
Test Model for Security Vulnerability in Web
Controls based on Fuzzing

Guoxiang Yao

Information Technology Science College, Jinan University, Guangzhou, China
yao@jnu.edu.cn

Quanlong Guan and Kaibin Ni

Network and Education Technology Center, Jinan University, Guangzhou, China
sanson_guan@hotmail.com

Abstract—The number of Web controls’ security
vulnerability surged with ever-changing varieties of attacks.
Therefore this paper analyzes test model for Web controls’
vulnerability, and put forward a improved test model for
Web controls’ vulnerability. Be aimed to test vulnerability
of Web ActiveX controls combining static analysis and
dynamic analysis, as well as put forward a proposal of
optimizing the generation engine for test data using
“heuristic rule”. Experiment results show that test model
for Web controls’ vulnerability based on fuzzing is effective
and feasible, and it is able to manipulate interaction
problems.

Index Terms—Fuzzing test, Web controls, vulnerability test,
vulnerability analysis

I. INTRODUCTION

The number of Web controls’ vulnerability has been
growing rapidly these years. According to figures of Web
controls vulnerability from celebrated Software Security
Company called Symantec, it is claimed in the report
during 2007 and 2009 that the number of Web
vulnerability increases in geometry order of magnitude.
There are two aspects of reasons for the large number of
Web controls’ vulnerability: one is the high market
occupancy of the Web controls. Web ActiveX controls
are independent of development platform. And the
ActiveX controls based on one kind of programming
language is needless to modify when they are used in
another kind of programming language. As a result many
software companies are intent on developing ActiveX
controls, what’s more, ActiveX controls are popular at
many developers. Another is the high utility value of the
ActiveX controls’ vulnerability. ActiveX controls’
vulnerability are the remote vulnerability, the same as the
IE vulnerability of the Windows system. The attackers
may make use of this king of vulnerability to execute the
code willfully.

Web applications enable much of today’s online
business including banking, shopping, university
admissions, and various governmental activities.
Consequently, vulnerabilities that allow an attacker to
compromise a web application’s control of its data pose a

significant threat[1]. Vulnerabilities that may lead to the
compromise of sensitive information are being reported
continuously, and the costs of the resulting damages are
increasing. The main reasons for this phenomenon are
time and financial constraints. Limited programming
skills, or lack of security awareness on part of the
developers[2]. Validating dynamic Web application is
hard. Even professionally-developed applications often
contain multiple faults. To prevent faults, programmers
must make sure that the application creates a valid HTML
page on every possible exection path[3]. Web browsers
are of high interest when it comes to client-side
vulnerabilities. For example, the image rendering library
used by a web browser may crash when processing a
crafted JPEG image[9].

With the release of Internet Explorer 3.0 in 1996,
Microsoft introduced support for ActiveX, which
originated as the Component Object Model, or COM[5].
COM allaws developers to make reusable objects that can
be used by other application. COM objects can be written
in a variety of programming languages. The minimum
requirement is that the object implements the IUnknown
interface[6]. A COM object that has been designed for
ues n the Internet Explorer web browser is commonly
referred to as an ActiveX control[7]. With its support for
ActiveX controls, Internet Explorer allowed for the
creation of web pages that had never-before seen levels of
functionality. ActiveX controls are not limited by a
sandbox like Java applets[8], and any Windows
developer could easily make their code available for use
in the Internet Explorer web browser. Internet Explorer’s
support for both ActiveX and scripting languages gives
the browser a large attack surface[4,10,11,12] and a high
level of control, which makes it a primary target for
attacks.

A high number of security vulnerabilities that are
today published on various security mailing lists are
detected by using a fuzzing method. The fuzzing method
is based on the fault injection technique that, by sending
various input data to target application, tries to detect a
security vulnerability.

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 773

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.4.773-778

Figure 1. fuzzing vulnerability test schematic diagram

II. TRADITIONAL WEB CONTROLS’ VULNERABILITY TEST
MODEL

A. Fuzzing vulnerability test model
The choice of the fuzzing vulnerability test methods

depend on different factors, such as target programs, the
format for the test data, and the investigators’ skill etc.
But the procedures are relatively consistent. As a result,
we can abstract the model. Figure 1 is the diagram of the
fuzzing vulnerability test model.

