
Aspect-Oriented Development Method for Non-
Functional Characteristics of Cyber Physical

Systems Based on MDA Approach

Lichen Zhang
Guangdong University of Technology, Guangzhou, China

Email: zhanglichen1962@163.com

Abstract—Cyber physical systems have many non-functional
requirements, which always crosscut the whole system
modules. That may cause the code tangle and scatter, make
the systems hard to design, reuse and maintain, and affect
performance of systems badly. AOP is a new software
development paradigm, which could attain a higher level of
separation of concerns in both functional and non-
functional matters by introducing aspect, for the
implementation of crosscutting concerns. Different aspects
can be designed separately, and woven into systems. In this
paper, we propose an aspect-oriented MDA approach for
non-functional properties to develop cyber physical systems.
An aspect-oriented UML profile is built to develop cyber
physical systems. Aspect-oriented UML models are designed
as Platform Independent Models (PIM) for target-platform
implementation, which deal with non-functional properties.
OCL formal language is used to restrict the model in every
stages of MDA, and the real-time extension of OCL formal
language is made to describe the timing constraints of cyber
physical systems. Finally, the model- based development and
aspect-oriented approach, the formal methods and the cyber
physical system are integrated effectively. A case study
illustrates the aspect oriented MDA development of cyber
physical systems.

Index Terms—Non-Functional Properties, Aspect-Oriented,
MDA

I. INTRODUCTION

Cyber-physical systems (CPSs)[1] are physical and
engineered systems whose operations are monitored,
coordinated, controlled and integrated by a computing
and communication core. Recent years have witnessed
the growing applications of CPSs in numerous critical
domains including healthcare, transportation, process
control, factory automation, smart building and spaces etc.
By seamlessly integrating sensing, networking, and
computation components with the control of physical
processes, CPSs are expected to transform how we
interact with and manipulate the physical world.

Model Driven Architecture (MDA)[2] is based on a
series of industry-standard software development
frameworks, model drives the software development
process, and using support tool model can to achieve
automatic conversion among the models, between the
model and the code. Its core idea is to establish a
Platform Independent Model (PIM) with complete
description of system requirements and specific platform

implementation technology, through a series of model
transformation rule set, the platform independent models
to be able to transfer to complete presentation system
requirements, and specific implementation techniques
related to platform specific model (PSM), finally, using
MDA tools will be making platform specific model
automatically transferred to code.

Aspect-oriented software development methods[3]
make up object-oriented software development methods
in system development needs of non-functional
characteristics of the existing limitations question
problem. Use separate technology of concerns separates
all the crosscutting concerns of the system, and then
analyzed, designed, modeled for each cross-cutting
concerns, to address crosscutting concerns in object-
oriented software development, the code tangling and
scattering problems, enhancing the system's modular
degree, lowering coupling between modules.

In this paper, we propose an aspect-oriented MDA for
non-functional properties to develop cyber physical
systems.

II. NON-FUNCTIONAL REQUIREMENTS OF CYBER PHYSICAL
SYSTEMS

Non-functional requirements[4] address important
issues of quality and restrictions for cyber physical
systems, although some of their particular characteristics
make their specification and analysis difficult: firstly,
non-functional requirements can be subjective, since they
can be interpreted and evaluated differently by different
people; secondly, Non-functional requirements can be
relative, since their importance and description may vary
depending on the particular domain being considered;
thirdly, non-functional requirements can be interacting,
since the satisfaction of a particular non-functional
requirement can hurt or help the achievement of other
non-functional requirement.

A set of ISO/IEC standards are related to software
quality, being standards number 9126 [5], 14598-1 and
14598-4 the more relevant ones [6]. The main idea
behind these standards is the definition of a quality model
and its use as a framework for software evaluation. A
quality model is defined by means of general
characteristics of software, which are further defined into
sub-characteristics in a multilevel hierarchy; at the

608 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.3.608-619

bottom of the hierarchy appear measurable software
attributes. Quality requirements may be defined as
restrictions over the quality model. The ISO/IEC 9126
standard fixes 6 top level characteristics: functionality,
reliability, usability, efficiency, maintainability and
portability. Furthermore, an informative annex of this
standard provides an illustrative quality model that
refines the characteristics as shown in Fig 1 [5].

Figure 1. ISO 9126 Standard

In order to evaluate these attributes, a metric must be
selected and rating levels have to be defined dividing the
scale of measurement into ranges corresponding to
degrees of satisfaction with respect to the attribute. The
rating levels must be defined for each specific evaluation
depending on the quality requirements. Finally, a set of
assessment criteria combining the measures of attributes
are necessary to obtain the rating of the intermediate and
top characteristics and, finally, the quality of the product.

According to their relationships with the primary
functionality of system, Non-functional requirements of
system can be classified as follows (see Fig. 2)[5].

Figure 2. Non-functional requirements classification for system

Application aspect can change the internal behavior of.

They are additional operational design requirements
which a system should be configured to support specific
target platforms. Examples of such non-functional

requirements are memory optimization, error handling,
fault tolerance, real-time property, and real-time policy.
Since optimizing memory usage is one of the key issues
in real-time system and it crosscuts the structure of
system, Memory optimization is viewed as an application
aspect of the system. Error handling, entangled in the
entire system, is encapsulated and represented by an error
handling aspect. Fault tolerance is another application
aspect that influences behavior and structure of a system.
Additionally, real-time properties and policies are viewed
as application aspects as they influence the overall
structural behavior of the system. Depending on the
requirements of a system, real-time properties and
policies could be further refined. The common
characteristic of those aspects is that they extend the
primary functionality of system.

