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Abstract—Web services composition present a technology to 
compose complex service applications from individual 
(atomic) services, that is, through web services composition, 
distributed applications and enterprise business processes 
can be integrated by individual service components 
developed independently. In this paper, we concentrate on 
the optimization problems of dynamic web service 
composition, and our goal is to find an optimal composite 
policy. Different from many traditional composite methods 
that do not scale to large continuous-time processes, we 
introduce a hierarchical reinforcement learning technique, 
i.e., a continuous-time unified MAXQ algorithm, to solve 
large-scale web service composition problems in the context 
of continuous-time semi-Markov decision process (SMDP) 
model under either average- or discounted-cost criteria. The 
proposed algorithm can avoid the “curse of modeling” and 
the “curse of dimensionality” existing in the optimization 
process. Finally, we use a travel reservation as an example 
to illustrate the high effectiveness of the proposed algorithm, 
and the simulation results show that, it has better 
optimization performance and faster learning speed than 
the flat Q-learning.  
 
Index Terms—web service composition, hierarchical 
reinforcement learning, semi-Markov decision process 
(SMDP), MAXQ  
 

I.  INTRODUCTION 

 Web services are considered as self-contained, self-
describing, and plat-form-independent applications that 
can be published (Web Services Description Language, 
WSDL), discovered (Universal Description Discovery 
and Integration, UDDI) and invoked (Simple Object 
Access Protocol, SOAP) over the internet [1, 2]. A single 
web service usually can not fulfill the requirements of a 
user, while web service compositions provide a way to 
combine a set of simple web services into more powerful 
services or new value-added services that can satisfy the 
user’s needs. So, in modern high-tech world, web service 

composition has played more and more important role in 
many domains, typically in e-commerce and enterprise 
application integration, and has attracted many 
researchers’ attention.  

The composition process of web services has been 
divided into static and dynamic [3, 4]. Static composition 
is purely manual, whose process model should be built 
before run time, and each web service is executed one by 
one so as to achieve the desired requirement. It is a time-
consuming task that requires a lot of effort. However, 
web service requests are always stochastic, and the 
environment in which web service composition operation 
is often dynamic. So, it is inappropriate to select and 
compose web services statically in such cases, and the 
dynamic composition process is more competitive. The 
later creates a process model and selects primitive 
(atomic) services automatically during the run time, so as 
to make the composite service adaptable in a high 
dynamic environment.  

In this paper, we consider the dynamic web service 
composition and focus on how to compose services 
according to a user’s request as well as some quality of 
service (QoS) properties, that is, given a set of possibly 
candidate web services and an optimization goal, how to 
achieve this goal by composing these web services into a 
web process (workflow) [2]. The QoS model for web 
service usually includes reliability, cost, response time, 
availability, and so on. So far, a number of methods have 
been proposed to achieve dynamic web service 
composition. For example, Gao et al. has discussed a 
composition method based on Markov decision process 
(MDP) [5], and introduced two value iteration algorithms 
for computing the optimal policy: one is backward 
recursive iteration and the other is forward iteration. But 
both algorithms are numerical and model-based, which 
suffers from the curse of modeling, and can not be used 
in a model-free case.  

In [6], a new algorithm is applied for dynamic service 
composition based on reinforcement learning (RL) and 
logic of preference. However, in large-scale web service 
composition problems, current tabular reinforcement 
learning methods suffer from the “curse of 
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Figure 1 Web Service Composition Model. 

dimensionality” [7], which is the exponential growth of 
computational and memory requirements with the 
number of system state variables. So, the method 
proposed in [6] may encounter low efficiency in the case 
of a large number of candidate services, although it can 
realize composition automatically in a model-free case. 
Typically, any element of a web process may be either a 
primitive web service or a composition of primitive web 
services, which itself is a web process. To that end, the 
web service composition problem as a task can be 
recursively decomposed into smaller and smaller subtask 
until reach the primitive tasks. In other words, realistic 
web processes may be nested as higher level web 
processes and lower level web processes, in which a 
higher level web process maybe composed from lower 
level web processes [8]. Thus, the large-scale web service 
composition problems can be solved by hierarchical 
methods [9–11]. One of the ways is to utilize hierarchical 
reinforcement learning.  

