008A058), and the Humanities
and Social Sciences Project of Ministry of Education (09YJA630029)

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 943

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.5.943-950

Figure 1 Web Service Composition Model.

dimensionality” [7], which is the exponential growth of
computational and memory requirements with the
number of system state variables. So, the method
proposed in [6] may encounter low efficiency in the case
of a large number of candidate services, although it can
realize composition automatically in a model-free case.
Typically, any element of a web process may be either a
primitive web service or a composition of primitive web
services, which itself is a web process. To that end, the
web service composition problem as a task can be
recursively decomposed into smaller and smaller subtask
until reach the primitive tasks. In other words, realistic
web processes may be nested as higher level web
processes and lower level web processes, in which a
higher level web process maybe composed from lower
level web processes [8]. Thus, the large-scale web service
composition problems can be solved by hierarchical
methods [9–11]. One of the ways is to utilize hierarchical
reinforcement learning.

Wang et al. has adapted MAXQ algorithm to dynamic
service composition, which is based on discrete-time
semi-Markov decision process (DT-SMDP) [11]. But in
real-word applications, web service compositions are
always related to run time. Specifically, the performance
of a composition process is affected by the real time of
network transmission and service processing, which is
related to one of the QoS properties, i.e., the response
time. Therefore, it is more practical to use continuous-
time hierarchical reinforcement learning (HRL)
algorithms to solve web service composition problems. In
this article, we will propose a dynamic web service
composition method based on MAXQ algorithm, in the
context of continuous-time semi-Markov decision process
(CT-SMDP). It is effective in dealing with the “curse of
dimensionality” and the “curse of modeling” for practical
large-scale service composition.

The rest of this paper is organized as follows: Section
2 presents the framework for dynamic web service
composition. Section 3 describes the continuous-time
MAXQ algorithm for web service composition. Section 4
demonstrates the experimental results of the approach
introduced in section 3. And finally, the last section
concludes this paper and discusses the possible future
work.

II. WEB SERVICE COMPOSITION MODEL

The framework of the dynamic web service
composition model is shown in Figure 1 [1].

The service composition system has two kinds of
participants, service provider and service requester. The
former proposes web services for use, and the latter
consumes information or services offered by the former.
The system also contains the following components: task
acceptor, composed service engine, execution engine,
service matchmaking, etc. Firstly, the service providers
advertise their atomic services at a global market place.
Once a service requester submits his requests and the task
acceptor accepts the information, the composed service
engine will try to solve the requirement by composing the
atomic services advertised by the service providers. Then
the execution engine will accept the corresponding flow
chart, and send the service specification to the service
matchmaking, which will find the most appropriate
atomic web services and return the information to the
execution engine. Finally, the execution engine invokes
and executes each atomic service, and the result will be
then sent back to the service requester.

The dynamic web service composition problem can be
modeled as a SMDP [12–15], which is a more general
model than MDP. When a composition process evolves to
a task node, the composed service engine should decide
to select a concrete web service, and the moment of
making decision is called decision epoch. Here, we use

nt to denote the nth decision epoch with 0 0t = . If there
are l task nodes to be bound in a web service composition
problem, the system state s is then defined as a
conjunction of status of each task node, i.e.,

1,..., ,...,k ls s s s=< > , where ks corresponds to the kth task
node of this service composition. 1ks = represents that
this node is active and has been bound to a concrete web
service, while 0ks = means that this node is not active.
Let Φ be the system state space, i.e., s ∈ Φ . At time nt
and state ns , the action na is selected from the set of all
possible candidate web services ()nA s , i.e., ()n na A s∈ ,
and write ()nA A s=∪ . Then, a stationary policy π
represents a mapping from states to actions, i.e., π :

AΦ → . Here we use the reliability of a relative service
as the transition probability 1(| ,)n n np s s a+ [9], that is,
under a concrete action na , the system transits from
current state ns to next state 1ns + with probability

1(| ,)n n np s s a+ or still stays at state ns with probability

11 (| ,)n n np s s a+− . Let 'ssτ be the interval time between nt
and 1nt + , and it can also be called the sojourn-time of
state ns under action na , which follows a random
distribution. Then, the web service composition problem
can be modeled as a SMDP.

