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Abstract—Failure recovery optimization is an important 
way for enhancing efficiency of Long Running Transaction 
(LRT) processing. In this paper, to solve the efficiency 
problem of LRT failure recovery, a Comprehensive 
Recovery Model for LRTs (LCRM) is constructed, which 
divides LRTs into a series of sub-transactions in different 
levels,  and supports versatile transaction properties of LRT. 
Based on LCRM, a Comprehensive Failure Recovery 
algorithm for LRTs (LCFR) is proposed. This algorithm 
uses methods of forward recovery, backward recovery and 
alternative recovery. It supports auto-recovery of failures 
during the execution of LRTs. LCFR guarantees LRT’s 
semantic atomicity property and durability property. By 
restricting the recovery scope in lower level of complex 
LRTs, LCFR limits the quantity of sub-transactions to be 
recovered. Thus, it reduces unnecessary loss of time and 
enhances the efficiency of failure recovery. Experiment 
results show that LCFR can reduce the time required for 
failure recovery and decrease the failure rate of LRT 
processing. 
 
Index Terms—long running transaction modeling, scope-
based recovery, hierarchical recovery strategy, failure 
recovery algorithm 

I.  INTRODUCTION 

Since the long-lived nature of composition Web 
transaction (it may last for several hours, several months 
or longer), it brings difficulty to transaction handling. 
Traditional transaction mechanism is no longer suitable 
for LRTs to deal with the coordination between several 
loose coupled Web services and long holding of 
resources, pure roll back mechanism is not suitable to all 
situations to ensure atomic semantics of LRTs, it is 
difficult or even impossible to eliminate the result of 
execution. Therefore, in a loosely coupled LRTs 
environment, it is inevitable to take more relax 
transaction mechanism, which is called relaxed-ACID. 

Nowadays the transaction handling strategy of LRTs 
usually uses simple compensation mechanism, which has 
the following shortages: (i) the transaction handling 
strategies are provided by most protocols or 

specifications (WS4BPEL, WSCI, WS-CDL etc.) which 
execute compensation tasks to eliminate the effect of 
failure while ignore transactional properties of 
composited tasks. However, for uncompensable and 
nonretriable tasks, this method is infeasible. (ii) 
compensation operations are usually defined at the level 
of scope (WS4BPEL), context (WSCI) or choreography 
(WS-CDL) which may lead to duplicated definition and 
extra work when scopes or contexts change. (iii) for each 
scope, there exists only one corresponding compensation 
transaction, which is too fixed and not flexible enough to 
adjust for different application requirements. Actually, 
users want to select appropriate recovery strategies 
according to different requirements of certain failed task. 
Our research focuses on the dynamic construction of 
several kinds of failure recovery strategies, in order to 
specify failure constraint rules in recovery handler and 
calculate recovery scope according to Terminate 
Dependency Point (TDP) to reduce unnecessary failure 
handling. Therefore, we separate failure recovery strategy 
from business process to implement modeling and 
dynamically choreograph failure recovery process. 

In this paper, we introduce Paired Net to formally 
describe the failure recovery mechanism of LRTs, and 
discuss the execution semantics of aggregation control 
structure. Paired Net is chosen  to model failure recovery 
for following reasons: (i) it has a formal semantics 
representation,  analyzing techniques and verifying tools; 
(ii) it has well graphical representation and supports 
modeling and analyzing in the way of graph; (iii) it is 
suitable to represent typical control flow construction and 
support prototype design and simulation; (iv) it provides 
a much broader foundation for computer aided 
verification than abstract state machines and process 
algebras, which lacks in exception handing, 
compensation and recovery strategy. 

To implement relaxed-ACID transaction, we propose 
a comprehensive failure recovery algorithm based on 
extended Paired Net, which introduces state token, 
input/output data token, QoS token and control token 
respectively, and constructs failure transition and 
recovery transition. The failure type of each task has a 
corresponding recovery transition, that is, recovery token 
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fires recovery transition to start corresponding recovery 
strategies. 

II. FORMAL DESCRIPTION OF WEB SERVICES BASED ON 
PAIRED-NET 

Firstly, we propose the formal definition of Web 
services based on Petri-Net. 