Wang et al. has adapted MAXQ algorithm to dynamic 
service composition, which is based on discrete-time 
semi-Markov decision process (DT-SMDP) [11]. But in 
real-word applications, web service compositions are 
always related to run time. Specifically, the performance 
of a composition process is affected by the real time of 
network transmission and service processing, which is 
related to one of the QoS properties, i.e., the response 
time. Therefore, it is more practical to use continuous-
time hierarchical reinforcement learning (HRL) 
algorithms to solve web service composition problems. In 
this article, we will propose a dynamic web service 
composition method based on MAXQ algorithm, in the 
context of continuous-time semi-Markov decision process 
(CT-SMDP). It is effective in dealing with the “curse of 
dimensionality” and the “curse of modeling” for practical 
large-scale service composition.  

The rest of this paper is organized as follows: Section 
2 presents the framework for dynamic web service 
composition. Section 3 describes the continuous-time 
MAXQ algorithm for web service composition. Section 4 
demonstrates the experimental results of the approach 
introduced in section 3. And finally, the last section 
concludes this paper and discusses the possible future 
work. 

II.  WEB SERVICE COMPOSITION MODEL 

The framework of the dynamic web service 
composition model is shown in Figure 1 [1].  

The service composition system has two kinds of 
participants, service provider and service requester. The 
former proposes web services for use, and the latter 
consumes information or services offered by the former. 
The system also contains the following components: task 
acceptor, composed service engine, execution engine, 
service matchmaking, etc. Firstly, the service providers 
advertise their atomic services at a global market place. 
Once a service requester submits his requests and the task 
acceptor accepts the information, the composed service 
engine will try to solve the requirement by composing the 
atomic services advertised by the service providers. Then 
the execution engine will accept the corresponding flow 
chart, and send the service specification to the service 
matchmaking, which will find the most appropriate 
atomic web services and return the information to the 
execution engine. Finally, the execution engine invokes 
and executes each atomic service, and the result will be 
then sent back to the service requester.  

The dynamic web service composition problem can be 
modeled as a SMDP [12–15], which is a more general 
model than MDP. When a composition process evolves to 
a task node, the composed service engine should decide 
to select a concrete web service, and the moment of 
making decision is called decision epoch. Here, we use 

nt  to denote the nth decision epoch with 0 0t = . If there 
are l task nodes to be bound in a web service composition 
problem, the system state s is then defined as a 
conjunction of status of each task node, i.e., 

1,..., ,...,k ls s s s=< > , where ks  corresponds to the kth task 
node of this service composition. 1ks =  represents that 
this node is active and has been bound to a concrete web 
service, while 0ks =  means that this node is not active. 
Let Φ be the system state space, i.e., s ∈ Φ . At time nt  
and state ns , the action na  is selected from the set of all 
possible candidate web services ( )nA s , i.e., ( )n na A s∈ , 
and write ( )nA A s=∪ . Then, a stationary policy π  
represents a mapping from states to actions, i.e., π : 

AΦ → . Here we use the reliability of a relative service 
as the transition probability 1( | , )n n np s s a+  [9], that is, 
under a concrete action na , the system transits from 
current state ns  to next state 1ns +  with probability 

1( | , )n n np s s a+  or still stays at state ns   with probability 

11 ( | , )n n np s s a+− . Let 'ssτ  be the interval time between nt   
and 1nt + , and it can also be called the sojourn-time of 
state ns  under action na , which follows a random 
distribution. Then, the web service composition problem 
can be modeled as a SMDP.  

Suppose that the expected cost the system pays every 
unit time at state ns  under action na  and before transiting 
to next state 1ns +  is denoted by 1( , , )n n nf s a s + . Then, we 
take the following infinite-horizon expected cost criteria 
[15]. 
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Figure 2 MAXQ graph for the web service composition problem. 
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Here, α denotes a discount factor, and when 0α > , 
( )sπ

αη represents the long-run expected total discounted 
cost of states under policy π . As a special case, if 

0α → , the limitation 0 ( )sπη  represents the following 
infinite-horizon expected average cost 
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III.  CONTINUOUS-TIME MAXQ ALGORITHM FOR SERVICE 
COMPOSITION 

The MAXQ algorithm is a well-known approach in 
hierarchical reinforcement learning, which provides a 
hierarchical decomposition of the given reinforcement 
learning problem into a set of sub-problems. 
Ghavamzadeh and Mahadevan has proposed a 
continuous-time MAXQ algorithm in the context of 
SMDP [17], which is an extension of the MAXQ method 
for discrete-time hierarchical reinforcement learning 
[18,19]. In that work, continuous-time discounted reward 
MAXQ algorithm and continuous-time average reward 
MAXQ algorithm were introduced respectively. Based on 
those work and by using the concept of performance 
potential, we will propose a unified optimization 
framework for both cost criteria in this section.  

