
A Comprehensive Failure Recovery Algorithm
for LRTs Based on Paired Net
Xiaoyong Mei1,2, Yiyan Fan1, Changqin Huang3, Xiaolin Zheng4

1School of Computer Science and Technology, Hunan University of Arts and Science, Changde 415000, China

2School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510275, China
3College of Educational Information Technology, South China Normal University, Guangzhou 510631

4College of Computer Science and Technology, Zhejiang University, Hangzhou 310027
Email: Email: cdmxy@126.com, yyfan@gmail.com, cqhuang@zju.edu.cn, xlzhen@zju.edu.cn

Abstract—Failure recovery optimization is an important
way for enhancing efficiency of Long Running Transaction
(LRT) processing. In this paper, to solve the efficiency
problem of LRT failure recovery, a Comprehensive
Recovery Model for LRTs (LCRM) is constructed, which
divides LRTs into a series of sub-transactions in different
levels, and supports versatile transaction properties of LRT.
Based on LCRM, a Comprehensive Failure Recovery
algorithm for LRTs (LCFR) is proposed. This algorithm
uses methods of forward recovery, backward recovery and
alternative recovery. It supports auto-recovery of failures
during the execution of LRTs. LCFR guarantees LRT’s
semantic atomicity property and durability property. By
restricting the recovery scope in lower level of complex
LRTs, LCFR limits the quantity of sub-transactions to be
recovered. Thus, it reduces unnecessary loss of time and
enhances the efficiency of failure recovery. Experiment
results show that LCFR can reduce the time required for
failure recovery and decrease the failure rate of LRT
processing.

Index Terms—long running transaction modeling, scope-
based recovery, hierarchical recovery strategy, failure
recovery algorithm

I. INTRODUCTION

Since the long-lived nature of composition Web
transaction (it may last for several hours, several months
or longer), it brings difficulty to transaction handling.
Traditional transaction mechanism is no longer suitable
for LRTs to deal with the coordination between several
loose coupled Web services and long holding of
resources, pure roll back mechanism is not suitable to all
situations to ensure atomic semantics of LRTs, it is
difficult or even impossible to eliminate the result of
execution. Therefore, in a loosely coupled LRTs
environment, it is inevitable to take more relax
transaction mechanism, which is called relaxed-ACID.

Nowadays the transaction handling strategy of LRTs
usually uses simple compensation mechanism, which has
the following shortages: (i) the transaction handling
strategies are provided by most protocols or

specifications (WS4BPEL, WSCI, WS-CDL etc.) which
execute compensation tasks to eliminate the effect of
failure while ignore transactional properties of
composited tasks. However, for uncompensable and
nonretriable tasks, this method is infeasible. (ii)
compensation operations are usually defined at the level
of scope (WS4BPEL), context (WSCI) or choreography
(WS-CDL) which may lead to duplicated definition and
extra work when scopes or contexts change. (iii) for each
scope, there exists only one corresponding compensation
transaction, which is too fixed and not flexible enough to
adjust for different application requirements. Actually,
users want to select appropriate recovery strategies
according to different requirements of certain failed task.
Our research focuses on the dynamic construction of
several kinds of failure recovery strategies, in order to
specify failure constraint rules in recovery handler and
calculate recovery scope according to Terminate
Dependency Point (TDP) to reduce unnecessary failure
handling. Therefore, we separate failure recovery strategy
from business process to implement modeling and
dynamically choreograph failure recovery process.

In this paper, we introduce Paired Net to formally
describe the failure recovery mechanism of LRTs, and
discuss the execution semantics of aggregation control
structure. Paired Net is chosen to model failure recovery
for following reasons: (i) it has a formal semantics
representation, analyzing techniques and verifying tools;
(ii) it has well graphical representation and supports
modeling and analyzing in the way of graph; (iii) it is
suitable to represent typical control flow construction and
support prototype design and simulation; (iv) it provides
a much broader foundation for computer aided
verification than abstract state machines and process
algebras, which lacks in exception handing,
compensation and recovery strategy.

To implement relaxed-ACID transaction, we propose
a comprehensive failure recovery algorithm based on
extended Paired Net, which introduces state token,
input/output data token, QoS token and control token
respectively, and constructs failure transition and
recovery transition. The failure type of each task has a
corresponding recovery transition, that is, recovery token

Footnotes: 8-point Times New Roman font;
Manuscript received January 1, 2009; revised June 1, 2009; accepted

July 1, 2009.
Copyright credit, project number, corresponding author, etc.

420 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.2.420-430

fires recovery transition to start corresponding recovery
strategies.

II. FORMAL DESCRIPTION OF WEB SERVICES BASED ON
PAIRED-NET

Firstly, we propose the formal definition of Web
services based on Petri-Net.

Definition 1 Web Service (WS) is a tuple (), ,I P T F=
where:

(i) s io qos cP P P P P= ∪ ∪ ∪ , sP denotes the finite set of
state places of task ,

. denotes the input or output
parameters of , it usually refers to functional parameters
of WS. denotes the QoS parameters of I , it usually
refers to non-functional metrics of WS. denotes finite
set of place of control token. To simplify the formal
description, we use

I { , ,sP Ready Activated Running∈ ,
_, , , , ,Failed Aborted Cancelled Committed Compensated Half

}Compensated ioP
I

qosP
cP

. , .s ioI p I p and to describe the
states, functional metrics and non-functional metrics of
respectively.

. qosI p
I

(ii) n bT T T τ= ∪ ∪ , where denotes a set of normal
actions

 of , denotes a set of reverse actions
 of ,

nT
{ (), (), (), (), (),Activate Run Fail Abort Cancel

()}Commit I bT
{ (), (), ()}Compensate Hcompensate Retry I

Tτ ∈ denotes a silent transition which executes no
operation and takes no time, so it does not change the
execution semantics. To simplify notation, denotes
that task will be executed when is activated;

 denotes that task will be handled when

actt
()Activate

runt ()Run is
executed. will be triggered if failure occurs during
task execution, or

()Fail
()Retry will be executed several times

until task is successfully finished, denoted as and
respectively. Sending to task in Ac can
abort it, denoted as . When finished, task will reach

 after is executed, denoted as .
 can cancel task and can

eliminate the effects of the committed task, denoted as
and respectively. For convenience, is used to

acquire actions of .

falt rtyt
()Abort tivated

abtt
Committed ()Commit cmtt

()Cancel ()Compensate

cnlt cmpt .I t
I

(iii) denotes a set of () (F P T T P= × ×∪)

,)t p p

directed arcs
from to or from T to , which is called control
flow. The constraint relations on and from
different actions and states are: ,

 and .