Suppose that the expected cost the system pays every
unit time at state ns under action na and before transiting
to next state 1ns + is denoted by 1(, ,)n n nf s a s + . Then, we
take the following infinite-horizon expected cost criteria
[15].

944 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

…
…

…
…

…
…

…
…

(,)V i sπ

(, ,)C i s jπ

(,)V j sπ

Figure 2 MAXQ graph for the web service composition problem.

Is

(,)V j sπ

s 's

(, ,)C i s jπ

(,)V i sπ

Ts

Execution of Action j

Execution of Subtask i

Figure 3 Note how the caption is centered in the column.

1
1 0

0
() (, ,) ,n

n

t t
n n nt

n
s E e f s a s dt s s sπ α

αη α+
∞ −

+
=

⎡ ⎤= | = ∀ ∈Φ∑ ∫⎢ ⎥⎣ ⎦
. (1)

Here, α denotes a discount factor, and when 0α > ,
()sπ

αη represents the long-run expected total discounted
cost of states under policy π . As a special case, if

0α → , the limitation 0 ()sπη represents the following
infinite-horizon expected average cost

1
1

1
0

1 (, ,)lim n

n

N t
n n nt

N nN

E f s a s dt
t

πη +
−

+
→∞ =

⎡ ⎤= ∑ ∫⎢ ⎥⎣ ⎦
. (2)

III. CONTINUOUS-TIME MAXQ ALGORITHM FOR SERVICE
COMPOSITION

The MAXQ algorithm is a well-known approach in
hierarchical reinforcement learning, which provides a
hierarchical decomposition of the given reinforcement
learning problem into a set of sub-problems.
Ghavamzadeh and Mahadevan has proposed a
continuous-time MAXQ algorithm in the context of
SMDP [17], which is an extension of the MAXQ method
for discrete-time hierarchical reinforcement learning
[18,19]. In that work, continuous-time discounted reward
MAXQ algorithm and continuous-time average reward
MAXQ algorithm were introduced respectively. Based on
those work and by using the concept of performance
potential, we will propose a unified optimization
framework for both cost criteria in this section.

To construct MAXQ decomposition for the web
service composition problem, we should first identify a
set of individual subtasks that we believe important for
solving the overall task. More formally, the MAXQ
method decomposes the target task M into a set of
subtasks 0 1 1{ , ,..., }mM M M − and decomposes a hierarchical
policy π into a set of policy 0 1 1{ , , ..., }mπ π π − with iπ
corresponding to subtask iM . Each subtask iM is a triple

, ,i i iT A R< > . The termination predicate partitions the state
space Φ into a set of active states iS and a set of terminal
states iT . The policy for subtask iM can only be
executed if the current state is S∈ . iA is a set of actions
that can be performed to achieve subtask iM , with
elements being either primitive actions or other subtasks.

iR is the pseudo cost function, which specifies a pseudo-
cost for each transition to a terminal state. In this case, let
us define four tasks as follow:

 Root. This is the whole web service composition
task.

 Input. In this subtask, the goal is to get the request
information so as to invoke a concrete service.

 Output. In this subtask, the goal is to obtain the
service output data.

 Comp. In this subtask, the goal is to select an
appropriate composite model during the
composition process. In other words, it is to move
the service process from its current state to target
state.