To construct MAXQ decomposition for the web 
service composition problem, we should first identify a 
set of individual subtasks that we believe important for 
solving the overall task. More formally, the MAXQ 
method decomposes the target task M into a set of 
subtasks 0 1 1{ , ,..., }mM M M − and decomposes a hierarchical 
policy π into a set of policy 0 1 1{ , , ..., }mπ π π − with iπ  
corresponding to subtask iM . Each subtask iM  is a triple 

, ,i i iT A R< > . The termination predicate partitions the state 
space Φ into a set of active states iS  and a set of terminal 
states iT . The policy for subtask iM  can only be 
executed if the current state is S∈ . iA  is a set of actions 
that can be performed to achieve subtask iM , with 
elements being either primitive actions or other subtasks. 

iR  is the pseudo cost function, which specifies a pseudo-
cost for each transition to a terminal state. In this case, let 
us define four tasks as follow:  

 Root. This is the whole web service composition 
task.  

 Input. In this subtask, the goal is to get the request 
information so as to invoke a concrete service.  

 Output. In this subtask, the goal is to obtain the 
service output data.  

 Comp. In this subtask, the goal is to select an 
appropriate composite model during the 
composition process. In other words, it is to move 
the service process from its current state to target 
state.  

By decomposing we can obtain a MAXQ graph for 
web service composition problem as shown in Figure 2 
according to [19]. There are two kinds of nodes: MAX 
nodes (triangles) and Q nodes (rectangles). A MAX node 
with no children denotes a primitive action and the one 
with children represents a composite subtask. The 
immediate children of each MAX node are Q nodes 
corresponding to the actions that are available for each 
subtask. Specifically, each MAX node iM  can be viewed 
as computing the value of ( , )V i sπ  for its subtask, which 
is the expected cumulative cost of executing iπ and the 
policies of all descendants of iM  starting at state s until 

iM  terminates. For a primitive MAX node, this 
information is stored in the node, while for a composite 
MAX node, this information is obtained by the Q node 
selected by iπ . Suppose that the policy iπ of iM  chooses 
subtask ( )i s jπ =  at state s. Then, each Q node with 
parent task iM , state s, and child task jM  can be viewed 
as computing the value of ( , , ( ))iQ i s sπ π  that is equal to 
the projected value function ( , )V j sπ  of its child task jM  
plus its completion function ( , , )C i s jπ . Here, ( , , )C i s jπ  is 
stored in the Q node, and represents the expected 
discounted cumulative cost of completing subtask iM  
after invoking the subroutine for subtask jM  at state s.  

The decomposition for the ( , )V i sπ  is also shown by 
Figure 3. Each circle is a state of the composition 
process, and suppose subtask iM  is initiated at state Is  
and terminated at state Ts . If i is a primitive action, then 

Is s= , ' Ts s= . The interval time 'ssτ  between state s and 
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its next state 's  is the sojourn-time of state s, which is 
assumed to be exponential distribution during our 
experiments in the next section. If i is a composite action, 

'ssτ  is the cumulative time that can be separated into 
several interval times, and is no longer exponential 
distribution. Then, the value function ( , )V i sπ  of state s 
for iM  in the MAXQ algorithm is broken into two parts: 
the value of the subtask jM  that is independent of the 
parent task iM , and the value for completing iM  after 
executing subtask jM  that of course depends on the 
parent task iM . So, we have  

'( , , ')
( , )

( , , ( ))i

f s i s if i is primitive
V i s

Q i s s if i is composite
π

π π
=
⎧
⎨
⎩

.           (3) 

where 

 '