P T P
1 1(,)t p 2 2(,)t p
1 1 2 2(,) (,)t p t p≺ 1 1(,)t p

2 2(,)t p�� 1 1 2 2(,) (t≈
The Web tasks can transfer among different states by

executing different action transitions. WS transaction
behavior can happen if both preconditions and constraints
are satisfied, the postposition of the behavior shows the
result of action executing. To other tasks, a Web task can
be considered as a black box, denoted as I . Only the
interactive interfaces and external actions through which

 interact with the environment are visible. I

Ⅲ. COMPOSITION TRANSACTION MODEL

A. Transaction Type of Atomic WS
Each atomic WS has its own transaction behaviors.

According to different functional semantics and
behaviors of Web transaction, WS can be classified into
four types: Pivot WS (pWS), Compensable WS (),
Retriable WS () and Vital WS (), which is
denoted as ,

cWS
rWS vWS

()TBP WS () { , ,TBP WS Pivot Compensable Vital∈
, }Retriable .

To analyze compensation transaction and how specific
compensable transaction can affect its behavior exactly, it
is necessary to discuss the behavior dependency between
each atomic WS and the environment. The behavior of
atomic transaction is formally described as follows.

pWS can neither be retried nor be compensated. Once
successfully executed, the effects of task in WS can not
be eliminated. The Petri Net of pI (which in pWS) is
shown in Fig. 1(a), there exist following transaction
behaviors:

(i) If pI is executed along path , then 1 2t t pI is
successfully committed and task reach Com , thus mitted
((),) ((),Run Running Commit≺ is satisfied.)Committed

(ii) If pI is executed along path , then 1 6t t pI failed
and transfers to F ; thus (ailed (),) ((),Run Running Fail≺

 is satisfied. Because)Failed pI is not committed and no
compensation needed, there exist no constraint (

.
(),Fail

) ((), _)Failed Hcompensate Half Compensated/≺
(iii) If pI is executed along path , then the

executing of
1 3t t

pI is aborted and transfers to Aborted , thus
((),) ((),)Run Running Abort Aborted≺ is satisfied.

(iv) If pI is executed along path , then the commit
of

1 5t t
pI is cancelled and transfers to Cance , thus

 is satisfied.
lled

((),) ((),)Commit Committed Cancel Cancelled≺
For pI in pWS , if its effects can not be eliminated

after pI committed, it is considered to be unrecoverable.
cWS are the successfully committed tasks whose

effect can be semantically eliminated by invoking their
corresponding compensation tasks. The difference
between transaction behaviors of and those of cWS pWS
is that the former is compensable. As shown in Fig. 1(b),
there exist following transaction behaviors:

(i) If is executed along path , is executed
after is committed successfully to eliminate its effects.
Then transfers to . Thus (

 is satisfied.

cI 1 2 8t t t cI ′
cI

cI Compensated (),Commit
) (((),)Committed Compensate Compensated≺

(ii) If is executed along path , is cancelled
and may has partial effects on business transaction.
Therefore, the task transfer to Hcompensated . Thus

cI 1 3 9t t t cI

((),) ((),) ((), _Run Running Abort Aborted HalfHcompensate≺ ≺
 is satisfied.)Compensated

For , there are I and , where I can eliminate
the effects of .

cWS I ′ ′
I

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 421

© 2012 ACADEMY PUBLISHER

rWS can be executed for several times to ensure that
they will be committed successfully. The difference
between the transaction behaviors of and those of rWS

pWS is that the former is retriable. As Fig. 1(c) shows,
there exist following transaction behavior:

If is executed along path (where ,
is the times of retry), the failed task is executed
repeatedly, finally it is committed successfully and
reaches . Thus (

rI 1 6 7 2()nt t t t 1n ≥ n

Committed (),) ((),)Run Running Fail Failed≺

 is satisfied. ((),) ((),Run Running Commit≺ ≺)Committed
For in , if I has failed times, is

the maximum times of retry times, then I is sure to be
committed successfully within times ().

I rWS (k k n≤)

n

n

m (1)k m+ ≤ ≤
The above-mentioned compensability and retriablility

of WS are orthogonal transactional properties. That is,
compensable WS are not retriable while retriable WS are
not compensable.

vWS are both retriable and compensable. The Petri
Net description of (which in) is shown in Fig.
1(d). Obviously, it has the transaction behaviors of both

 and .

vI vWS

cWS rWS
Fig. 1 shows the execution states and transition of the

tasks. During the execution, tasks can be in one of the
following states: 0 1, ,Ready p Running p Committed↔ ↔

, and may trigger internal or external
transitions:

2 4 6, , , ,p Aborted p Cancelled p Failed p ↔ ↔ ↔

9Compensated p↔
7↔

31 2() , () , () ,Activate t Run t Abort t↔ ↔ ↔

8

.
5 6 7() , () , () , () ,Cancel t Fail t Retry t Compensate t↔ ↔ ↔ ↔

9()Hcompensate t↔

(a) Pivot Web services (b) Compensable Web services

(c) Retriable Web services (d) Vital Web services

Figure 1. State/transition diagram of atomic Web services.

B. Composition Transaction Model
Each WS has its own transaction properties, therefore,

when a certain service fails, how to coordinate other WS
to ensure the reliability of the whole system is a critical
problem to be solved. Composition services can be
considered as a business process where each task is
related to a certain kind of WS in service layer and is
implemented through the execution of a specific WS.

Definition 2 Transactional Composition Services (TCS)
is defined as a tuple (, , , ,)TCS I O α β γ= , where:

(i) , where 1 2{ , ,..., }mI I I I= { , , , }p c r v
iI I I I I∈ (1)i m≤ ≤

denotes task in the business process.
(ii) is a O binary order iI ID j on LRTS, where
{ , }∈D ≺) . denotes that is executed beforei jI I≺ iI jI

where is call ≺ strong
I I≺

 . means neither
 nor

order i jI I)

i j j iI I≺ and we call is .) weak order
(iii) : I AggregationTypeα → is a function, where