By decomposing we can obtain a MAXQ graph for
web service composition problem as shown in Figure 2
according to [19]. There are two kinds of nodes: MAX
nodes (triangles) and Q nodes (rectangles). A MAX node
with no children denotes a primitive action and the one
with children represents a composite subtask. The
immediate children of each MAX node are Q nodes
corresponding to the actions that are available for each
subtask. Specifically, each MAX node iM can be viewed
as computing the value of (,)V i sπ for its subtask, which
is the expected cumulative cost of executing iπ and the
policies of all descendants of iM starting at state s until

iM terminates. For a primitive MAX node, this
information is stored in the node, while for a composite
MAX node, this information is obtained by the Q node
selected by iπ . Suppose that the policy iπ of iM chooses
subtask ()i s jπ = at state s. Then, each Q node with
parent task iM , state s, and child task jM can be viewed
as computing the value of (, , ())iQ i s sπ π that is equal to
the projected value function (,)V j sπ of its child task jM
plus its completion function (, ,)C i s jπ . Here, (, ,)C i s jπ is
stored in the Q node, and represents the expected
discounted cumulative cost of completing subtask iM
after invoking the subroutine for subtask jM at state s.

The decomposition for the (,)V i sπ is also shown by
Figure 3. Each circle is a state of the composition
process, and suppose subtask iM is initiated at state Is
and terminated at state Ts . If i is a primitive action, then

Is s= , ' Ts s= . The interval time 'ssτ between state s and

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 945

© 2012 ACADEMY PUBLISHER

its next state 's is the sojourn-time of state s, which is
assumed to be exponential distribution during our
experiments in the next section. If i is a composite action,

'ssτ is the cumulative time that can be separated into
several interval times, and is no longer exponential
distribution. Then, the value function (,)V i sπ of state s
for iM in the MAXQ algorithm is broken into two parts:
the value of the subtask jM that is independent of the
parent task iM , and the value for completing iM after
executing subtask jM that of course depends on the
parent task iM . So, we have

'(, , ')
(,)

(, , ())i

f s i s if i is primitive
V i s

Q i s s if i is composite
π

π π
=
⎧
⎨
⎩

. (3)

where

 '

1 2 '0
'(, , ') (,) (, , ') ()ss t

ssf s i s k s i k s i s e dt T
τ α

α τ η−= + × − ×∫ � . (4)

(, ,) (,) (, ,)Q i s j V j s C i s jπ π π= + . (5)

Here, 1 (,)k s i represents the immediate cost of executing
primitive action i at state s, which represents the user’s
request in web service composition problem, like the
price acceptable, the distance between the hotel and the
airport, and so on; 2 (, , ')k s i s represents the time-related
cost that the system pays every unit time, such as
response time. In addition, η� represents the estimate of
average cost, satisfying

 : f

w

S

S
η =� . (6)

with fs and ws being learned, respectively, as follows

'
0: ((, , '))f f n fS S f s i s Sαβ == + − . (7)

': ()w w n ss wS S Sβ τ= + − . (8)

Here, nβ is a stepsize, and '
0 (, , ')f s i sα = is calculated by

(4) with 0α = , which denotes accumulated cost from s
to 's under primitive action i.

The projected value function for the root is then
decomposed into the ones for the individual subtasks and
the individual completion functions recursively by
equations (3) to (5). Furthermore, (,)V i sπ and (, ,)C i s jπ
are updated, respectively, as follows

(,) : (1) (,) '(, , ')V i s V i s f s i sπ πγ γ= − + × . (9)

(, ,) : (1) (, ,) (((, ', ') (', ')) ())TC i s j C i s j e C i s j V j s T Tπ π α π π

α
γ γ η−= − + + − × � . (10

)

' (')' arg min ((', ') (, ', '))
ia A sj V a s C i s aπ π

∈= + . (11)

Here,
0

1() t eT e dt
αττ α

α τ
α

−
− −= =∫ for any discount factor

0α > and time 0τ > , and let 0 0
() lim ()T Tαα
τ τ τ

→
= = . In

addition, γ is a stepsize, and T is the current total
cumulative time for executing subtask iM .

Due to the introduction of the term ()Tα η× �i in
equation (4) and (10) according to the idea of
performance potential for SMDP [15, 16], the unified
MAXQ algorithm can then be established for both
discounted and average criteria, which is the difference
between our algorithm and other MAXQ algorithms such
as proposed in [14]. The continuous-time unified MAXQ
algorithm for web service composition is depicted in
Table I, and the flowchart of this algorithm is shown in
Figure 4.