Maintenance aspect is characteristics that relate to the
maintainability of system. Examples of such non-
functional requirements are logging, tracing and coding
rule enforcements aspect. Those non-functional
requirements do not carry any operational purposes and
they could consume considerable computing resources
and major development efforts. The common
characteristic of those non-functional requirements is that
they are related to the human factors in software
engineering.

Composition aspects refer to non-functional
requirements that need to be considered when integrating
components into system. Examples of such non-
functional requirements are resource demand, temporal
constraints, portability, and flexibility. Each component
should have declared resource demands and information
of its temporal behavior in its resource demand and
temporal constraints respectively. Additionally, the
information, such as real-time operating system supported,
and other hardware related information, is contained in
the portability. Possibilities of extending the component
are contained in the flexibility.

The first task is to combine the non-functional
services using patterns he/she identified during his/her
expertise. The new artifacts are UML architectural
models of the container and a UML framework for using
the non-functional services in UML models[7]. The UML
framework can be a profile for using the non-functional
services, it uses UML extension mechanisms such as
stereotypes, tagged values, and constraints. The second
task is to help the application developer in transparently
integrating the non-functional requirements to
implementation components A UML framework can
provide a profile to architects and designers for
modeling non-functional dependencies. One or more
non-functional requirements can be attached to the
operations (i.e., pre-/post-conditions) and other
constraints in OCL[8], the attributes, and other model
elements of a software component. Non-functional
requirements can also be attached to the links
between the software components in order to
configure the system for instance. Attaching
constraints and tagged values is the simplest way to
add non-functional requirements to a model element.

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 609

© 2012 ACADEMY PUBLISHER

A constraint consists in specifying more semantics as
an expression in a designated constraint language.
Constraints are gaining more and more importance in
UML. A tagged value consists of a name and its
associated value.

Dependability is that property of a system that justifies
placing one's reliance on it. The dependability of a system
is the collective term that describes the availability
performance of a system and its influencing factors:
reliability, safety, maintainability and maintenance
support performance. These non-functional properties are
highly important for cyber physical systems as they are
designed to operate in environments where failure to
provide functionality or service can have enormous cost
both from financial, influential or physical aspects.
Therefore it is essential that these properties are
calculated as precisely as possible during the design and
operation of such systems. Reliability is the ability of a
system or component to provide its required functionality
or services under given conditions for a specified period
of time. Availability is the ratio of total time that a system
or a component is functional during a specified period
and the length of the period. Maintainability can be
specified as the probability that a component or system
will be restored to a given condition within a period of
time. Safety is described as the absence of serious
consequences on the user or environment in case of
failure. Safety can be defined as “a property of a system
that it will not endanger human life or the
environment” .A system is safety-critical if safety cannot
be ensured when it fails to provide correct service.
Integrity can be specified as the absence of improper
alterations on the target system or component.
Survivability can be defined as the ability of the system
to remain functional after a natural or man-made
disturbance. The threats to dependability are faults, errors
and failures. There is a relationship between these threats:
A fault is a defect in the system which, when activated,
leads to an error. An error is an incorrect system state that
may affect the external behaviour, thereby causing a
failure. A failure occurs when the delivered service
deviates from what is considered correct. There exist four
general means to achieve dependability: fault prevention,
fault tolerance, Fault removal, and fault forecasting. Fault
prevention deals with the objective of avoiding to
introduce faults during the software development process.
There exist four general means to achieve dependability:
fault prevention, fault tolerance, fault removal, and fault
forecasting. Fault prevention can be considered as an
inherent part of it. Fault removal deals with uncovering
faults that have happened at any phase of the
development process. Fault forecasting is aimed at
evaluating the behaviour of the system under the
occurrence of faults such that it can be concluded which
ones would lead to system failure. Fault tolerance
techniques are the means to allow a system to provide
correct service even when faults occur. Such techniques
use diverse forms of redundancy to detect and recover
from faults. The most common approaches use either
hardware redundancy, software redundancy, time

redundancy or information redundancy to identify
erroneous conditions. The subsequent recovery process
relies on the remaining fault-free parts of the system to
correct the errors and/or prevent them from reappearing.

 Timeliness requirements [9] apply to computations in
which correctness depends not only on the results
produced but also the time at which they become
available. Soft real-time requirements are general
performance goals, typically expressed via some measure
of average response time. Such goals have a probabilistic
or statistical flavour which takes them outside the scope
of this study. More tangible are hard real-time
requirements in which particular events must occur at, or
before, certain times. A periodic requirement states that
some action must be performed at regular intervals, while
a sporadic requirement states that some action must be
performed immediately following an external
“triggering” event. In cyber physical systems components
do not only have to perform operations correctly, but also
have to meet certain timing requirements. General
purpose components like graphical user interface
frameworks are often not design with a real-time scenario
in mind and thus real-time programmers are many times
forced to build large parts of their applications from
scratch. Building components suitable for real-time
applications is a difficult task, as besides the functional
requirements attention has also to be paid to the non-
functional timing requirements. This additional
complexities makes building real-time components more
expensive and error prone than general purpose
components. Real-time and fault tolerance constraints can
impose conflicting requirements on a distributed system.
Real-time operation requires an application to be
predictable, to have bounded request processing times,
and to meet specified task deadlines. This predictability is
often the most important characteristic of cyber physical
systems. In contrast, fault tolerant operation requires that
an application continue to function, even in the presence
of unanticipated, potentially time-consuming events such
as faults and fault recovery. Faults are often viewed as
asynchronous unpredictable events that can upset a cyber
physical system’s scheduled operation. Sustained
operation with consistency of application data in the face
of faults is often the single most important characteristic
of fault-tolerant systems. Thus, there is a fundamental
conflict between the philosophies underlying the two
system properties of real time and fault tolerance. While
real-time performance requires a priori knowledge of the
system’s temporal operation, fault tolerance is built on
the principle that faults can and do occur unexpectedly,
and that faults must be handled through some recovery
mechanism whose processing time is uncertain. When
both real-time and fault tolerant operation are required in
the same system today, trade-offs are made at design time,
not at run-time.