{ , , - , - , -AggregationType null sequence And join Or join And∈
, - , }split Or split loop . Atomic tasks can be constructed to

complex composition through aggregation operators such
as , , ,⊕ ⊗ Θ& and . The usual aggregation pattern is
CS = 1 1 1 1() | () | () | () |

ii i i i i i i i II I I I I I I I+ + + +⊗ Θ⊕ & where:
Sequence aggregation pattern ,

where
1 2 nCS I I I= ⊕ ⊕ ⋅ ⋅ ⋅⊕

(1 ,)i jI I i j n⊕ ≤ ≤ satisfies the temporal constraint
, where i(,)i jbefore t t j< . Only if jI is activated after iI

is successfully committed, the failure of may jI depend
on i

Parallel aggregation pattern , where
I , as shown in Fig. 2(a);

1 2|| || || nCS I I I= ⋅ ⋅ ⋅
(1 ,)i jI I i j n≤ ≤& meets the temporal constraint

or(,)i jequals I I (,)i jfinishes I I , only if concurrent
execution of iI and jI are both successfully committed,

 is successfully committed. If i or failed,
will be aborted, as shown in Fig. 2(b);

iI I& j I jI i jI I&

Selection aggregation pattern ,
where

1 2 nCS I I I= ⊗ ⊗⋅ ⋅ ⋅⊗
(1 ,)i jI I i j n⊗ ≤ ≤ denotes or is executed

according to
iI jI

selection condition ()case cond . is
successfully committed if and only if one of the branches
is successfully committed, as shown in Fig. 2(c);

iI I⊗ j

Discriminator aggregation pattern ,
where

1 2 nCS I I I= Θ Θ ⋅ ⋅ ⋅Θ
(1 ,)i jI I i j nΘ ≤ ≤ is similar to operator & . A guard

function ()guard status is added to operator Θ to capture
the first committed branch, as shown in Fig. 2(d);

Iteration aggregation pattern 1CS I= , where 1I is
executed repeatedly according to the times of iteration

1| I |λ = , as shown in Fig. 2(e).

Figure 2. Aggregation patterns.

(iv) : I Stateβ → is a function, where
. The state of

LRTs can be determined by the execution progress of the
composition task, denoted as .

{ ,State initial∈
, , , ,active failed completed aborted cancelled}

)
1

. (.n
ii

CS state I state
=

=∪
(v) : I TransactionTypeγ → is a function, where

{ , , ,TransactionType Vital Retriable Pivot Compen }sable∈ . The

422 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

transaction behaviors of each atomic task are composed
as transaction behavior of composition services, denoted
as .

1
. (.)n

ii
CS TransactionProperty I TransactionProperty

=
=∪

Ⅳ. THE WEB SERVICES COMPOSITION BASED ON PAIRED
NET

The execution of LRTs can be successfully committed,
failed or cancelled. The service compensation model is so
important that it will capture the occurrence of failure as
well as cancellation, then take measures to activate the
related compensation service according to the
compensation strategies.

Now we construct service compensation model in two
steps:

(i) Constructing failure place and compensation
transition: Consider that the failure of transition 1 occurs,
compensation transition 1t is introduced for 1t , and 1t

t
′ ′ is

executed when needs to be compensated. Then two
failure places 2 and 1 are introduced for 2p and 1
to represent prepositive state place and postpositive state
place of t respectively, as shown in Fig. 3(a).

1t
p′ p′ p

1
(ii) Constructing mapping. Adding an activating place

1 with uncertain state between 1t and 1 . Adding
failure transition and 2 between 1 and 1

′

fp t′
1
ft ft p p′ and

between 2 and 2 respectively, as shown in Fig. 3(b).
If 1 fails, fires and arrives at 1 to forward
compensate 1 before 1 . If the failure happens after ,

2 fires 2 and arrives at to compensate

p p′
t 1p 1

ft p′
t′ t 1t

p ft 2p′ 1t′ before
(including t).

1t
1

Compensation tasks are colored in grey to distinguish
from the normal tasks. The constructed model is similar
to the normal task model in term of structure except that
the flow relation is reversed. This implies that the
execution of compensation service is always in a reverse
order of the execution of normal service. According to the
compensation model above, the formal representation of
the compensation mechanism of WS process is described
as follows:

Figure 3. Service compensation modeling.

Definition 3 Given a transactional composition
services (, , , ,)TCS I O α β γ= , where ,
suppose that and are the sets of failed transitions
and uncertain state activating places respectively such
that for each i there is a unique and for each

 there is a unique , then the Service
Composition Paired Net of is described as

(, , ,)I P T F= A
fT fP

p P∈ f
it T∈ f

f.jI t T∈ f
jp P∈
I (,SCPN P=

, ,)T F A , as shown in Fig. 4, where: (i) { |P P P p P′ ′ ′= ∈∪
; (ii) }p P∧ ∈ { | . } fT T T t T I t T T′ ′ ′= ∈ ∧ ∈∪ ∪ ; (iii) F =

fF F F′∪ ∪ , where

{(| () } {() |F P T T P F T P′ ′ ′ ′ ′= × × ⊂ ×∪
() }, {() } {(,) |, |f f f f f

i i i i i
f

i iF p P t T t pp t ′= ∈ ∧ ∈P T F× ⊂ t∪

} {(,) | } {(,) |f f f f f f f
j j jT p P t p t T p P p t p P′ ′ ′∧ ∈ ∈ ∧ ∈ ∈∪ ∪

}jt T

∈

i j j j j

; (iv) { |f
jt′=A A ∪ A ∪ }f f

jt T∈ . ′ ′∧ ∈

Figure 4. composition compensation paired net

According to the structure of SC , and PN P P′ ,
and are respectively matched so that it is easy to
construct the mapping from the normal service process to
the compensation process, which implies to extend the
service behavior

T
T

(, , ,)I P T F= A in LRTs to (, , ,)I P T F= A .

Ⅴ. FAILURE RECOVERY STRATEGIES OF COMPOSITION
TRANSACTIONS

To meet the requirements of composition transaction
recovery, we propose a flexible method to dynamically
calculate recovery scope according to the dependency
between task and execution environment in LRTs.

A. Recovery Scope
For given execution trace σ in LRTs, if ,i jI Iσ σ∃ ∀ ∈ ∧
. , . { ,i jI TBP I TBP Vital Compensable}∈ , one of the transaction

dependency exd
j iI I〉〉 ,

k

inexd
j I iI I〉〉 , inexd

j iI Iσ ′〉〉 , imd
j iI 〉〉 I and

inimd
j iI 〉〉 I exists between and iI jI , and I .i Compensated ∧

, then .jI Compensated σ is called a compensation
sequence, denoted as .Compensatedσ .