IV. EXPERIMENTS

In web service composition problems, a complete web
service composition task is staring from service requester
submitting requests to the system returning the results.
After finishing a web service composition task, it will
deal with another web service composition task
immediately. In this section, we will demonstrate the high

TABLE I.
MAXQ ALGORITHM FOR WEB SERVICE COMPOSITION

1. function CTU_MAXQ(MaxNode i, State s)
2. initialize '

' 0{ , , , ', }ssStack s i f fατ ==
3. if i is primitive MAXNode, then
4. execute action i in state s, receive sojourn-time 'ssτ , observe

state 's ; calculate the accumulated cost '(, , ')f s i s and

0' (, , ')f s i sα = according to (4)
5. push the sample records into the top of the {}Stack ; calculate

η� according to (6)-(8) and compute the value of (,)V i sπ

according to (3)-(5)
6. else
7. while is T∉ do
8. choose action j according to the current greedyε − policy

iπ
9. let ChildStack = CTU_MAXQ(j, s) while executing action j
10. observe result state 's
11. let ' (')' arg min ((, ', ') (', '))

ia A sj C i s a V a sπ π
∈= +

12. T=0
13. for the element of the ChildStack from the beginning do
14. ': ssT T τ= + , calculate η� and compute (, ', ')C i s jπ via (10)
15. end for
16. append ChildStack onto the top of Stack
17. let 's s=
18. end while
19. end if
20. return Stack
21. end CTU_MAXQ

22. initialize (,)V i sπ and (, ,)C i s jπ arbitrarily
23. CTU_MAXQ 0(0,)s

946 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

η�

η�

Figure 4 Flow chart for the continues-time MAXQ algorithm.

Figure 5 travel reservation model.

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of iterations

A
ve

ra
ge

 c
os

t

Q-learning
MAXQ

Figure 6 Real time Average cost of the Q-learning and MAXQ

algorithm.

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of iterations

D
is

co
un

te
d

co
st

s

Q-learning
MAXQ

Figure 7 Real time Discounted costs of Q-learning and MAXQ

algorithm (0.01α =).

effectiveness of the continues-time unified MAXQ
method by using a travel reservation as a simulation
example.

A. Simulation model
Let us assume that a customer wants to travel to

someplace. So he/she should first tell the travel agent
who notes the customer’s requests and generates a
corresponding trip request document that may contain
several needed plane/train/bus tickets, hotels, car rental,
excursions, etc. The travel agent performs all bookings
and when he is done, he puts the trip request either into
the canceled requests or the completed requests data
base. A completed document is sent to the customer as an
answer to his request. If the booking fails, the customer is
contacted again and the whole process re-iterates. Service
providers (airlines, bus companies, hotel chains, etc) are
providing web services for selection, and credit card
companies are also providing services to guarantee
payments made by consumers.

As Figure 5 shows, the travel reservation problem is
decomposed into 4 levels. The highest level is the task of
input, composition and output. Further more, the
composition task is decomposed into hotel, traffic and

viewpoint, which constitute the second level. Then they
all decompose into three subtasks: find, select, book
respectively. At last level, there are all primitive actions
which are the candidate web services that can be bound to
the corresponding parent task node. The goal is to find an
optimal composite policy according to user’s request.

B. Experimental Results
As a case study, we suppose there are three web

service classes, such as hotel, traffic and viewpoint, and
the number of candidate services for each web service
class is 10, as shown in figure 5. For comparison, we
firstly used flat Q-learning to simulate this problem. In Q-
learning, greedyε − actions are necessary for
exploration, especially at the beginning of the
optimization. So we use 0.3ε = , learning step

0.21 / (8 (,))N s iγ = × . Here (,)N s i is the number of state-
action pairs (,)s i that has been visited. 1 (,)k s i is
different for every state-action pairs (,)s i , and