The first step is to construct the misshapen data that
triggers vulnerability on every procedure of fuzzing test,
whatever the object of test is. This step is the decisive
factor for if the fuzzing test can detect the vulnerability.
There are two ways of generating the test data. They are
generating test data with the preestablished data as seed
and with mutating the existing test data. It depends on the
test target and the data format to decide the way of
generating the data. Whatever, the procedure of
generating the test data must deal with the automation
problem.

Fuzzing test is a significant step for the fuzzing
vulnerability test model. Generally it can set up test mode.
It can appoint that the test model is violence test,
equivalence class test, boundary value test, or the
combination of field test etc. Generally fuzzing test can
adjust the test model and data construction mode to make
the test procedure more efficient.

Exception monitoring is an important step in fuzzing
test. Because we can detect the data set or document
which triggers the system abnormity on the procedure of
sending test data set or document to the fuzzing test
system. What’s more, the exception monitoring takes
notes of some important information under abnormal
conditions, such as the CPU status, register status, and the
stack status etc, which can be consulted for the follow-up
abnormality analysis.

The assignment of anomaly analysis is to make sure if
this anomaly is a flaw or if it is utilized. Because not only
the software vulnerability can trigger the system anomaly,
but also the software bugs can cause the system
breakdown. Anomaly analysis is almost the weakness for
every fuzzing system. Because it involves too much
manual analysis, it is hard to make use of automatic
mechanism.

B. Traditional Web controls’ vulnerability test model
The traditional model is composed of three stages

including preparation before test, test phases, and report
after test. The preparation before test includes analysis of
Web controls’ attribute, the function with the parameter

and the generation of the test data. The test phase mainly
consists of simulating the customers to open the test
instance, dynamic Exception monitoring, and the
anomaly report.

1). Preparatory phase before test
Firstly, we make sure the objective Web Active

controls. The main work of it is to find the CLSID of the
Web controls. Secondly, we confirm if the IObjectSafety
secure interface is actualized, if the script is safe, and if it
is setup with the killbit bit. We can acquire these
information from the corresponding the information in
the registry entries. As long as the assurance of the
IObjectSafety secure interface, script safety, and the
circumstance of the KillBit bit, we can carry on the
follow-up steps. Because it is lack of any of the three
factors, the Web controls can’t be invoked, which make
the following analysis meaningless.

Lastly, we will obtain the attribute list, function list,
and the function parameter list of the ActiveX controls.
Only when we are clear about these lists can we
pertinently construct the fuzzing test data, which is one of
the specialties for the Web ActiveX controls’
vulnerability test based on fuzzing.

2). Test phases
We generate some test instances according to the

attributes, functions and he function parameters on the
preparation phase. The work on the test phase is sending
every test instances into the target program. The
document formats of the test instances are htm, html, wsf,
and PDF on the procedure of the Web controls’
vulnerability test. We need to open all the test documents
with the program simulating the manual manipulation
before the test.

After opening the test document, IE may point out if it
is going to load the corresponding Web controls, which
also can be operated by the program simulating the users.
The procedures of the Web controls load, Web controls
initialization and the test instances invoking the controls
can all be possible of appearing exception. We make use
of the interface and the structuring exception handling
SHE from windows to have the fuzzing tools attached to
the IE browser as the debugger. On this way, we can
receive, handle as well as record kinds of debug and
abnormal events. When the exception emerges, the
windows systems will always pop-up error prompt
windows.

A perfect fuzzing test tool must stimulate users to close
the shut window. This function can be realized by HOOK
technology. We will analyze and deal with the problem in
detail in the subsequent research.

3). Test report phase
The test report includes exception of the fuzzing test

and the test document of the corresponding abnormal
events.