It is critical to determine TDP when a task in the
process fails. Recovery Handler (RH) takes charge of
backward executing of all the tasks in recovery scope
until it reaches TDP. When failure occurs, RH executes
compensation tasks or fixes the failure or chooses an
alternative execution path to avoid it. For a given LRTs,
if ,i jI Iσ σ∃ ∀ ∈ ∧ } ,
and one of the data flow dependency

. ,iI TBP . { ,jI TBP Vital Compensable∈
exd

j iI I , 〉〉
k

inexd
j I iI I〉〉 ,

inexd
j iI Iσ ′〉〉 , imd

j iI 〉〉 I and inimd
j iI 〉〉 I exists between and iI

jI , then is called the TDP of iI jI , as shown in Fig. 5. If
jI fails, (m m)σ σ σ⊆ will be executed from I . i mσ is

called the dependency path of jI . Each task in LRTs has
a specification of TDP.

After TDP is determined, RH executes mσ in reverse
from failed task to try to eliminate the effects brought by
committed tasks in recovery scope. For a given LRTs, if

jI (jI σ∈) fails (the set of dependency path of jI is

1 2 k
{ , ,..., }m m mσ σ σ), RH rolls back to I and injects
corrected parameters, executes the compensation tasks of

i

i

mσ (1 i k≤ ≤), after that, jI is committed successfully.
The set of recovery scopes of { ,

1 2
,..., }

km m mσ σ σ , is { ,1 2Ξ Ξ

2I

1'I

2'I

1st

1'st

1jt

1'jt

3p′ 4p′

0p′ 1p′
0
ft 1

f

4
f

3
ft

f

t

t

1I0p 1p

s1p

f
1p

f
2p

f
j1p

3p 4p

ι

 ft

o

ι

ι ′

o′

f
ot

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 423

© 2012 ACADEMY PUBLISHER

, }k⋅ ⋅ ⋅ Ξ . The cost of reverse compensation is so high that
it is necessary to minimize the compensation tasks in
recovery scope, which is called minimal recovery scope,
denoted as . minΞ

Figure 5. Recovery scope of the failed business process.

B. Nesting of Scope
The nesting description of Ξ is similar to that of

control flow structure. As shown in Fig. 6, 1n nS S −a
denotes 1n is the sub scope of nS . The number in S −

subscript indicates the nesting level. In general,
2 1nS S⋅ ⋅ ⋅a a aS represents that scope Ξ has nesting levels

which includes zero or more tasks.
n

Figure 6. Nesting of scope based on Petri nets.

Ⅴ. RECOVERY STRATEGIES OF LRTS

Most existing specifications consider about backward
recovery, which didn’t support forward recovery. The
recovery strategies for LRTs proposed in this paper
includes backward recovery, forward recovery and
alternative recovery.

These three recovery strategies are always associated
with Ξ , fig. 7 depicts the mapping from LRTs to Ξ . The
recovery strategy is enclosed in dashed lines. In this
strategy, Compensation Handler (CH), RH and Abortion
Handler (AH) will be activated by

and
(),Compensate Cp

()Recovery Rv ()Abort A respectively to execute the
compensation tasks in Ξ . If the handlers executed
successfully, then failure transition is transferred to

 and respectively,
which means they have finished the compensation or
recovery of failed process successfully.

(Compensated Cpd) Recoveried(Rvd)

A. Backward Recovery Strategy
When the engine failed in the executing process, the

failed task jI throw ()fail to terminate execution of
forward flow. RH is triggered to calculate Ξ and to get
the log (, , , , , , , ,)ActID Desc QoS TBP State Behavior In OutΓ of
the successfully executed tasks. It constructs input

interface .iI in′ of compensation task according to the
input/output interface of the committed tasks,
sets the external state place Cp of and fires

, activates and executes . For convenience,
we assume that LRTs consists of forward execution flow
and backward compensation flow when failure occurs,
which are associated with normal transaction behavior
and compensation behavior of a task, as shown in Fig. 7.
Since tasks in

i i(I .in,I .out)

iI
()Compensate iI ′

Ξ hold , RH
gets the corresponding I

. { ,iI TBP Vital∈ }Compensable

i′ and constructs the mapping
between iI ′ and , which is called compensation pair iI

i iI I ′÷ .

Fig. 1 The recovery model of composition Web transaction.

Figure 7. Recovery model of LRTs.
As Fig. 8 shows, and both represent atomic

transactions with states. Business process and its
compensation process are enclosed by dashdotted lines.
Transition models the internal behaviors of tasks while
place carries out the internal and external interaction
between sub transactions. If state place failed, it triggers
RH to make control flow turn to compensation flow.
Backward Compensation Paired Strategy (BCPS) is
introduced to formally describe it:

iI iI ′

The Petri Net of I and their compensation tasks I ′ in
LRTs are denoted as (), ,I P T F= and (), ,I P T F′ ′ ′= ′

)′

respectively. | (,) (,I cpair I I T T′∃Ξ∀ ∈Ξ ∈ , where t is
the transition from I to

n
i

i 1iI + , is the failure transition
from to

f
it

iI iI ′ , and t c
i′ is the compensation transition from

iI ′ to 1iI +′ . The triple of BCPS is denoted as (, ,
where: (i)

,)P T F
fP P ; (ii) P P′= ∪ ∪ f n cT T

r a ; (iii)
T T T T′ ′= ∪ ∪ ∪ ∪

t tτ∪{ , , } 1{(, .), ,n f c aF F F F F F t I p′ ′ ′= ⋅ ⋅ ⋅∪ ∪ ∪ ∪ ∪
I= 1) (, .)n n

i i it t I p+∪

, where F , (, .)}a
nt I p′ (. ,n

i p (. ,f
iF I p=

R

A

Cm

F

Ad

R

A

Cm

F

Ad

R

A

Cm

F

Ad

cm
pe

ns
at

e
sc

op
e

Committed

Cp

Cpd

A

Backward
recovery
handler

Rv

Rvd

A

Forward
recovery
handler

R A

Rvd

Rv

Rvd

Cpd

FAd

FAd

FAd

Ad

R

A

R

R

1I

Alternative
recovery
handler

iI

nI

Cpd F

424 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

) (, .)f f
i i it t I ′∪ p p, , as shown in

Fig. 8.
1{(. ,) (, .)c c c

i i i iF I p t t I+′ ′ ′ ′ ′= ∪

BCPS is constructed by RH in two steps. Firstly, it
captures the failure of I , analyzes failure type of

, calculates Ξ of , sends execution request to
, get according to and , and constructs

recovery flow. Secondly, it starts up the compensation
flow to execute backward recovery. Fig. 8 illustrates that
the failed I aborts the forward control flow and turns to
recovery flow with the help of or .

i

.nI Failed iI

iI ′ .iI In′ .iI In .iI Out

i
f

ip f
it

Figure 8. Backward recovery model.