III. MODEL-DRIVEN ARCHITECTURE

MDA is a framework proposed by OMG for the
software development, driven by models at different
abstraction levels. MDA relies on the separation of the

610 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

business logic of a system from its implementation. To
achieve this, MDA defines two types of models: the
Platform-Independent Model (PIM) and the Platform-
Specific Model (PSM). PIM captures system behavior
and functionality, while PSM captures information about
details of system implementation. The MDA
development process primarily involves three steps. First
the PIM is developed. The objective is to capture the high
level functional requirements of the application. In the
second step, transformation rules are used to transform
the PIM into one or more Platform-Specific Models. A
PSM is customized to describe the system in terms of the
particular implementation platform. The third step
involves the conversion of the PSM into application code.
Typically, steps two and three are automated by the use
of automated tools. It is the first step in the process that
involves creativity and manual work. In general, MDA is
a useful approach towards reasoning about the impact of
system on the behavior of software systems[10].

 MDA attempts to raise the level of abstraction by
which software and systems engineers carry out their
tasks. This is done by emphasis the use of models (i.e.,
abstractions) of the artifacts that are developed during the
engineering process. Models are representations of
phenomena of interest, and in general are usually easier
to modify, update, and manipulate than the artifact or
artifacts that are being represented. Models are expressed
using a suitable modeling language; UML is a widely
used standard in MDA. MDA is not a development
method or process; it can be implemented in a number of
ways, e.g., via Extreme Programming, the Rational
Unified Process, the B-Method, or a refinement calculus.
The key element in MDA is the construction and
transformation of models that are fit for the purposes of
the development project. The languages and processes
used in construction and transformation will vary from
project to project.

 The specification of the Object Constraint Language
(OCL) is a part of the UML specification, and it is not
intended to replace existing formal languages, but to
supplement the need to describe the additional constraints
about the objects that cannot be easily represented in
graphical diagrams, like the interactions between the
components and the constraints between the components’
communication. In object-oriented modeling, a graphical
model, such as a class diagram, is not enough for a
precise unambiguous specification. OCL is designed to
solve this problem. It facilitates the specification of
model properties in a formal yet comprehensive way. By
combining the power of the straightforward, graphical
UML modeling and the textual, accurate OCL constraints,
these kinds of information can be specified in this formal
way.

IV. RELATED WORKS

The SAE Architecture Analysis and Design Language
[11] is a design-by-committee standard promoted to help
the space and avionics domain. It now extends to a much
broader audience, and this language is used in many
domains related to Cyber-Physical Systems. AADL is an

ADL promoted in the context of Model-Driven
Engineering which has now gained a significant
momentum in the industry. Models are a valuable asset
that should be used and preserved down to the
construction of the final system; modeling time and effort
should be reduced to focus directly on the system and its
realization. Yet, validation and verification may require
many different analysis models, involving a strong
theoretical background to be mastered. The SAE AADL
has been defined to match the concepts understood by
any engineer (interface, software or hardware
components, packages, generics). From these concepts,
typical behavior elements (scheduling and dispatch,
communication mechanisms) have been added using both
formal and informal description, always bound to
theoretical frameworks for V&V. In parallel, the AADL
allows one to attach user-defined properties or languages
for specific analysis. This enables the application of many
different techniques for the analysis of AADL models,
among which schedulability, safety, security, fault-
propagation, model-checking, resource dimensioning,
etc.; but also code generation.

Model-based design is a powerful design technique
for cyber-physical systems, but too often literature
assumes knowledge of a methodology without reference
to an explicit design process, instead focusing on isolated
steps such as simulation, software synthesis, or
verification. Jeff C. Jensen, Danica H. Chang and Edward
A. Lee combine these steps into an explicit and holistic
methodology for model-based design of cyber-physical
systems from abstraction to architecture, and from
concept to realization. They decompose model-based
design into ten fundamental steps, describe and evaluate
an iterative design methodology, and evaluate this
methodology in the development of a cyber-physical
system[12].

Cyber-physical systems (CPSes) couple their cyber
and physical parts to provide mission-critical services,
including automated pervasive health care, smart and
secure electricity grid, green cloud computing, and
surveillance with unmanned aerial vehicles (UAV).
CPSes can use the information available from the
physical environment to provide such ubiquitous, energy
efficient and low cost functionalities. Their operation
needs to ensure three key properties, collectively referred
to as S3: i) safety, avoidance of hazards, ii) security,
assurance of integrity, authenticity and confidentiality of
information, and iii) sustainability, maintenance of long
term operation of CPS using green sources of energy.
Ensuring S3 properties in a CPS is a challenging task
given the spatio-temporal dynamics of the underlying
physical environment. In this paper, the formal
underpinnings of recent CPS S3 solutions are aligned
together in a theoretical framework for cyber-physical
interactions, which enables CPS researchers to
systematically design a solution for ensuring safety,
security, or sustainability. The general applicability of
this framework is demonstrated with various example
solutions for safety, security, and sustainability in diverse

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 611

© 2012 ACADEMY PUBLISHER

CPS domains. Further, insights are provided on some of
the open research problems for ensuring S3 in CPSes.[13].
 Solberg Arnor et al. presents an MDD framework
that uses aspect oriented software development
techniques to facilitate separation of concerns. The
proposed framework can simplify both the model
development task and the task of specifying
transformations. The conceptual model of the framework
is presented and illustrated using distributed transactions
at the PIM and PSM levels[14].