2 (, , ') 0.8k s i s = .
First, we consider the average case, i.e., 0α = . Two

optimization plots are provided respectively in Figure 6,
where each y-axis denotes the average cost of each
algorithm in 1000 episodes. In this problem, a simulation
episode is staring from any state to the termination state.
We observed that, comparing with the Q-learning, the
performance of the MAXQ method is more efficient. The
reason is that the MAXQ method accelerates the learning
speed and also improved the optimizing precision via

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 947

© 2012 ACADEMY PUBLISHER

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of task

S
uc

ce
ss

 ra
te

 o
f s

er
vi

ce
 c

om
po

si
tio

n

Q-learning
MAXQ

Figure 10 The web service composition success rates of both

algorithms with different number of tasks.

10 20 30 40 50 60 70 80
0

5

10

15

Number of tasks

C
om

pu
ta

tio
n

co
st

(in
 s

ec
on

ds
)

Q-learning
MAXQ

Figure 11 The computation cost of both algorithms.

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of iterations

D
is

co
un

te
d

co
st

s

Q-learning
MAXQ

Figure 9 Policy evaluation of Q-learning and MAXQ algorithm for

discounted cases (0.01α =).

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of iterations

A
ve

ra
ge

 c
os

ts

Q-learning
MAXQ

Figure 8 Policy evaluation of Q-learning and MAXQ algorithm for

average case.

hierarchy and action abstractions.
Figure 7 shows the results of Q-learning and MAXQ

algorithm for discounted cases with the discount factor
0.01α = . As we expected, the graph shows that the

MAXQ algorithm can yield a good result faster than Q-
learning. And due to the utilization of discount factor α,
the curve for discounted case is flatter than it for average
case. At the beginning, the curve of the MAXQ algorithm
shows obvious fluctuation for either average case or
discounted case. The reason is that each subtask is very
different from each other, each of them has to be learned
separately at first, then be reused (shared).

In addition, we also executed Monte-Carlo policy
evaluation for each greedy policy yielded by these two
algorithms at every 5 steps, respectively. Specifically, in
order to evaluate the relevant performance values, we
receive greedy policies at intervals of 5 steps, and then
simulated the system by running 1000 steps according to
each policy, respectively. Figure 8 and Figure 9 show the
results which correspond to Figure 6 and Figure 7,
respectively. From those two figures, we can see that the
evaluated value of Q-learning method is higher than the
MAXQ algorithm both in average and discounted case.
From many independent and repeated runs, we conclude
that such a unified MAXQ algorithm usually outperforms
the flat Q-learning method.

On the other hand, we extended the number of tasks to
test the other performance values, such as the success rate
and the computation cost. The success execution rate

()iSucc s of web service is is a measure related to
hardware and/or software configuration of web services
and the network connections between the service
requesters and providers. ()iSucc s is computed from data
of past invocations using the follow expression

() () /i c iSucc s N s K= . (12)

where ()c iN s is the number of times that service is has
been successfully completed, and K is the total number of
invocations.

So, we define the success rate ()Succ π of a current
policy π is calculated as follow

1

() ()
l

i
i

Succ Succ sπ
=

=∏ . (13)

Figure 10 shows the success rates of obtained policy
for Q-learning and MAXQ algorithm with different
number of tasks, respectively. We can see that the success
rates reduce as the number of tasks increased. And when
the number of the tasks is 10, the success rates of these
two algorithms are almost the same. But as the number of
the tasks increased, the success rates of Q-learning reduce
faster than that of MAXQ algorithm. In addition, the
computation costs of both algorithms are shown by
Figure 11. Obviously, when the number of tasks becomes
large, the computation cost of Q-learning grows faster

948 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

than that of MAXQ algorithm. These two figures fully
illustrate that the MAXQ algorithm is more effective in
large-scale service composition problems.