According to all committed tasks and compensation
dependency between them, RH calculates Ξ and I ′ to
construct compensation business process. The algorithm
of BCPS is given as follows:

Algorithm 1 Construct recovery process.
Input: the set of tasks in business process BP , failed

task IA and compensation dependency set CP
Output: Compensation Business Process CBP

(,);taskstate getTaskState I RecordLog= A
if thentaskstate Failed=

1 ();icalculateCompensationScope IΞ = /*calculate the failure recovery
scope of */ 1Ξ IA
else if thentaskstate Aborted=

2 (); /*calculate the abortion
recovery scope of */

icalculateCompensationScope IΞ =

for each or or I I I∈Ξ ∈Ξ ∈Ξ
 if (,) and (,) thenibinding I ws getTaskState I RecordLog Committed=

2Ξ IA
else if thentaskstate Cancelled=

3 ();icalculateCompensationScope IΞ = /*calculate the cancellation
recovery scope of */ 3Ξ IA

1 2 3i i i
A

for committed task in iI BP , ,i iI I ′→ () (), , , ,P T F P T F′ ′ ′→
3

;
1 2for each (,) and (or or)i i i i icpair I I I I I′ ∈Ξ ∈Ξ ∈Ξ

 if (,) theni idep I I true′ =
Constructing and the side ,i iI I ′ 1(,), (,), (,), (,), (,)c f f c c

i i i i i i i i i ip t p t t p p t t p+′ ′ ′ ′ ′
between adjacent , construct compensation business process 1,i iI I +′ ′ Rflow ;
return Rflow

The complexity of this algorithm depends on the
number of tasks in LRTs and the number of
compensation tasks of 1 2 3, ,Ξ Ξ Ξ . If max(| |,| |)BP nΞ = ,
then the time complexity of this algorithm is . ()O n

RH monitors the execution of business process, once
failure occurs during execution, RH is triggered to deal
with failure recovery. After commit of each task in LRTs,
the initial execution condition of its compensation task
will be created. If ()fail is sent by executing , which
then transited to Fai , RH is triggered to execute
compensation. If I

iI
led

i′ has corresponding compensation
service, then Compensation Business Process (CBP) is
invoked and executed. Meanwhile, abortion or
cancellation is executed according to the compensation
dependency of iI ′ . The compensation handling algorithm
is described as follows:
Algorithm 2 The execution of RH.
Input: the set of tasks in BP , Rflow
Output: the information of compensation service that is
executed successfully or not
for (,) each LogItem seek RecordLog I of task I in the committed process=
if . theniI state Completed=
 for each (,)ibinding I ws
 , , , , , , , , iI ActID Desc QoS TBP Behavior State In Out log informatin of ws′ ← Γ

if . theniI Failed true=
;

 trigger ;Compensating Handler CH

if . { , } . theni i iI TBP Compensable Vital and I state Completed and I is atomic task∈ =
 for ieach compensation task I ′

 CH excute and record excution information ofi iI I′ ′
else if is composition task theniI

1 2 { , , , i i i ikdivide task I into subtask I I I′ ′ ′ ′⋅⋅ ;
1 for each subtask ()kI from i to i′A A

 excute();}I ′A
else if () and is atomic task theni icompensate I false I=
 Forward ,compensation continue;iI ′

if () thennotExit CBP
 ;Compensation flow CBP is not exist

for each task iI
if and . thenAbt

j i iI I I state running〉〉 =
 { () ;iCH send abort to ws
 set task state as " ";}i

I s Aborted′

for each task iI
if and . thenCnl

j i iI I I state active〉〉 =
 { () ;iCH send cancel to ws
 set task state as " ";}iI s cancelled′

for each task iI
if thenCpt

j iI I〉〉
 Compensate task , set ' state as " ";i iI I s cancelled′ ′
if allcompensation()=true thenCBP

return success
else
 return failure;
}

For | | , () ,Rflow n Edge I m I Rflow= = ∈A A , where | |Rflow
and is the number of tasks and edges in CBP
respectively, then the time complexity is .

()Edge IA
()O mn

B. Forward Recovery Strategy
Forward recovery strategy is similar to BCPS except

that when rolling back to TDP, which RH injects proper
input parameters and restart the expected execution of

R

A

Cm

F

Ad

R

A

Cm

F

Ad

R

A

Cm

F

Ad

A

Cpd

F

Ad

A

F

Ad

A

Cp

F

Ad

cm
pe

ns
at

e
sc

op
e

B
ac

kw
ar

d
re

co
ve

ry
 h

an
dl

er

Abort

AbortedFailed

Ready

Cpd

Cp

Cp

Cpd

Recoveryed

1I

iI

nI

1I ′

iI ′

nI ′

f
1t

f
it

f
nt

1
nt

n
it

n
nt

1
n
it − 1

c
it −
′

1
ct′

c
it′

c
nt′

2τ

1τ

3

Committed

τ 4τ

atrt

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 425

© 2012 ACADEMY PUBLISHER

forward flow. The Paired Net of each task in LRTs can be
denoted as (), ,I P T F= . For failed task jI , TDP of is
calculated and Ξ is determined. Similar to BCPS, a
triple is used to represent Forward Compensation
Paired Strategy (FCPS), where: (i)

iI

(, ,)P T F
I I I

{ }f rP P P P p=
I

∪ ∪ ∪ ;
(ii) { }rtT T T= ∪ ∪

I
; (iii) 1{(,),(,), ,c r c r

n nF F F t p t p−′ ′= ⋅ ⋅ ⋅∪ ∪

2

I

1(,)} {(,)}c r rt p p τ′ ∪ , as shown in Fig. 9.

Figure 9. Forward Recovery Model.