1 2 '0
'( , , ') ( , ) ( , , ') ( )ss t

ssf s i s k s i k s i s e dt T
τ α

α τ η−= + × − ×∫ � .     (4) 

( , , ) ( , ) ( , , )Q i s j V j s C i s jπ π π= + .                  (5) 

Here, 1 ( , )k s i represents the immediate cost of executing 
primitive action i at state s, which represents the user’s 
request in web service composition problem, like the 
price acceptable, the distance between the hotel and the 
airport, and so on;  2 ( , , ')k s i s  represents the time-related 
cost that the system pays every unit time, such as 
response time. In addition, η�  represents the estimate of 
average cost, satisfying  

 : f

w

S

S
η =� .                                    (6) 

with fs  and ws being learned, respectively, as follows  

'
0: ( ( , , ') )f f n fS S f s i s Sαβ == + − .                    (7) 

': ( )w w n ss wS S Sβ τ= + − .                         (8) 

Here, nβ  is a stepsize, and '
0 ( , , ')f s i sα =  is calculated by 

(4) with 0α = , which denotes accumulated cost from s 
to 's  under primitive action i.  

The projected value function for the root is then 
decomposed into the ones for the individual subtasks and 
the individual completion functions recursively by 
equations (3) to (5). Furthermore, ( , )V i sπ  and ( , , )C i s jπ  
are updated, respectively, as follows  

( , ) : (1 ) ( , ) '( , , ')V i s V i s f s i sπ πγ γ= − + × .                  (9) 

( , , ) : (1 ) ( , , ) ( ( ( , ', ') ( ', ')) ( ) )TC i s j C i s j e C i s j V j s T Tπ π α π π

α
γ γ η−= − + + − × � . (10

) 

' ( ')' arg min ( ( ', ') ( , ', '))
ia A sj V a s C i s aπ π

∈= + .              (11) 

Here, 
0

1( ) t eT e dt
αττ α

α τ
α

−
− −= =∫  for any discount factor 

0α > and time 0τ > , and let 0 0
( ) lim ( )T Tαα
τ τ τ

→
= = . In 

addition, γ  is a stepsize, and T is the current total 
cumulative time for executing subtask iM .  

Due to the introduction of the term ( )Tα η× �i  in 
equation (4) and (10) according to the idea of 
performance potential for SMDP [15, 16], the unified 
MAXQ algorithm can then be established for both 
discounted and average criteria, which is the difference 
between our algorithm and other MAXQ algorithms such 
as proposed in [14]. The continuous-time unified MAXQ 
algorithm for web service composition is depicted in 
Table I, and the flowchart of this algorithm is shown in 
Figure 4. 

IV. EXPERIMENTS 

In web service composition problems, a complete web 
service composition task is staring from service requester 
submitting requests to the system returning the results. 
After finishing a web service composition task, it will 
deal with another web service composition task 
immediately. In this section, we will demonstrate the high 

TABLE I.   
MAXQ ALGORITHM FOR WEB SERVICE COMPOSITION 

 
1. function CTU_MAXQ(MaxNode i, State s) 
2. initialize '

' 0{ , , , ', }ssStack s i f fατ ==  
3. if i is primitive MAXNode, then 
4.   execute action i in state s, receive sojourn-time 'ssτ , observe    

state 's ; calculate the accumulated cost '( , , ')f s i s and 

0' ( , , ')f s i sα =  according to (4) 
5.   push the sample records into the top of the {}Stack ; calculate    

η� according to (6)-(8) and compute  the value of ( , )V i sπ

according to (3)-(5) 
6. else 
7.    while is T∉  do 
8.       choose action j according to the current greedyε − policy    

iπ  
9.       let ChildStack = CTU_MAXQ(j, s) while executing action  j 
10.       observe result state 's   
11.       let ' ( ')' arg min ( ( , ', ') ( ', '))

ia A sj C i s a V a sπ π
∈= +  

12.       T=0 
13.       for the element of the ChildStack from the beginning do 
14.         ': ssT T τ= + , calculate η�  and compute ( , ', ')C i s jπ via (10)
15.       end for 
16.       append ChildStack onto the top of Stack 
17.       let 's s=  
18.    end while 
19. end if 
20. return Stack 
21. end CTU_MAXQ 
 
22. initialize ( , )V i sπ and ( , , )C i s jπ arbitrarily 
23. CTU_MAXQ 0(0, )s  
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Figure 4 Flow chart for the continues-time MAXQ algorithm. 