Aniruddha Gokhale and Jeff Gray illustrate the
tangling of concerns in the deployment and
configuration of distributed real-time and embedded
systems. Model driven generative technologies help
address these concerns by alleviating several
accidental complexities arising in the modeling
process. Yet, MDD tools alone are not sufficient
since they cannot scale in some cases. Additionally,
some of the modeling activities can become tedious
and repetitive while addressing crosscutting
concerns. Aspect weaving at the modeling level
resolves these problems. Their paper describes
ongoing work along with a short case study on
integrating the C-SAW aspect weaving tool with the
CoSMIC model driven development tool suite[15].

Sven Burmester, Holger Giese, and Wilhelm Schafer
propose one approach that consists of components and
Real-Time Statecharts, and permits to specify complex
real-time systems following UML notations and the
MDA approach at the PIM level. This platform
independent description can then be mapped
automatically to a platform specific model, provided that
a target platform description in form of annotations
describing real physical behavior (WCETs) are given.
The PSM describes real-time threads, which are of
general nature and not bound to a specific programming
language or RTOS environment. Thus, an
implementation can be realized in any programming
language that provides real-time priority scheduling.
Different analysis methods are applied on the different
levels to achieve correct models[16].

MARCO AURÉLIO WEHRMEISTER proposes an
automated integration of distributed embedded real-time
systems design phases focusing on automation systems.
The proposed approach uses Model- Driven Engineering
(MDE) techniques together with Aspect-Oriented Design
(AOD) and previously developed (or third party)
hardware and software platforms to design the
components of distributed embedded real-time systems.
Additionally, AOD concepts allow a separate handling of
requirement with distinct natures (i.e. functional and non-
functional requirements), improving the produced
artifacts modularization (e.g. specification model, source
code, etc.). In addition, this thesis proposes a code
generation tool, which supports an automatic transition
from the initial specification phases to the following
implementation phases. This tool uses a set of mapping
rules, describing how elements at higher abstraction
levels are mapped (or transformed) into lower abstraction

level elements. In other words, such mapping rules allow
an automatic transformation of the initial specification,
which is closer to the application domain, in source code
for software and hardware components that can be
compiled or synthesized by other tools, obtaining the
realization/ implementation of the distributed embedded
real-time system[17].

V. APPLYING AOP AND MDA TO NON-FUNCTIONAL
REQUIREMENTS

The use of models based development to assist in the
development of software for general purpose computes is
not a new research topic. In addition, there are already
some works on the “model-driven engineering” topic
proposing solutions to some problems. However, the
employment of MDE in the design of Cyber physical
systems can be considered a recent research topic, which
still has several gaps to be fulfilled. MDA distinguishes
several types of models. Platform In-dependent Models
(PIM) specify the software system in an independent way
from the technology platform chosen to implement it.
Platform Specific Models (PSM) refine the PIM to
specificities of the implementation platform. That is, two
different implementations of the same system would
share the same PIM but have two different PSMs, each
one adapted to the technological capabilities of each
platform. A third type of model, Computation
Independent Models (CIM, a kind of business model),
exists, but in this paper, we will focus on the
transformation from PIM to PSM. To reflect the NFRs
properly in the implementation of a software system, it is
necessary to specify them at design level. Modeling helps
the developers to work in a higher level of abstraction by
hiding the details. The model representation of a system
provides a high-level view, where the developers can
focus on different aspects of a software system. UML
can be used to represent FRs and NFRs of the system
because UML has emerged as the industry standard for
software modeling notations. Various diagrams are
available in UML models, and using several types of
diagrams, several views of a system can be captured.
Another major advantage of using UML is that many
UML tools are available in the market.

Fig.3 shows the UML extensions for non-
functional requirements (NFR) modeling. The NFR
Modeling package (stereotyped as profile) defines
how the elements of the domain model extend meta-
classes of the UML meta-model. A UML framework
can provide a profile to architects and designers for
modeling non-functional dependencies. One or more
non-functional requirements can be attached to the
operations (i.e., pre-/post-conditions) and other
constraints in OCL, the attributes, and other model
elements of a software component. Non-functional
requirements can also be attached to the links
between the software components in order to
configure the system for instance. The main UML
extension mechanisms are constraints, tagged values,
and stereotypes. These extensions are used for

612 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

documentation purposes and for directing code and
configuration descriptors generation. Attaching
constraints and tagged values is the simplest way to
add non-functional requirements to a model element.
A constraint consists in specifying more semantics as
an expression in a designated constraint language.
Constraints are gaining more and more importance in
UML. A tagged value consists of a name and its
associated value. By definition, constraints and
tagged values are simple and very extensive-since
there are very few limitations on their usage. The
resulting contract between the service and the
software component can be too fine-grained and
spread over multiple model elements. Therefore, they
may be complex to use for configuring non-
functional services.