RH constructs FCPS in 3 steps: Firstly, it terminates the
execution of LRTs and determines the TDP and Ξ of ;
secondly, it executes recovery; finally, it injects proper
parameters at and restarts the LRTs from . Note that
if TDP is I , there is no difference between BCPS and
FCPS during recovery.

iI

iI iI

1

Algorithm 3 Forward recovery algorithm
Input: failure task , log, IA BP
Output: the information of success or failure of the
recovery
{ (,taskstate getTaskState I RecordLog=);

;

,)

A

if thentaskstate Failed=
1 ();icaculateCompensationScope IΞ = /*calculate the failure recovery

scope of */ 1Ξ IA
if thentaskstate Aborted=
 fo r .keach task I state Running=
 1if and thenAbt

k kI I I〉〉 ∈ΞA

 kInterrupte each task I in runningflow
1for each I ∈ΞA

 {i f (,) thengetTaskState I RecordLog committed=A

{ (LogItem seek RecordLog I= A
 o and ;linput the value f the LogItem to task I compensate Il

Delete record in FailedLog AbortedLog CancelledLog

 o and - ;lchange the value f the LogItem to task I re excute IA

}}
if . or . or . thenI state Failed I state Cancelled I state Aborted= = =A A A

 log , , ;
}

The time complexity of reverse execution of recovery
process and restart forward recovery from TDP are both

, thus the complexity of this algorithm is . ()O n ()O n

C. Alternative Recovery Strategy (ARS)
When executing I fails, TDP of I is calculated and j j

Ξ is determined. If there exists { } , then
occurrence of failure is caused by executing task itself
rather than output of the committed tasks. In this situation,
it is not necessary to perform backward compensation
recovery. A simple and direct way to solve the problem is
to trigger alternative recovery tasks I of , then the
execution of the subsequent process proceeds. The formal
description of ARS is given as follows.

{ }j iI I= = Ξ

′′j jI

The Petri Net of each task in LRTs is denoted as
(), ,I P T F= . For failed task I , TDP of I is calculated

and
j j

Ξ is determined. If |j iI I jI∀ ∈Ξ =
T F

∃Ξ , then
alternative task I P(, ,)′′ ′′ ′′ ′′= and alternative state place
p′′ is added. ARS can be denoted as a triple (, ,)P T F

K K K
,

where: (i) P P P′′=
K

∪ ; (ii) f r aT T T T T T′′=
K

∪ ∪ ∪ ∪ τ∪ ;
(iii) 1 2{(. ,),(, .),(, .),(. ,)}f f r r

i i i i i iF F F I p t t I p t I p I p t′′ ′′ ′′ ′′=
K

∪ ∪ , as
shown in Fig. 10.

Figure 10. Alternative Recovery Model.

If failure occurs during execution, proper recovery
strategy will be selected according to failure types. In
general, the cost of BCPS is the biggest while ARS is the
smallest and FCPS between them. This is the main reason
why FCPS is introduced in this paper. When a task fails,
retry will be selected firstly considering the cost, if it still
fails, ARS will be selected. Finally, if RH has ability of

Rv

A

Rvd

F

Ad

AbortReplace

R

A

Cm

F

Ad

R

A

Cm

F

Ad

R

A

Cm

F

Ad

Ready

R

A

Cm

F

Ad

1I

iI

1iI +

nI

iI ′′

1t n

1
n
it −

1it n
+

n
nt

n
it

f
it

1
rt

1τ 2τ

0τ

2
rt

at

Cpd

R

A

Cm

F
 Ad

R

A

Cm

F

Ad

R

A

Cm

F

Ad

A

Cpd

F

Ad

A

F

Ad

A

Cp

F

Ad

cm
pe

ns
at

e
sc

op
e

Fo
rw

ar
d

re
co

ve
ry

 h
an

dl
er

Abort

AbortedFailedCommitted

Ready

Cpd

Cp

Cp

1I

iI

nI

1I ′

iI ′

nI ′

1
nt

1
n
it −

2
ct′

1
c

it −
′

n
it

n
nt

c
it′

c
nt′

f
1t

f
it

f
nt

1
ct′rp1τ

2τ

at

4τ3τ

 Replaced CommittedFailed

426 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

compensation or abortion, BCPS or FCPS will be
selected to ensure the consistency of the whole
composition service.

Ⅵ. EXPERIMENTAL RESULTS AND ANALYSIS FOR
TRAVELING RESERVATION PROCESS (TRP)

We take TRP for example to analyze and verify LRT’s
algorithm, as shown in Fig. 11. The classical TRP which
is composed of more than 40 tasks and 100 services
(recovery services included). We use LCFR algorithm
and non-LCFR algorithm respectively to reduces
execution time and cost, and decrease the failure rate. The
experiment is taken on PCs with Intel Pentium Dual Core
E5200 2.5 GHz, 2GB RAM, Windows XP SP2, Apache
Tomcat server, jUDDI registry, Active Bpel designer,
Axis, eclipse 3.2.2.

The TRP has the following possible transaction
behaviors. Firstly, traveler makes a Customer
Requirements Specification (CRS) according to his
traveling plan and submits it to travel agent. Then,
according to CRS, travel agent carries out Flight Booking
(FB) or Train Reserving (TR), Hotel Booking (HB), Car
Renting (CR) or Bus Renting (BR) sequentially. Then,
after the reservations are confirmed, traveler carries out
Online Payment (OP). Finally, express company carries
out Ticket Delivery with EMS (TDE) or UPS (TDU), and
sends “reservation successful” message to traveler to do
Traveler Confirmation (TC). Using hierarchical nesting
enhances the efficiency of aggregation nesting TRP.

This work implements as part of the TRPFlow projects
which objectively compares the providers’ and requests’
service profiles. TRPFlow implements with the Activekit
platform which permits the development of distributed
applications using composition transaction principles. Fig.

12 shows a screenshot of TRPFlow, which partially
shown in Fig. 12 is implemented and users can visualize
its corresponding PNO-tree and a partial view of TRP.
Interface of RH transforms the eXtended Markup
Language (XML) output from other RHs to the current
platform with XML Stylesheet Language (XSL).

Figure 11. Traveling reservation process

As shown in Fig. 13, the LCFR curve is the
accumulative execution time and cost curve, while non-
LCFR curve does not takes execution time and cost into
account. The LCFR curve means once the executing
engine executes a task in LRTs, execution time and cost
is evaluated. This experiment aims to compare the
difference of execution time and cost between LCFR and
non-LCFR and to discuss performance of LRTs. Observe
that during execution of the LRT process, the number of
composed tasks of the orchestration increases, so does the
dependency between tasks. Compared with LCFR, in
non-LCFR the average growth rate of execution time and
cost of TRP is 0.69 and 0.16 respectively, while in LCFR
they are effectively cut down. Also, the average negative
growth rate of reliability, reputation and availability is
1.93, 1.12 and 1.24 respectively. As Fig. 13 shows, the
more tasks are executed in the LRT, and the more
complicate nesting levels are, the greater benefit will be
gained by LCFR.