Figure 5 travel reservation model. 
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Figure 6 Real time Average cost of the Q-learning and MAXQ 

algorithm. 
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Figure 7 Real time Discounted costs of Q-learning and MAXQ 

algorithm ( 0.01α = ). 

effectiveness of the continues-time unified MAXQ 
method by using a travel reservation as a simulation 
example. 

A.  Simulation model 
Let us assume that a customer wants to travel to 

someplace. So he/she should first tell the travel agent 
who notes the customer’s requests and generates a 
corresponding trip request document that may contain 
several needed plane/train/bus tickets, hotels, car rental, 
excursions, etc. The travel agent performs all bookings 
and when he is done, he puts the trip request either into 
the canceled requests or the completed requests data 
base. A completed document is sent to the customer as an 
answer to his request. If the booking fails, the customer is 
contacted again and the whole process re-iterates. Service 
providers (airlines, bus companies, hotel chains, etc) are 
providing web services for selection, and credit card 
companies are also providing services to guarantee 
payments made by consumers.  

As Figure 5 shows, the travel reservation problem is 
decomposed into 4 levels. The highest level is the task of 
input, composition and output. Further more, the 
composition task is decomposed into hotel, traffic and 

viewpoint, which constitute the second level. Then they 
all decompose into three subtasks: find, select, book 
respectively. At last level, there are all primitive actions 
which are the candidate web services that can be bound to 
the corresponding parent task node. The goal is to find an 
optimal composite policy according to user’s request. 

B. Experimental Results 
As a case study, we suppose there are three web 

service classes, such as hotel, traffic and viewpoint, and 
the number of candidate services for each web service 
class is 10, as shown in figure 5. For comparison, we 
firstly used flat Q-learning to simulate this problem. In Q-
learning, greedyε − actions are necessary for 
exploration, especially at the beginning of the 
optimization. So we use 0.3ε = , learning step 

0.21 / (8 ( , ) )N s iγ = × . Here ( , )N s i is the number of state-
action pairs ( , )s i  that has been visited. 1 ( , )k s i  is 
different for every state-action pairs ( , )s i , and 

2 ( , , ') 0.8k s i s = . 
First, we consider the average case, i.e., 0α = . Two 

optimization plots are provided respectively in Figure 6, 
where each y-axis denotes the average cost of each 
algorithm in 1000 episodes. In this problem, a simulation 
episode is staring from any state to the termination state. 
We observed that, comparing with the Q-learning, the 
performance of the MAXQ method is more efficient. The 
reason is that the MAXQ method accelerates the learning 
speed and also improved the optimizing precision via 
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Figure 10 The web service composition success rates of both 

algorithms with different number of tasks. 
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Figure 11 The computation cost of both algorithms. 
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Figure 9 Policy evaluation of Q-learning and MAXQ algorithm for 

discounted cases ( 0.01α = ). 
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Figure 8 Policy evaluation of Q-learning and MAXQ algorithm for 

average case. 

hierarchy and action abstractions.  
Figure 7 shows the results of Q-learning and MAXQ 

algorithm for discounted cases with the discount factor 
0.01α = . As we expected, the graph shows that the 

MAXQ algorithm can yield a good result faster than Q-
learning. And due to the utilization of discount factor α, 
the curve for discounted case is flatter than it for average 
case. At the beginning, the curve of the MAXQ algorithm 
shows obvious fluctuation for either average case or 
discounted case. The reason is that each subtask is very 
different from each other, each of them has to be learned 
separately at first, then be reused (shared). 

In addition, we also executed Monte-Carlo policy 
evaluation for each greedy policy yielded by these two 
algorithms at every 5 steps, respectively. Specifically, in 
order to evaluate the relevant performance values, we 
receive greedy policies at intervals of 5 steps, and then 
simulated the system by running 1000 steps according to 
each policy, respectively. Figure 8 and Figure 9 show the 
results which correspond to Figure 6 and Figure 7, 
respectively. From those two figures, we can see that the 
evaluated value of Q-learning method is higher than the 
MAXQ algorithm both in average and discounted case. 
From many independent and repeated runs, we conclude 
that such a unified MAXQ algorithm usually outperforms 
the flat Q-learning method.  