774 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

C. The deficiency of the traditional web controls’
vulnerability

There are deficiencies of the traditional model. Firstly,
it is significant to make a comprehensive test for the
callable methods of Web ActiveX controls. If the list of
the callable methods for ActiveX controls is quite long,
the working capacity for the fuzzing vulnerability test
procedure will be greatly increased. It is showed in two
aspects including the number of the generating test
instance and the time of the test procedure. This paper
advances the program scanning analysis technology to
solve this problem. Secondly, it is the problem of the
randomness of the test data generation. We adopt the
method of the heuristic test data generation. Lastly, the
test is quite single. The dynamic analysis can examine the
code on the implementation. It is good at discovering the
errors in the running time. However the static analysis
examines the errors of the program with the algorithmic
examination. The traditional model accents on static
analysis more, which is difficult to discover the defect
generated in interactive procedure. This article adopts the
combination of the dynamic analysis and the static
analysis.

III. IMPROVED MODEL FOR WEB CONTROLS’
VULNERABILITY TEST

This paper puts forward a proposal of the improved
model combining the dynamic analysis and the static
analysis. The improved model is added with the code
scanning analysis module, heuristic method of generating
the test data model, and the OllyDbg analysis test model
etc.

The code scanning analysis model: Firstly we carry on

the disassembling to the binary file of target program
with the disassembling tool such as IDA. Secondly we
utilize the insecurity method such as the controls’
function called strcpy to scan and analyze the
disassembling results.

We make the function the under test function. It makes
the list of the under test function decrease greatly. The
model also searches for the “tagged word” in the function
address space. It offers support to the structure of the test
data.

Heuristic generating test data module: In the original
model, after a fully preparation the process of test data
generation have a certain purpose. In order to improve the
efficiency of vulnerability testing, we use the heuristic
method to generate test data. So that the process of testing
is more targeted, which is favorable to detect potential
vulnerabilities better.

OllyDbg analysis of test results module: OllyDbg is a
popular open-source software used to debug binary codes
dynamically. OllyDbg not only has strong anti-assembly
function, but also has excellent dynamic debugging
engine. We can easily load the test data that caused the
exception by OllyDbg interface. Further more, it is more
convenient for the further analysis of vulnerabilities.

A. Web Control enumeration module
Two small modules are contained. They are all

loadable Web Control module of enumeration target host
and the module which enumerate the properties,
functions, function parameters of a specific ActiveX
control. The results enumerated will be formed a list and
stored in database tables. Therefore, it is easy to query in
the following analysis, and it eliminates the need of
repeated enumeration as well.

B. Disassembling code analysis module
The binary files are disassembled into assembly codes

by IDA and other disassembling engine tools. And then
plug-ins provided by IDA are used to search strcpy and
other unsafe method calls. Besides, the analysis module
of disassembling module takes charge of finding out the
“tagged word” in address range of derivative functions of
ActiveX controls. This "tagged word" may be a character,
a string, or a number. The "tagged word" is helpful for
test data generation engine to construct better test data,

Figure 2. traditional ActiveX controls’ vulnerability test model

Figure 3. improved model for Web controls’ vulnerability test

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 775

© 2012 ACADEMY PUBLISHER

thus the Fuzzing system can detect vulnerabilities more
efficiently.

C. Test data generation module
According to the comprehensive functions list of the

two modules, test data or test documents are generated.
The data may be in the form of “URL”, and the
documents may be in form of “htm”, “swf” and so on.
Actually, its essence is to use scripting languages to call
the methods of ActiveX controls. The method of
"boundary value" stress testing is usually used to generate
test documents, but it is not efficient enough if this
method is used alone. This paper introduces "heuristic
rule" and " tagged word" to cope with stress testing, so as
to enhance the intelligence of the test data generation
engine.

D. The application interaction module
According to SEH (structured exception handling)

mechanism of Windows, when an exception is not caught
finally, the system will notify the user that "The program
has crashed" with an error prompt window. While
Loading the ActiveX, initializing ActiveX objects, or
calling ActiveX methods or properties, an exception may
occur. Application interaction module uses the
technology called HOOK to deal with these system error
prompt windows caused by the exceptions.

E. Dynamic exception monitoring module
Dynamic exception monitoring module is responsible

for simulating the test documents generated by the clicks
of users, and sending test data generated (such as URL
data) to the target program; Besides, this module is also
in charge of monitoring exceptions occurred by the target
program (usually refers to the IE browser) during the
testing, and recording these exceptions.