The differences for the two algorithms are also listed in
Table II. The average cost obtained by Q-learning is
0.2746, while the average cost obtained by MAXQ
algorithm is 0.2311, which is almost 15.8% less. The
reason is that policies learned in subproblems can be
reused for multiple parent tasks, so the optimization
performance has been improved. As we known, the
MAXQ algorithm is more complex than Q-learning, so
the time of completing a certain number of steps for
MAXQ algorithm is more than for Q-learning. On the
other hand, the value functions learned in subproblems
can be shared, so when the subproblem is reused in a new
task, learning of the overall value function for the new
task is accelerated. When the curves tend to smooth, we
consider that the algorithm get a good result. So we can
see that the time spent for getting good results by MAXQ
algorithm is about 26.4% less than that by Q-learning, as
shown in Table II.

Furthermore, because of state abstraction, the overall

value function can be represented compactly as the sum
of separate terms that each depends on only a subset of
the state variables. This more compact representation of
the value function will require less data to learn, so as to
improve the learning speed. For comparing with Q-
learning, we define the reduction rate of memory units q
for MAXQ algorithm as (() /) 100%q C B C= − × . Here B
is the number of memory units that MAXQ algorithm
required, and C is the number of memory units that Q-
learning required. In the model we proposed, the value of
q is (1 (8 8) (3)) 100%N N W N W− + × + × × × × with N
being the number of tasks and W being the number of
candidate services. According to this formula, we can
obtain the limit of q is 66.67% when W tend to infinity
and N is fixed, or the limit is (1 (8) (3)) 100%W W− + × ×
when N tend to infinity and W is fixed. And the relation
between q and N, W is shown in Table III.

From Table III, we can see that by applying state
abstraction, the MAXQ required much less memory units
than Q-learning. Obviously, q increases as the number of
tasks and candidate services increased. It fully
demonstrates that the MAXQ algorithm is more
applicable to large-scale web services composition
problems.

V. CONCLUSIONS

The web service composition problems, under either
average- or discounted-cost criteria, are solved effectively
by using continues-time unified MAXQ algorithm.
Compared with Q-learning, the proposed algorithm tends
to be more suitable for solving the “curse of
dimensionality” in large-scale web service composition
problems. The simulation results also demonstrated that
the MAXQ algorithm has the advantages of high
effectiveness and high learning speed.

In our work, our optimization goal is concerned about
the price requirements of user. But the algorithm we
proposed in this paper can also apply to other elements of
QoS issues like reliability. In addition, as part of our
ongoing work, we will extend our algorithm to support
multi-agent web service composition problems.

REFERENCES

[1] J. Rao, X. Su, “A Survey of Automated Web Service
Composition Methods”, Proceedings of the First
International Workshop on Semantic Web Services and
Web Process Composition, 2004, pp. 43-54.

[2] H. Zhao, and P. Doshi, “Composing Nested Web Processes
Using Hierarchical Semi-Markov Decision Process”, AAAI
Workshop on AI-Driven Technologies for services-
Oriented Computing, pp. 75-84, 2006.

[3] F. H. Khan, S. Bashir, M. Y. Javed, A. Khan, M. S. H.
Khiyal, “QoS Based Dynamic Web Services Composition
& Execution”, Pages IEEE format, International Journal
of Computer Science and Information Security, IJCSIS,
vol. 7 no. 2, pp. 147-152, USA, February 2010.

[4] F. Mustafa, T. L McCluskey., “Dynamic Web Service
Composition”, International Conference on Computer
Engineering and Technology, 2009.

[5] A. Gao, D. Yang, S. Tang, and M. Zhang, “Web Service
Composition Using Markov Decision Processes”,
International Conference on Web-Age Information
Management, 2005, pp. 308-319.

[6] H. B. Wang, P. P. Tang, P. Hung, “RLPLA: A
reinforcement learning Algorithm of Web service
Composition with Preference Consideration”, IEEE
Congress on Services Part II, pp. 163-170, 2008.

[7] G. B. Andrew, S. Mahadevan, “Recent Advances in
Hierarchical Reinforcement Learning”, Discrete Event
Dynamic Systems, vol.13 no.1-2, pp.41-77, 2003.