Figure 3. UML profile diagram for NFRs modeling

Object-Oriented Programming (OOP) has been the
dominant programming methodology that is being used in
all kinds of software development today. The main focus
of OOP is to find a modular solution for a problem by
breaking down the system into a collection of classes that
encapsulates state and behavior. However, In Object-
Oriented Programming, crosscutting concerns are
elements of software that can not be cleanly captured in a
method or class. Accordingly, crosscutting concerns has
to be scattered across many classes and methods. OOP
fails to provide a robust and extensible solution to handle
these crosscutting concerns. AOP is a new modularity
technique that aims to cleanly separate the
implementation of crosscutting concerns. It builds on
Object-Orientation, and addresses some of the points that
are not addressed by OO. AOP provides mechanisms for

decomposing a problem into functional components and
aspectual components called aspects. An aspect is a
modular unit of crosscutting the functional components,
which is designed to encapsulate state and behavior that
affect multiple classes into reusable modules.
Distribution, logging, fault tolerance, real-time and
synchronization are examples of aspects. The AOP
approach proposes a solution to the crosscutting concerns
problem by encapsulating these into an aspect, and uses
the weaving mechanism to combine them with the main
components of the software system and produces the final
system. We think that the phenomenon of handling
multiple orthogonal design requirements is in the
category of crosscutting concerns, which are well
addressed by aspect oriented techniques. Hence, we
believe that system architecture is one of the ideal places
where we can apply aspect oriented programming (AOP)
methods to obtain a modularity level that is unattainable
via traditional programming techniques. To follow that
theoretical conjecture, it is necessary to identify and to
analyze these crosscutting phenomena in existing system
implementations. Furthermore, by using aspect oriented
languages, we should be able to resolve the concern
crosscutting and to yield a system architecture that is
more logically coherent. It is then possible to quantify
and to closely approximate the benefit of applying AOP
to the system architecture.

MDA is a framework proposed by OMG for the
software development, driven by models at different
abstraction levels. MDA relies on the separation of the
business logic of a system from its implementation. To
achieve this, MDA defines two types of models: the
Platform-Independent Model (PIM) and the Platform-
Specific Model (PSM). PIM captures system behavior
and functionality, while PSM captures information about
details of system implementation. The MDA
development process primarily involves three steps. First
the PIM is developed. The objective is to capture the high
level functional requirements of the application. In the
second step, transformation rules are used to transform
the PIM into one or more Platform-Specific Models. A
PSM is customized to describe the system in terms of the
particular implementation platform. The third step
involves the conversion of the PSM into application code.
Typically, steps two and three are automated by the use
of automated tools. It is the first step in the process that
involves creativity and manual work. In general, MDA is
a useful approach towards reasoning about the impact of
system on the behavior of software systems.

MDD attempts to raise the level of abstraction by
which software and systems engineers carry out their
tasks. This is done by emphasis the use of models (i.e.,
abstractions) of the artifacts that are developed during the
engineering process. Models are representations of
phenomena of interest, and in general are usually easier
to modify, update, and manipulate than the artifact or
artifacts that are being represented. Models are expressed
using a suitable modeling language; UML is a widely
used standard in MDD. MDD is not a development
method or process; it can be implemented in a number of

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 613

© 2012 ACADEMY PUBLISHER

ways, e.g., via Extreme Programming, the Rational
Unified Process, the B-Method, or a refinement calculus.
The key element in MDD is the construction and
transformation of models that are fit for the purposes of
the development project. The languages and processes
used in construction and transformation will vary from
project to project.

The MDA guide is vague in its definition of MDA and
the notion of refinement. The guide defines MDA in
terms of PIM, PSM, and additional models such as
domain models. Refinement is defined informally as a
process of transforming MDA models (e.g., PIM to PSM,
PSM to code, PIM to PIM). The MDA guide
distinguishes PIM and PSM as models at different levels
of abstraction, e.g., a PIM is at a higher level of
abstraction than a PSM. However, years of research on
refinement calculi and programming methodology,
particularly on wide-spectrum languages, suggest that
distinctions such as this are not helpful: it is more
productive to think in terms of specifications that have
different properties. For example, in predicative
programming, programs are a special kind of
specification. They are implementable and immediately
executable on a machine. Similarly, in refinement
calculus, specifications are a special kind of program.
they are not always executable, but one can test for
feasibility, and they are written in a unified language. To
formally define refinement in MDA, there are four
alternatives. One could translate the core languages used
in MDA i.e., UML, or a subset of UML into a formal
language such as Z, B, LOTOS or specification
statements. Work has been carried out on expressing such
translations, but it all suffers from limitations, e.g.,
incompleteness, difficulties in achieving consistency, etc.
A second alternative is to promote a formal definition of
refinement e.g., weakest preconditions and express it in
MDA terms, e.g., in UML. It is debatable whether UML
is well suited to expressing formal definitions of
refinement.

The specification of the Object Constraint Language
(OCL) is a part of the UML specification, and it is not
intended to replace existing formal languages, but to
supplement the need to describe the additional constraints
about the objects that cannot be easily represented in
graphical diagrams, like the interactions between the
components and the constraints between the components’
communication. In object-oriented modeling, a graphical
model, such as a class diagram, is not enough for a
precise unambiguous specification. OCL is designed to
solve this problem. It facilitates the specification of
model properties in a formal yet comprehensive way. By
combining the power of the straightforward, graphical
UML modeling and the textual, accurate OCL
constraints, these kinds of information can be specified in
this formal way.

OCL has the characteristics of an expression language,
a modeling language and a formal language. An OCL
expression is guaranteed to be without side effects since it
is an expression language, and thus cannot change
anything in the model, although an OCL expression can

be used to specify the state changes of the system. OCL is
not a programming language, but a modeling language.
So it is impossible to write program logic or flow-control
in OCL. All implementation issues are likewise out of the
scope of OCL. OCL is also a formal language where all
constructs have a formally defined meaning; in other
words, it is unambiguous. Furthermore, OCL is strongly
typed.