Definition 1 Web Service (WS) is a tuple ( ), ,I P T F=  
where: 

(i) s io qos cP P P P P= ∪ ∪ ∪ , sP  denotes the finite set of 
state places of task ,  

.  denotes the input or output 
parameters of , it usually refers to functional parameters 
of WS.  denotes the QoS parameters of I , it usually 
refers to non-functional metrics of WS.  denotes finite 
set of place of control token. To simplify the formal 
description, we use 

I { , ,sP Ready Activated Running∈ ,
_, , , , ,Failed Aborted Cancelled Committed Compensated Half

}Compensated ioP
I

qosP
cP

. , .s ioI p I p  and  to describe the 
states, functional metrics and non-functional metrics of  
respectively. 

. qosI p
I

(ii) n bT T T τ= ∪ ∪ , where  denotes a set of normal 
actions   

 of , denotes a set of reverse actions 
 of , 

nT
{ (), (), (), (), (),Activate Run Fail Abort Cancel

()}Commit I bT
{ (), (), ()}Compensate Hcompensate Retry I

Tτ ∈ denotes a silent transition which executes no 
operation and takes no time, so it does not change the 
execution semantics. To simplify notation,  denotes 
that task will be executed when  is activated; 

 denotes that task will be handled when 

actt
()Activate

runt ()Run  is 
executed.  will be triggered if failure occurs during 
task execution, or 

()Fail
()Retry  will be executed several times 

until task is successfully finished, denoted as  and  
respectively. Sending  to task in Ac  can 
abort it, denoted as . When finished, task will reach 

 after is executed, denoted as . 
 can cancel task and  can 

eliminate the effects of the committed task, denoted as 
and  respectively. For convenience,  is used to 

acquire actions of . 

falt rtyt
()Abort tivated

abtt
Committed ()Commit cmtt

()Cancel ()Compensate

cnlt cmpt .I t
I

(iii)  denotes a set of ( ) (F P T T P= × ×∪ )

, )t p p

directed arcs 
from  to or from T  to , which is called control 
flow. The constraint relations on  and  from 
different actions and states are: ,  

 and . 

P T P
1 1( , )t p 2 2( , )t p
1 1 2 2( , ) ( , )t p t p≺ 1 1( , )t p

2 2( , )t p�� 1 1 2 2( , ) (t≈
The Web tasks can transfer among different states by 

executing different action transitions. WS transaction 
behavior can happen if both preconditions and constraints 
are satisfied, the postposition of the behavior shows the 
result of action executing. To other tasks, a Web task can 
be considered as a black box, denoted as I . Only the 
interactive interfaces and external actions through which 

 interact with the environment are visible. I

Ⅲ. COMPOSITION TRANSACTION MODEL 

A. Transaction Type of Atomic WS 
Each atomic WS has its own transaction behaviors. 

According to different functional semantics and 
behaviors of Web transaction, WS can be classified into 
four types: Pivot WS ( pWS ), Compensable WS ( ), 
Retriable WS ( ) and Vital WS ( ), which is 
denoted as ,  

cWS
rWS vWS

( )TBP WS ( ) { , ,TBP WS Pivot Compensable Vital∈
, }Retriable . 

To analyze compensation transaction and how specific 
compensable transaction can affect its behavior exactly, it 
is necessary to discuss the behavior dependency between 
each atomic WS and the environment. The behavior of 
atomic transaction is formally described as follows.    

pWS  can neither be retried nor be compensated. Once 
successfully executed, the effects of task in WS can not 
be eliminated. The Petri Net of pI ( which  in pWS )  is 
shown in Fig. 1(a), there exist following transaction 
behaviors: 

(i) If pI  is executed along path , then 1 2t t pI  is 
successfully committed and task reach Com , thus mitted
( (), ) ( (),Run Running Commit≺   is satisfied. )Committed

(ii) If pI  is executed along path , then 1 6t t pI  failed 
and transfers to F ; thus (ailed (), ) ( (),Run Running Fail≺  

 is satisfied. Because )Failed pI  is not committed and no 
compensation needed, there exist no constraint (  

. 
(),Fail

) ( (), _ )Failed Hcompensate Half Compensated/≺
(iii) If pI  is executed along path , then the 

executing of 
1 3t t

pI  is aborted and transfers to Aborted , thus  
( (), ) ( (), )Run Running Abort Aborted≺   is satisfied. 