IV. TEST RESULTS AND ANALYSIS

In order to prove the feasibility and effectiveness of
fuzzing test model for Web control vulnerability
proposed by this paper, we test the "STORM" player
(mainly with its mps.dll control), which has a larger
amount of users. Test environment: Windows system.
Internet Explore: V7.0. Test object: STORM player V2.9.

A. Enumerating the properties, methods and method
parameters of ActiveX control

Install "STORM V2.9", and then enumerate the
properties, methods, and method parameters of ActiveX
control (mainly with mps.dll control of STORM player)
by the improved Fuzzing test model. In Figure 4 is the
enumeration list with the properties, methods and method
parameters of mps.dll control of the Storm player.

B. Tectonic test document

With the Fuzzing test model in this paper, right-
clicking any property or method in the enumerated list
can generate the corresponding test data. The model
generates test documents in the form of VB Script, in
order to be directly called easily by the wscript.exe. This
following codes are in one of the Fuzzing test documents
of the “OnBeforeVideoDownload ()” function derived
from mps.dll control of Storm player.

C. Vulnerability testing and result analysis
It costs a long time to do the vulnerability testing after

a series of test documents was constructed, especially
when the quantity of properties or methods of the
ActiveX control is large. In this case, the benefits of
intelligence will be presented. It can deal with the
interaction problem well. Therefore, this test can be done
unattended, realizing automated Fuzzing test. Fuzzing
test model proposed in this paper is able to handle the
interaction problem properly.

1) exception list
Do the Fuzzing test on a property or method of Web

ActiveX controls. And the results are presented in the
form of a list table. From the table we can easily get
which test document lead to the exception and the
number of exceptions occurred. In Figure 5 is the
exception table of function “OnBeforeVideoDownload ()
“ in the Fuzzing test, which is derived from mps.dll
control of Storm player.

Figure 4. the list of ActiveX controls’ properties, methods and
method parameters

<?XML version='1.0' standalone='yes' ?>
<package><job id='DoneInVBS' debug='false' error='true'>
<object classid='clsid:6BE52E1D-E586-474F-A6E2-

1A85A9B4D9FB' id='target' />
<script language='vbscript'>
'Wscript.echo typename(target)
targetFile = "C:\Program Files\StormPlayer \mps.dll"
prototype = "Sub OnBeforeVideoDownload (ByVal URL As

String)"
memberName = "OnBeforeVideoDownload"
progid = "MPSLib.StormPlayer"
argCount = 1
arg1=String(8212, "A")
target.OnBeforeVideoDownload arg1
</script></job></package>

776 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

2) Detailed report on exception
We can check the detailed report on each item in

exception table. The detailed report on test results is
generated from the Fuzzing test on function
“OnBeforeVideoDownload ()”, which is derived from
mps.dll control of Storm player. In Figure 6 is the
detailed report on an item.

From the detailed report in Figure 6, we can easily get

all the important information when the exception occurs,
including the type of the exception, the state of current
threads, the state of SEH list, the state of stack memories,
the content of all important registers and the instructions
near to the current EIP.

From the detailed report, we know that the value of the
EIP register is "41414141", which is the hexadecimal
code of classic long string "AAAA" used in test
documents. It fully shows that if ingenious input
parameters designed by the attacker are added, the EIP
can be hijacked. And then the system can be boot to
execute special codes designed by testers. Therefore, we
can make sure there are vulnerabilities in function
“OnBeforeVideoDownload ()” derived from mps.dll
control. Experienced testers can analyze the specific
location of vulnerability from the address of the collapse
and the state of stacks and directions when collapse
occurs in the detailed report on exceptions.

SUMMARY

As the Web ActiveX control has a particular feature
and changes rapidly, the security testing of Web
application has become quite difficult. Therefore, the
Web security is becoming more and more important. This
paper has a discussion on the model and the algorithm of
Web security vulnerabilities detection. And the research
has a breakthrough to deal with the Web ActiveX control
vulnerabilities detection. The future work is as follows:
enhancing the relevance of test data, in order to improve
the ratio of the trigger vulnerabilities of test data;
searching the “tagged word” in the address space of all
the functions derived from ActiveX; searching functions
derived from ActiveX and other specific implement
methods which call unsafe methods.