The main idea behind OCL is “Design By Contract”.
By applying this, the responsibility of the parties is made
unambiguous and can be formally described. An OCL
constraint consists of the precondition, the post-condition
and the invariant. The contract is a way of establishing
that does what by stating, first, what must be true for the
caller (client) to request a service from the callee (server)
(precondition), and, what must be true when the callee
finishes providing the service (post-condition). The
invariant must be true when a routine is called and when
it terminates, but not necessarily when it is executing. By
the principle of “Design By Contract”, and specifying
these three constraints, the services provided by the
server are exposed, but not the details of the
implementation of the services.

On the other hand, the callee will know when exactly a
service can be provided (available), and the caller will
know when exactly it can request the service. In case of
exceptions, it is easy to find out who caused the
exception: if the precondition is false, the caller broke the
contract; if the post-condition is false, the callee broke the
contract; if the invariant is false, the callee class broke the
contract.

Since OCL is a textual extension of the graphical
UML modeling language, an OCL specification is always
unambiguous and precise. It also provides better
documentation to the visual models. It can be used during
the modeling and specification. Since OCL is an
expression language, it can be checked without an
executable system. All these features turn out to be useful
in representing non-functional properties, which can be
represented by the combination of precondition, post-
condition and invariant in OCL. The Non-functional
attributes are represented by the member variables of the
class, and the Non-functional actions are represented by
the methods. They are checked at run time, before and
after the calls so that the change of the Non-functional
parameters of the system is monitored in a timely basis.

The precondition has to be satisfied before the method
can be called, and the post-condition has to be satisfied at
the time the method returns. It is easy to find out which
step causes exceptions if any. The methods are called in a
loop-like fashion, so, whenever a change of the Non-
functional parameter is observed, the corresponding
methods are called and the changes are made accordingly
and the necessary notification is done at the same time.
The Non-functional specification is integrated in the
overall system design in this fashion. In this way, the
satisfaction of the Non-functional requirements is
guaranteed and the change of the Non-functional
properties is under observation and control, as well.

614 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

Although non-functional properties and associated
metrics have been widely used in networking, there is no
standard vocabulary for discussing the Non-functional as
it relates to the distributed computing and component-
based solutions, especially when the Non-functional
properties are applied on variant platforms and when the
different aspects of the Non-functional interact with each
other. A standard vocabulary is the first step toward
progressing Model Driven Architecture that includes
Non-functional parameterization and/or Non-functional
contracts. MDA provides an open, vendor-neutral
environment for the integration of different distributed
application software. MDA aims to separate the business
or application logic from the underlying platform
technology. Its standards are made up of the UML, Meta-
Object Facility (MOF), XML Meta-Data Interchange
(XMI), and Common Warehouse Meta-model. Platform-
independent applications built using MDA and the
associated standards can be realized on a range of
platforms.

The MDA design initiative assists during the
interaction between the different platforms and different
system. System environments started out providing the
interoperability using the architectures that are standard,
proprietary, or somewhere in the middle. Progressively,
more and more services and more powerful system have
been added to the overall architecture, thus, it is more
difficult to ensure the interoperability of these system. To
efficiently solve this problem, MDA is designed by
applying the component and modeling technology and
putting the whole picture together.

The distributed systems software development process
based on aspect-oriented system is divided in five phases.
Fig. 4 depicts the whole software development
process[18].

The first phase is a profound analysis of the
requirements. The phase includes three steps:

Step one handles the non-functional requirements and
then identifies which of those are crosscutting.

Step two performs a traditional specification of
functional requirements, in this case, using an UML-like
approach where the use case model is the main
specification technique.

Step three starts by composing functional
requirements with aspects; then it identifies and resolves
conflicts that may arise from the composition process.

The concepts of overlapping, overriding and wrapping
can be adopted to define the composition part of the
model. Overlapping indicates the requirements of the
aspect modifies the functional requirements they
transverse. In this case, the aspect requirements may be
required before the functional ones, or they may be
required after them. Overriding indicates the
requirements of the aspect superpose the functional
requirements they transverse. In this case, the behavior
described by the aspect requirements substitutes the
functional requirements behavior. Wrapping indicates the
requirements of the aspect encapsulate the functional
requirements they transverse. In this case, the behavior

described by the functional requirements is wrapped by
the behavior described by the aspect requirements[3].

Figure 4. Distributed systems software process based on aspect-

oriented system

In the design phase, the distributed system will be

designed considering both the requirements and the
constraints posed by the system and system. Using the
MDA approach to produce the platform specific models
includes five steps (see Fig. 5):

Step one: Create the PIM for the distributed system.
Step two: Select the target system and create the

generic system aspects.
Step three: Transform PIM to enhanced PIM using the

application converter.
Step four: Transform the generic aspects to enhanced

aspects using the aspect converter.
Step five: Weave the enhanced aspects into the

enhanced PIM to produce the PSM.

Figure 5. Process view of the PSM generation

The validation phase is in charge of validating the

application design against both functional and non-
functional models. Also in this phase, the system

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 615

© 2012 ACADEMY PUBLISHER

characteristics have to be considered since they can affect
the application validation. Model-based analysis
techniques can be used for validation purposes . Because
it provides a way for the design-time analysis of
distributed systems enabling rapid evaluation of design
alternatives with respect to given performance measures
before committing to a specific platform.

In the development phase, the source code of classes
and aspect is generated. And the distributed system is
built on top of the aspect-oriented system platform.