(iv) If pI  is executed along path , then the commit 
of 

1 5t t
pI  is cancelled and transfers to Cance , thus 

 is satisfied. 
lled

( (), ) ( (), )Commit Committed Cancel Cancelled≺
For pI  in pWS , if its effects can not be eliminated 

after pI  committed, it is considered to be unrecoverable. 
cWS  are the successfully committed tasks whose 

effect can be semantically eliminated by invoking their 
corresponding compensation tasks. The difference 
between transaction behaviors of  and those of cWS pWS  
is that the former is  compensable. As shown in Fig. 1(b), 
there exist following transaction behaviors: 

(i) If  is executed along path ,  is executed 
after  is committed successfully to eliminate its effects. 
Then  transfers to . Thus (   

 is satisfied. 

cI 1 2 8t t t cI ′
cI

cI Compensated (),Commit
) (( (), )Committed Compensate Compensated≺

(ii) If  is executed along path ,  is cancelled 
and may has partial effects on business transaction. 
Therefore, the task transfer to Hcompensated . Thus 

cI 1 3 9t t t cI

( (), ) ( (), ) ( (), _Run Running Abort Aborted HalfHcompensate≺ ≺
  is satisfied. )Compensated

For , there are I  and , where I  can eliminate 
the effects of . 

cWS I ′ ′
I
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rWS  can be executed for several times to ensure that 
they will be committed successfully. The difference 
between the transaction behaviors of  and those of rWS

pWS  is that the former is retriable. As Fig. 1(c) shows, 
there exist  following transaction behavior: 

If  is executed along path  (where ,  
is the times of retry), the failed task is executed 
repeatedly, finally it is committed successfully and 
reaches . Thus (

rI 1 6 7 2( )nt t t t 1n ≥ n

Committed (), ) ( (), )Run Running Fail Failed≺   

 is satisfied. ( (), ) ( (),Run Running Commit≺ ≺ )Committed
For  in , if I  has failed  times,  is 

the maximum times of retry times, then I  is sure to be 
committed successfully within  times ( ). 

I rWS  (k k n≤ )

n

n

m ( 1)k m+ ≤ ≤
The above-mentioned compensability and retriablility 

of WS are orthogonal transactional properties. That is, 
compensable WS are not retriable while retriable WS are 
not compensable.  

vWS  are both retriable and compensable. The Petri 
Net description of  (which in ) is shown in Fig. 
1(d). Obviously, it has the transaction behaviors of both 

 and . 

vI vWS

cWS rWS
Fig. 1 shows the execution states and transition of the 

tasks. During the execution, tasks can be in one of the 
following states: 0 1, ,Ready p   Running p  Committed↔ ↔  

, and may trigger internal or external 
transitions:

2 4 6,   ,   ,   ,p  Aborted p  Cancelled p  Failed p  ↔ ↔ ↔

9Compensated p↔
7↔

31 2() ,   () ,   () ,Activate t Run t Abort t↔ ↔ ↔

8

 

. 
5 6 7() , () , () , () ,Cancel t Fail t Retry t Compensate t↔ ↔ ↔ ↔

9()Hcompensate t↔

 
(a)  Pivot Web services                     (b) Compensable Web services 

 
(c)  Retriable Web services                     (d) Vital Web services 

Figure 1.  State/transition diagram of atomic Web services. 

B. Composition Transaction Model 
Each WS has its own transaction properties, therefore, 

when a certain service fails, how to coordinate other WS 
to ensure the reliability of the whole system is a critical 
problem to be solved. Composition services can be 
considered as a business process where each task is 
related to a certain kind of WS in service layer and is 
implemented through the execution of a specific WS. 