Figure 12. The Implementation of TRP with LCFR

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 427

© 2012 ACADEMY PUBLISHER

Figure 13. Comparison between LCFR and non-LCFR

As shown in Fig. 14, LCFR1, LCFR2, LCFR3, LCFR4
and LCFR5 are LCFR curves that lead to different failure
rate. We select five sets of WS to compose TRP. Only a
set of WS is successfully executed and the other four
groups failed in the 3rd, 4th, 7th and 8th task respectively.
Observe that the inflection point of failure rate is in
accordant with that of response time in the 7th and 8th task
and the execution time and cost almost unchanged
compared with that before starting recovery strategies.
However, for composition process which requires high

real-time performance, response time and execution time
are prior to the other metrics.

The LCFR1, LCFR2, LCFR3, LCFR4 and LCFR5 in
Fig. 15 are curves after recovery respectively. Forward
recovery is executed respectively at the 3rd, 4th, 7th, 8th and
9th task and number of corresponding compensated tasks
is 7, 11, 15, 21 and 28 respectively. Observe that when
failure occurs, the RH will be triggered and compensation
context be constructed so that the response time will
increase, but it has little effect to execution time and cost.

Figure 14. Comparison of LCFR with different failure rate

Figure 15. Comparison of response time, execution time and cost with LCFR

Ⅶ. RELATED WORK

When using LRTs to composite WS, it is necessary to
make sure the atomicity of a set of interactive WS, LRTs
undo the effects of failed transactions by executing
compensation tasks. N. B. Lakhal and T. Kobayashi et al.
put forward a failure endurable execution framework of
nested-composition transaction and composition
transaction architecture, which discuss the effects to the
current layer that brought by failed tasks, support a on-off
failure dependency that orients the whole composition
transaction, define arbitrary nesting, state, vitality degree
and compensation, and analyze the execution semantics
of recursive nested transactions [1, 2, 3]. R. Yi and Q.Y.
Wu et al. put forward the failure recovery algorithm
ensuring LRTs which avoid unnecessary compensation
and enhance the efficiency of failure recovery, they focus
on handling the complexity and long-running and
reducing the failure rate of transaction execution[4]. K.
Wiesner and R. Vacul et al. present a new dynamic

recovery mechanism based on semantics, which
dynamically discover failure and execute recovery with
equivalent alternative service, in the context of recovery
and process adaptation [5]. It is hard for LRTs to select
partner and predict execution time, thus it is forbidden to
suspend LRTs, T. Minh et al. proposed a web transaction
protocol based on semantics [6]. S. Bhiri and O. Perrin et
al. put forward a reliable and flexible Web composition
transaction method, which according to control flow and
data flow dependency of aggregation patterns, ensure the
highly cohesive of control flow and transaction patterns
and the relaxed atomicity of composition transactions
using the properties of Acceptable Termination
State(ATS) [7, 8].

Compensation transaction is a new transaction which
includes two flow types: normal flow and compensation
flow, where the first describes normal business logic and
later semantically undo the effects of normal flow. S.
Rinderle and M. Reichert et al. present a method to
realize forward recovery according to dynamic workflow
changes. It allows semi-adaptive workflow in case of

428 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

failure, which introduces operations such as deleteAct,
jumpTo and insertAct to implement transaction recovery
[9, 10]. However, there are two main disadvantages:
firstly, it can only realize semi-automatic adaptation.
Secondly, this kind of workflow change needs rigid
definition. Z. Yang and L. Lin et al. put forward a
backward recovery compensation method that supports
business process, which mentions forward recovery but
doesn’t focus on it. This method considers compensation
logic as part of coordination logic, which leads poor
flexibility of compensation [11, 12].

Existing transaction mechanism only provides limited
compensation ability. In most cases, backward recovery
is used to maintain consistency after aborting the
executing tasks. M. Schafer and P. Dolog et al. extend the
current WS coordination architecture and infrastructure,
propose an advanced compensation environment based
on forward recovery strategy. This method separates
compensation logic from coordination logic and realizes
the dynamic plug in and plug out of compensation
strategies [13]. M. Schafer and P. Dolog et al. put
forward an engineering compensation method based on
WS environment that discuses engine dependency rules
and constructs compensation method based on rules [14].
Y. Kim and J. Kim propose a WS composition
framework allowing user-specified failure handling,
which defines user requirement based on general business
logic and failure acceptable specification [15]. R. Bruni
and G. Ferrari et al. put forward an framework called
Java Transactional WS (JTWS), which is a Java API
providing suitable primitives for wrapping and invoking
WS as activities in LRTs [16]. Therefore, with the
backward recovery approach, the failure of any single
participating WS can trigger the abort of many
transactions and thus lead to cascading compensations
(called the domino effect), which can result in a huge loss
of time and cost. To sum up, it is necessary to further
research flexible recovery strategy based on LRTs.

Most of the existing formal composition business-
process-modeling methods based on Petri nets do not
support transaction mechanism, and exception behavior is
beyond normal behavior logic, we need to extend Petri
net. G. Dobson and M. Kovacs et al. propose a formal
modeling technique for BPEL business process including
fault and compensation handling based on Petri net,
which give the mapping of various fault patterns to WS-
BPEL [17, 18, 19]. W.L. Dong and X.G. Deng et al. use
Colored Petri Nnets(CPNs) to model WS choreography
and orchestration, and they analyzes and tests BPEL
composition business process using HPNs [20, 21, 22,
23]. L. Garcıa-Banuelos proposes an executable
transaction model based on ASML that allows seamless
add/modify behavior, and extends failure handler in WS-
BPEL [24]. R. Hamadi and B. Benatallan propose a Self-
Adaptation Recovery Net (SARN) based on Petri net,
which extends Petri net model to specify fault or
exceptional behavior in business process. SARN
incorporates with recovery region [25, 26, 27, 28], but it

is not suitable for handling business transaction in P2P
environment.

Ⅷ. CONCLUSION AND FUTURE WORK

Composition transactions incorporate different
transactional semantics and behavioral patterns,
composed tasks usually have following properties: (i)
different tasks may have different execution behaviors or
transactional properties; (ii) service provider can define
different transaction coordination mechanism; (iii)
different failure handling and recovery strategies should
be defined. Therefore, ATS is introduced in this paper to
implement relaxed atomicity, and recovery strategies
ensure consistency. To ensure reliable LRTs execution,
state token, functional token and nonfunctional token are
introduced, transaction isolation and atomicity are relaxed.
Failure recovery starts from log analysis, which uses a set
of dependency rules to construct the recovery flow of
transaction. Our future work includes several issues such
as global transaction structure, subtransaction properties,
inter-subtransaction dependencies, mechanisms of
handing-over, success and failure criteria should be
considered.