Since aspect may affect the behavior of one or more
classes through advice and introduction. Traditional
testing techniques, such as unit testing, integration
testing, are not applicable to test aspect in the testing
phase. Some aspect-oriented testing approaches , such as
data-flow-based unit testing, state-based testing approach,
and model-based testing approach can be used in this
phase.

To address the system development, principled
methods are needed to specify, develop, compose,
integrate, and validate the application and system
software used by cyber physical systems. These methods
must enforce the physical constraints cyber physical
systems, as well as satisfy the system’s stringent
functional and non-functional requirements. Achieving
these goals requires a set of integrated Model Driven
System (MDM) tools that allow developers to specify
application and system requirements at higher levels of
abstraction than that provided by low-level mechanisms,
such as conventional general-purpose programming
languages, operating systems, and system platforms.
Different functional and systemic properties of cyber
physical systems via separate system and platform-
independent models are applied. Domain-specific aspect
model weavers can integrate these different modeling
aspects into composite models that can be further refined
by incorporating system and platform-specific properties.
Different but interdependent characteristics and
requirements cyber physical system behavior (such as
scalability, predictability, safety, and security) are
specified via models. Model interpreters translate the
information specified by models into the input format
expected by model checking and analysis tools. These
tools can check whether the requested behavior and
properties are feasible given the specified application and
resource constraints. Tool-specific model analyzers can
also analyze the models and predict expected end-to-end
QoS of the constrained models. Platform-specific code
and metadata that is customized for a particular QoS-
enabled component system and DRE application
properties, such as end-to-end timing deadlines, recovery
strategies to handle various run-time failures in real-time,
and authentication and authorization strategies are
modeled at a higher level of abstraction. System and
applications by assembling and deploying the selected
components end-to-end using the configuration metadata
are synthesized by MDM tools. In the case of legacy
components that were developed without consideration of
QoS, the provisioning process may involve invasive
changes to existing components to provide the hooks that

will adapt to the metadata. The changes can be
implemented in a relatively unobtrusive manner using
program transformation systems.

VI. CASE STUDY: INTELLIGENT TRANSPORTATION
SYSTEMS

Intelligent Transportation systems(ITS)[19] –
automotive, aviation, and rail – involve interactions
between software controllers, communication networks,
and physical devices. These systems are among the most
complex cyber physical systems being designed by
humans, but added time and cost constraints make their
development a significant technical challenge. MDA
approach can be used to improve support for design,
testing, and code generation. MDA approach is
increasingly being recognized as being essential in saving
time and money. Transportation systems consist of
embedded control systems inside the vehicle and the
surrounding infrastructure, as well as, the interaction
between vehicles and between vehicle and the
infrastructure. The dynamics of these interactions
increases complexity and poses new challenges for
analysis and design of such systems.

In real-time systems such as ITS, the passage of
time becomes a central feature — in fact, it is this key
constraint that distinguishes these systems from
distributed computing in general. Time is central to
predicting, measuring, and controlling properties of the
physical world. The modeling process of non functional
requirements time of ITS by aspect–oriented
MDA[20][21][22] is shown as Fig.6, Fig.7,Fig.8 and Fig
9.

Figure 6.. Time mechanism model-CIM model[23]

616 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

Figure 7. Aspect oriented time model: PIM model of time

OCL supplements UML by providing expressions

that have neither the ambiguities of natural language nor
the inherent difficulty of using complex mathematics.
Time aspect is specified by OCL as follows.

Context TimeAspect:
inv: --the isSingleton is not equal isPrivileged
 if self.isSingleton then self.isPrivileged=false
 else self.isPrivileged=true endif
 self.isSingleton=not self.isPrivileged
 --maxTime always large than mixTime
 self.maxTime>=self.mixTime
 --the Clock has only one instance

self.setClockAdvice.Clock.allInstances()->size()=1

The time constraints of phase is specified by OCL as
following:

Figure 8. Time constraints of phase

Now we return to the model transformation, whose

essential point is mapping to the special programming
language code as shown in Fig.9.

Figure 9. Aspect code of time property: PSM model

Considering safety specification, the formal
technique can be applied. The train control systems
environment consists of train and road[9]. However, since
just train is monitored, system environment is specified
by MSV variable MSVtrain,which may have four
states(distant, approached, on-crossinng and passed)[9].

In addition, internal MSV variables, MSVtimer is

considered to monitor passing of time[24].

System-controlling component is just the system gate.
It is shown by CSVgate variable(called Cgate), whose state
is set by software as MoveDown ,MoveUp and
closes/opens the road[9]. Thus,

We have the following safety constraints[9]:

The aspect -oriented fault-tolerant model is as shown

in Fig.10.

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 617

© 2012 ACADEMY PUBLISHER

Figure 10. Aspect-oriented Fault-Tolerant Model: PIM model

Figure 11. Aspect code of train arrive: PSM model[24]

VII. CONCLUSION

In this paper, we proposed an aspect-oriented MDA
for non-functional properties to develop real-time cyber
physical systems. We illustrated the proposed method by
the development of ITS and demonstrated aspect-oriented
MDA approach that can be used for modeling non-
functional characteristics of complex system, effectively
reduce the complexity of software development and
coupling between modules to enhance the system's
modular.

The further work is devoted to developing tools to
support the automatic generation of model and code.

ACKNOWLEDGMENT

This work is supported by the Major Program of
National Natural Science Foundation of China under
Grant No.90818008, National Natural Science
Foundation of China under Grant No. 61173046 and
Natural Science Foundation of Guangdong province
under Grant No.S2011010004905.