[8] H. Zhao, P. Doshi, “A hierarchical framework for
composing nested web processes”, International
Conference on Service Oriented Computing, 2006.

[9] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau, “HTN
planning for Web Service composition using SHOP2”,

TABLE III.
COMPARISON OF DIFFERENT ALGORITHMS

Algorithms Q-learning MAXQ

Average cost 0.2746 0.2311

Time for 1000 steps 1.6688 s 1.7661 s

Time for getting good results 1.3678 s 1.0067 s

TABLE II.
REDUCTION RATES OF MEMORY UNITS FOR MAXQ ALGORITHM

COMPARING WITH Q-LEARNING (%).

JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012 949

© 2012 ACADEMY PUBLISHER

Web Semantics: Science, Services and Agents on the World
Wide Web, pp. 377-396, 2004.

[10] K. Chen, J. Y. Xu, S. Reiff-Marganiec, “Markov-HTN
Planning Approach to Enhance Flexibility of Automatic
Web Service Composition”, IEEE International
Conference on Web Services, 2009, pp. 9-16.

[11] H. B. Wang, X. H. Guo, “Preference-Aware Web Service
Composition Using Hierarchical Reinforcement Learning”,
Web Intelligence/IAT Workshops, pp. 315-318, 2009.

[12] S. J. Bradtke, and M. O. Duff, “Reinforcement learning
methods for continuous-time Markov decision problems”,
in Advances in Neural Information Processing Systems 7,
Cambridge, MA: MIT Press, pp. 393-400, 1995.

[13] S. Mahadevan, N. Marchalleck, T. Das, A. Gosavi, “Self-
improving factory simulation using continuous-time
average-reward reinforcement learning”, Proceedings of
the 14th International Conference on Machine Learning,
1997, pp. 202-210.

[14] R. Parr, “Hierarchical control and learning for Markov
decision processes”, PhD Thesis, University of California
at Berkeley, 1998.

[15] X. R. Cao, “Semi-Markov decision problems and
performance sensitivity analysis”, IEEE Transactions on
Automatic Control, 48(5): 758-769, 2003.

[16] H. Tang, T. Arai, “Look-ahead control of conveyor-
serviced production station by using potential-based online
policy iteration”, International Journal of Control, 82(10):
1916-1928, 2009.

[17] M. Ghavamzadeh, S. Mahadevan, “Continuous-Time
Hierarchical Reinforcement Learning”, Proceedings of the
Eighteenth International Conference on Machine
Learning, 2001, pp. 186-193.

[18] T. G. Dietterich, “Hierarchical reinforcement learning with
the MAXQ value function decomposition”, Journal of
Artificial Intelligence Research, 13:227-303, 2000.

[19] T. G. Dietterich, “The MAXQ Method for Hierarchical
Reinforcement Learning”, Proceedings of the Fifteenth
International Conference on Machine Learning, 1998, pp.
118-126.

Hao Tang was born in 1972. He received
his B.E. degree from Anhui Institute of
Technology, P.R. China, in 1995, M.E.
degree from Institute of Plasma Physics,
Chinese Academy of Sciences, in 1998, and
Ph.D. degree from University of Science and
Technology of China (USTC) in 2002. He
has been a postdoctoral researcher at
Advanced Robotics with Artificial

Intelligence Lab in The University of Tokyo, Japan, from 2005
to 2007. He is currently a professor of Hefei University of
Technology, P.R. China. His research interests include DEDSs,
reinforcement learning, the methodology of neuro-dynamic
programming, and intelligent optimization.

Wenjing Liu was born in 1985. She
received her B.E. degree from Anhui
Agricultural University, P.R. China, in 2007,
M.E. degree from Hefei University of
Technology, P.R. China, in 2011. Her
research interests include DEDSs,
reinforcement learning.

Lei Zhou was born in 1981. He is

currently a lecturer and Ph.D. candidate of
Hefei University of Technology, P.R. China.
His research interests include DEDSs,
reinforcement learning.

950 JOURNAL OF SOFTWARE, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