ACKNOWLEDGMENT

This work is one of the projects supported by the
National Key Technologies R&D Program of China
(2008BAH24B03), the National Natural Science
Foundation of China (60673122, 60940033), the
Postdoctoral Science Foundation of China (200804401
21), the Natural Science Foundation of Province
(06017089, 60940033), the Science and Technology
Planning Project of Hunan Province (2010GK3020).

REFERENCES

[1] N.B. Lakhal, T. Kobayashi, and H. Yokota, “FENECIA:
failure endurable nested-transaction based execution of
composite Web services with incorporated state analysis,”
International Journal on Very Large Data Bases, Vol.18,
No.1, pp.1-56, 2009.

[2] N.B. Lakhal, T. Kobayashi, and H. Yokota, “THROWS:
An architecture for highly available distributed execution
of web services compositions,” In proceding of
International Workshop on Research Issues on Data
Engineering, pp.103-110, 2004.

[3] N.B. Lakhal, T. Kobayashi, and H. Yokota, “WS-SAGAS:
Transaction model for reliable web services composition
specification and execution,” DBSJ Letters. Vol.12, pp.17-
20, 2001.

[4] Y. Ren, Q.Y. Wu, Y. Jia, J.B. Guan, “An efficient
hierarchical failure recovery algorithm ensuring semantic
atomicity for workflow applications,” Advances in Web-
Age Information Management, LNCS 3129, pp.664-671,
2004.

[5] K. Wiesner, R. Vacul, M. Kollingbaum, and Katia Sycara,
“Recovery mechanisms for semantic Web services,”
Distributed Applications and Interoperable Systems, LNCS
5053, pp.100-105, 2008.

[6] N.L. Minh, and J.L. Cao, “Flexible and semantics-based
support for Web services transaction protocols,” Advances

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 429

© 2012 ACADEMY PUBLISHER

in grid and pervasive computing, LNCS 5036, pp.492-503,
2008.

[7] S. Bhiri, K. Gaaloul, O. Perrin, and Claude Godart,
“Overview of transactional patterns: combining workflow
flexibility and transactional reliability for composite Web
services,” Business process management, LNCS 3649,
pp.440-445, 2005.

[8] S. Bhiri, O. Perrin, and C. Godart, “Ensuring required
failure atomicity of composite Web services,” In proceding
of International world wide Web conference committee,
Japan, pp.138-147, 2005.

[9] S. Rinderle, S. Bassil, and M. Reichert, “A framework for
semantic recovery strategies in case of process activity
failures,” In proceding of International conference on
enterprise information systems, pp.136-143, 2006.

[10] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam,
“Adaptive process management with ADEPT2,” In
proceding of International conference on data engineering,
pp.1113-1114, 2005.

[11] Z.H. Yang, and C.F. Liu, “Implementing a flexible
compensation mechanism for business processes in Web
service environment,” In proceding of International
Conference on Web Services, Salt Lake City, pp.753-760,
2006.

[12] L. Lin, and F. Liu, “Compensation with dependency in
Web services composition,” In proceding of International
conference on next generation Web services practices,
Seoul, Korea, pp.183-188, 2005.

[13] M. Schafer, P. Dolog, and W. Nejdl, “An environment for
flexible advanced compensations of Web service
transactions,” ACM transactions on the Web, Vol.2, pp.1-
36, 2008.

[14] M. Schafer, P. Dolog, and W. Nejdl, “Engineering
compensations in Web service environment,” In proceding
of the International conference on Web Engineering,
LNCS4607, pp.32-46, 2008.

[15] Y. Kim, and J. Kim, “Allowing user-specified failure
handling in Web services composition,” In proceding of
the 2nd internationl conference on ubiquitous information
management and communication, pp.452-458, 2008.

[16] R. Bruni, G. Ferrari, H. Melgratti, and U. Montanari,
“From theory to practice in transactional composition of
Web services,” EPEW 2005 and WS-FM 2005, LNCS
3670, pp.272-286, 2005.

[17] G. Dobson, “Using WS-BPEL to implement software fault
tolerance for Web services,” In Proceedings of the

EUROMICRO Conference on Software Engineering and
Advanced Applications, Dresden, Germany, pp.126-133,
2006.

[18] S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to
Petri Nets,” Business process mnagement, LNCS 3649,
pp.220-235, 2005.

[19] M. Kovacs, D. Varro, and L. Gonczy, “Formal modeling of
BPEL workflows including fault and compensation
handling,” In Proceedings of the 2007 workshop on
engineering fault tolerant systems, 2007.

[20] W.L. Dong, H. Yu, and Y.B. Zhang, “Testing BPEL-based
Web service composition using high-level Petri Nets,” In
Proceedings of the Enterprise distributed object computing
conference, 2006.

[21] X.G. Deng, Z.Y. Lin, W.Q. Cheng, R.L. Xiao, L.N. Fang,
and L. Li, “Modeling Web Service Choreography and
Orchestration with Colored Petri Nets,” In Proceedings of
International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/
Distributed Computing, pp.838-843, 2007.

[22] H.Y. Sun, and J. Yang, “Exploiting CoBTx-Net to verify
the reliability of collaborative business transactions,” In
Proceedings of IEEE asia-pacific services computing
conference, pp.415-422, 2007.

[23] 23. H.Y. Sun, and J. Yang, “BTx-Net: a token based
dynamic model for supporting consistent collaborative
business transactions,” In Proceedings of IEEE
International Conference on Services Computing, 2007.

[24] L. Garcıa-Banuelos. “An asmL executable model for WS-
BPEL with orthogonal transactional behavior,” Business
process management, LNCS 4102, pp.401-406, 2006.

[25] R. Hamadi, Formal composition and recovery policies in
service-based business processes. PhD thesis, The
University of New South Wales, Sydney, Australia, 2005.

[26] R. Hamadi, and B. Benatallah, “Recovery nets: towards
self-adaptive workfow systems,” In Proceedings of
International Conference on Web Information Systems
Engineering, LNCS 3306, pp.439-453, 2004.

[27] R. Hamadi, B. Benatallah, and B. Medjahed, “Self-
adapting recovery nets for policy- driven exception
handling in business processes,” Distribute parallel
databases, Vol.23, pp.1-44, 2008.

[28] R. Hamadi, and B. Benatallah, “Dynamic restructuring of
recovery nets,” 16th Australasian Database Conference,
pp.37-46, 2005,.

430 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