REFERENCES
[1] Edward A. Lee, Sanjit A. Seshia, Introduction to

Embedded Systems, A Cyber-Physical Systems Approach,

Published by authors, First Edition, 2011, 978-0-557-
70857-4G.

[2] Object Management Group.OMG MDA guide
v1.0.1[EB/OL].http://www.omg.org/docs/omg/03-06-
01.pdf

[3] Wehrmeister, M.A., Freitas, E.P., and Pereira, C.E., et al.,
"An Aspect-Oriented Approach for Dealing with Non-
Functional Requirements in a Model-Driven Development
of Distributed Embedded Real-Time Systems ", 10th IEEE
International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, Santorini
Island, Greece, May7-9, 2007, IEEE Computer Society,
pp.428-432.

[4] Cancila, D., Passerone, R., Vardanega, T. and Panunzio,
M., Toward Correctness in the Specification and Handling
of Non-Functional Attributes of High-Integrity Real-Time
Embedded Systems ， IEEE Transactions on industrial
informatics, vol 6,No2,181-194, 2010.

[5] International Organization for Standarization, ISO/IEC
Standard 9126: Software Engineering – Product Quality.
2004

[6] International Organization for Standarization,
ISO/IEC14598 Information Technology - Software product
evaluation. 2001

[7] Liming Zhu,Gorton, I. ,"UML Profiles for Design
Decisions and Non-Functional Requirements",Second
Workshop on Sharing and Reusing Architectural
Knowledge - Architecture, Rationale, and Design Intent,
20-26 May 2007 pp.8-9

[8] UML2.0 OCL Specification.
http://www.comp.nus.edu.sg/~yangfei/HYP/UML2.0ocl.pd
f

[9] Edward A. Lee. "Computing Needs Time". Talk or
presentation, 12, November, 2010; Distinguished Lecture
Series on Cyber-Physical Systems, Washington University,
St. Louis.

[10] Frankel, D. S., "Model Driven Architecture:Applying
MDA to Enterprise Computing", OMG Press.

[11] Jerome Hugues, "AADL for Cyber-Physical Systems:
Semantics and beyond, validate what's next". Talk or
presentation, 19, April, 2011.

[12] .Jeff C. Jensen, Danica H. Chang and Edward A. Lee. A
Model-Based Design Methodology for Cyber-Physical
Systems, Proc. Of first IEEE workshop on design.modeling
and evaluation of cyber-physical systems (CYPHY),
Instanbul, Turkey, 2011

[13] A. Banerjee, K. Venkatasubramanian, T. Mukherjee, and
S.K.S. Gupta Ensuring Safety, Security and Sustainability
of Mission-Critical Cyber Physical Systems, IEEE
Proceedings special issue on cyber-physical systems, 2011.

[14] Solberg Arnor et al. Using Aspect Oriented Techniques to
Support Separation of Concerns in Model Driven
Development, Proceedings of the 29th Annual
International Computer Software and Applications
Conference. pp121-126 2005.

[15] Aniruddha Gokhale and Jeff Gray . An Integrated Aspect-
oriented Model-driven Development Toolsuite for
Distributed Real-time and Embedded Systems, AOSD
Workshop on Aspect-Oriented Modeling Workshop,
Chicago, IL, March 2005.

[16] Sven Burmester, Holger Giese, and Wilhelm Schafer,
Model-Driven Architecture for Hard Real-Time Systems:
From Platform Independent Models to
Code.http://www.cs.uni-
paderborn.de/uploads/tx_sibibtex/ECMDA.pdf

[17] MARCO AURÉLIO WEHRMEISTER. An Aspect-
Oriented Model-Driven Engineering Approach for

618 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

Distributed Embedded Real-Time Systems. Ph.D thesis,
Porto Alegre: PPGC da UFRGS, 2009.

[18] Jingyong Liu, Yong, Zhong, Lichen Zhang, Yong Chen.
Applying AOP and MDA to middleware-based distributed
real-time embedded systems software process. 2009 Asia-
Pacific Conference on Information Processing, APCIP
2009, pp 270-273, 2009.

[19] K.Ranjini, A.Kanthimath and Y.Yasmine. Design of
Adaptive Road Traffic Control System through Unified
Modeling Language. International Journal of Computer
Applications, Volume 14– No.7, February 2011

[20] Yi Liu Yi Liu, Zhiyi Ma Zhiyi Ma and Weizhong Shao
,Integrating Non-functional Requirement Modeling into
Model Driven Development Method Method, 2010 Asia
Pacific Software Engineering Conference . p98-107, 2010

[21] Clemente, P. J., Sánchez, F., and Perez, M. A. "Modelling
with UML Component-based and Aspect Oriented
Programming Systems",Seventh International Workshop
on Component-Oriented Programming at European

Conference on Object Oriented Programming (ECOOP).
Málaga, Spain.,2002,pp.1-7.

[22] G. Madl, S. Abdelwahed. “Model-based Analysis of
Distributed Real time Embedded System Composition”,
Proceedings of the 5th ACM international conference on
Embedded software, New Jersey, USA , 2005.

[23] A UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded systems, Version 1.0.OMG
Document Number:formal/2009-11-02.Standard document
URL: http://www.omg.org/spec/MARTE/1.0

[24] Seyed Morteza Babamir and Saeed Jalili. Making real-
time systems fault tolerant: a specification-based approach.
Journal of Scientific & Industrial Research [J].2010.7,
Vol.69:501-509.

[25] Robert Cartwright et al. Cyber-Physical Challenges in
Transportation System Design.
www.ee.washington.edu/research/nsl/aar.../WalidTaha-
20081017192130.pdf

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 619

© 2012 ACADEMY PUBLISHER