ACKNOWLEDGMENT

This work was supported by the Industry-University-
Research Institute Collaboration project of Guangdong
province, China under Grant No. 2010B090400149、No.
2008B090500201、No. 2010B090400046, the scientific
and technological plan project of Guangdong province,
China under Grant No. 2008A010100001, Distinguished
Young Talents in Higher Education of Guangdong, China
under Grant NO.LYM10031 and the demostration
(Innovation Cultivation) Base for The industry-
University-Research Institute Collaboration on Network
information security Detection, China Grant No.
cgzhzd0807.

REFERENCES

[1] G. Wassermann and Z. Su. Sound and precise analysis of
Web[M]. Applications for injection vulnerabilities. In
PLDI, 2007.

[2] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static
analysis tool for detecting web application
vulnerabilities (short paper). In 2006 IEEE Symposium on
Security and Privacy, Oakland, CA, May 2006.

[3] S. Artzi, A.Kie ˙zun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. D. Ernst. Finding bugs in dynamic Web
applications.Technical Report[J] .Science and Artificial
Intelligence Laboratory,Feb. 2008.

[4] Guan Quan-long, Ye Saizhi，Yao Guo-xiang. Research
and design of internet public opinion analysis system，
SSME 2009, p 173-177.

[5] The Component Object Model: A Technical Overview,
http://msdn2.microsoft.com/en-us/library/ms809980.aspx

[6] INFO: Difference Between OLE Controls and ActiveX
Controls, http://support.microsoft.com/kb/159621

[7] Security Vulnerability Research & Defense : The Kill-Bit
FAQ: part 2 of 3.
http://blogs.technet.com/swi/archive/2008/02/07/The-
kill_2DOO_Bit-FAQ_3AOO_-post-2-of-3.aspx

[8] Java Security Architecture: The Original Sandbox Model,
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/sec
urity-spec.doc1.html#18313

[9] JPEG COM Marker Processing Vulnerbility in Netscape
Browsers(2000), ttp://www.openwall.com/advisories/OW-
002-netscape-jpeg/

[10] Howard, M., Pincus, J., and Wing, J.: Measuring Relative
Attack Surfaces(2003),
http://www.cs.cmn.edu/%7Ewing/publications/Howard-
Wing03.pdf

Figure 5. the exception list of the Web controls’ vulnerability test

Figure 6. detailed report of exception

JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012 777

© 2012 ACADEMY PUBLISHER

[11] Yao, Guo-Xiang, Guan, Quan-Long,et al. Research and
implementation of next generation network intrusion
detection system based on protocol analysis, CCCM 2008,
p 353-357.

[12] Guan, Quan Long; Yao, Guo Xiang; Ni, Kai Bin; Zhou,
Mei Xiu. Research on fuzzing test data engine for web
vulnerabilit,Advanced Materials Research, v 211-212, p
500-504, 2011

[13] Yao,Guo Xiang; Song, Ga Zi; Guan, Quan Long. Security
model research and design based on separate storage of
keys. 2010 2nd International Conference on Industrial
Mechatronics and Automation, v 2, p 672-676, 2010

Guoxiang Yao was born in 1959. He is a
male. He earned M.S. degree in
computer science from University of
Science and Technology of China. His
major field of study is network

information security, computer network and data security. He is
a professor in Information Technology Science College, Jinan
University.

Quanlong Guan was born in Shaoguan,
Guangdong Province, China on 1981.
He received his Bachelor’s degree,
Master’s degree in computer science
from Jinan University, Guangdong in
2003 and 2006 respectively.

He has been teaching at Jinan
University, Guangdong, China since
2006. His current research interests

include computer networks and information security.

778 JOURNAL OF SOFTWARE, VOL. 7, NO. 4, APRIL 2012

© 2012 ACADEMY PUBLISHER