On the other hand, we extended the number of tasks to 
test the other performance values, such as the success rate 
and the computation cost. The success execution rate 

( )iSucc s of web service is  is a measure related to 
hardware and/or software configuration of web services 
and the network connections between the service 
requesters and providers. ( )iSucc s  is computed from data 
of past invocations using the follow expression 

( ) ( ) /i c iSucc s N s K= .                           (12) 

where ( )c iN s  is the number of times that service is  has 
been successfully completed, and K is the total number of 
invocations.  

So, we define the success rate ( )Succ π  of a current 
policy π  is calculated as follow 

1

( ) ( )
l

i
i

Succ Succ sπ
=

=∏ .                       (13) 

Figure 10 shows the success rates of obtained policy 
for Q-learning and MAXQ algorithm with different 
number of tasks, respectively. We can see that the success 
rates reduce as the number of tasks increased. And when 
the number of the tasks is 10, the success rates of these 
two algorithms are almost the same. But as the number of 
the tasks increased, the success rates of Q-learning reduce 
faster than that of MAXQ algorithm. In addition, the 
computation costs of both algorithms are shown by 
Figure 11. Obviously, when the number of tasks becomes 
large, the computation cost of Q-learning grows faster 
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than that of MAXQ algorithm. These two figures fully 
illustrate that the MAXQ algorithm is more effective in 
large-scale service composition problems. 

The differences for the two algorithms are also listed in 
Table II. The average cost obtained by Q-learning is 
0.2746, while the average cost obtained by MAXQ 
algorithm is 0.2311, which is almost 15.8% less. The 
reason is that policies learned in subproblems can be 
reused for multiple parent tasks, so the optimization 
performance has been improved. As we known, the 
MAXQ algorithm is more complex than Q-learning, so 
the time of completing a certain number of steps for 
MAXQ algorithm is more than for Q-learning. On the 
other hand, the value functions learned in subproblems 
can be shared, so when the subproblem is reused in a new 
task, learning of the overall value function for the new 
task is accelerated. When the curves tend to smooth, we 
consider that the algorithm get a good result. So we can 
see that the time spent for getting good results by MAXQ 
algorithm is about 26.4% less than that by Q-learning, as 
shown in Table II. 

Furthermore, because of state abstraction, the overall 

value function can be represented compactly as the sum 
of separate terms that each depends on only a subset of 
the state variables. This more compact representation of 
the value function will require less data to learn, so as to 
improve the learning speed. For comparing with Q-
learning, we define the reduction rate of memory units q 
for MAXQ algorithm as (( ) / ) 100%q C B C= − × . Here B 
is the number of memory units that MAXQ algorithm 
required, and C is the number of memory units that Q-
learning required. In the model we proposed, the value of 
q is (1 (8 8 ) (3 )) 100%N N W N W− + × + × × × ×  with N 
being the number of tasks and W being the number of 
candidate services. According to this formula, we can 
obtain the limit of q is 66.67% when W tend to infinity 
and N is fixed, or the limit is (1 (8 ) (3 )) 100%W W− + × ×  
when N tend to infinity and W is fixed. And the relation 
between q and N, W is shown in Table III.  

From Table III, we can see that by applying state 
abstraction, the MAXQ required much less memory units 
than Q-learning. Obviously, q increases as the number of 
tasks and candidate services increased. It fully 
demonstrates that the MAXQ algorithm is more 
applicable to large-scale web services composition 
problems. 

 
 

V.  CONCLUSIONS  

The web service composition problems, under either 
average- or discounted-cost criteria, are solved effectively 
by using continues-time unified MAXQ algorithm. 
Compared with Q-learning, the proposed algorithm tends 
to be more suitable for solving the “curse of 
dimensionality” in large-scale web service composition 
problems. The simulation results also demonstrated that 
the MAXQ algorithm has the advantages of high 
effectiveness and high learning speed.  

In our work, our optimization goal is concerned about 
the price requirements of user. But the algorithm we 
proposed in this paper can also apply to other elements of 
QoS issues like reliability. In addition, as part of our 
ongoing work, we will extend our algorithm to support 
multi-agent web service composition problems. 
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