Definition 2 Transactional Composition Services (TCS) 
is defined as a tuple ( , , , , )TCS I O α β γ= , where: 

(i) , where 1 2{ , ,..., }mI I I I= { , , , }p c r v
iI I I I I∈ (1 )i m≤ ≤  

denotes task in the business process. 
(ii)  is a O binary order iI ID j  on LRTS, where 
{ , }∈D ≺ ) .  denotes that  is executed beforei jI I≺ iI  jI  

where  is call ≺ strong
I I≺

 .  means neither 
 nor 

order i jI I)

i j j iI I≺  and we call is . )  weak order
(iii) : I AggregationTypeα →  is a function, where 

{ , , - , - , -AggregationType null sequence And join Or join And∈  
, - , }split Or split loop . Atomic tasks can be constructed to 

complex composition through aggregation operators such 
as , , ,⊕ ⊗ Θ&  and . The usual aggregation pattern is 
CS =  1 1 1 1( ) | ( ) | ( ) | ( ) |

ii i i i i i i i II I I I I I I I+ + + +⊗ Θ⊕ &  where: 
Sequence aggregation pattern , 

where 
1 2 nCS I I I= ⊕ ⊕ ⋅ ⋅ ⋅⊕

(1 , )i jI I i j n⊕ ≤ ≤  satisfies the temporal constraint 
, where i( , )i jbefore t t j< . Only if jI  is activated after iI  

is successfully committed, the failure of  may jI depend 
on i

Parallel aggregation pattern , where 
I , as shown in Fig. 2(a); 

1 2|| || || nCS I I I= ⋅ ⋅ ⋅
(1 , )i jI I i j n≤ ≤& meets the temporal constraint 

or( , )i jequals I I ( , )i jfinishes I I , only if concurrent 
execution of iI  and jI  are both successfully committed, 

 is successfully committed. If i  or  failed,  
will be aborted, as shown in Fig. 2(b); 

iI I& j I jI i jI I&

Selection aggregation pattern , 
where 

1 2 nCS I I I= ⊗ ⊗⋅ ⋅ ⋅⊗
(1 , )i jI I i j n⊗ ≤ ≤  denotes  or  is executed 

according to 
iI jI

selection condition ( )case cond .  is 
successfully committed if and only if one of the branches 
is successfully committed, as shown in Fig. 2(c); 

iI I⊗ j

Discriminator aggregation pattern , 
where 

1 2 nCS I I I= Θ Θ ⋅ ⋅ ⋅Θ
(1 , )i jI I i j nΘ ≤ ≤  is similar to operator & . A guard 

function ( )guard status  is added to operator Θ  to capture 
the first committed branch, as shown in Fig. 2(d); 

Iteration aggregation pattern 1CS I= , where 1I  is 
executed repeatedly according to the times of iteration 

1| I |λ = , as shown in Fig. 2(e). 

 
Figure 2.  Aggregation patterns. 

(iv) : I Stateβ →  is a function, where  
. The state of 

LRTs can be determined by the execution progress of the 
composition task, denoted as . 

{ ,State initial∈
, , , ,active failed completed aborted cancelled}

)
1

. ( .n
ii

CS state I state
=

=∪
(v) : I TransactionTypeγ →  is a function, where 

{ , , ,TransactionType Vital Retriable Pivot Compen }sable∈ . The 
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transaction behaviors of each atomic task are composed 
as transaction behavior of composition services, denoted 
as . 

1
. ( . )n

ii
CS TransactionProperty I TransactionProperty

=
=∪

Ⅳ. THE WEB SERVICES COMPOSITION BASED ON PAIRED 
NET 

The execution of LRTs can be successfully committed, 
failed or cancelled. The service compensation model is so 
important that it will capture the occurrence of failure as 
well as cancellation, then take measures to activate the 
related compensation service according to the 
compensation strategies. 

Now we construct service compensation model in two 
steps: 

(i) Constructing failure place and compensation 
transition: Consider that the failure of transition 1  occurs, 
compensation transition 1t  is introduced for 1t  , and 1t

t
′ ′  is 

executed when  needs to be compensated. Then two 
failure places 2  and 1  are introduced for 2p  and 1  
to represent prepositive state place and postpositive state 
place of t  respectively, as shown in Fig. 3(a). 

1t
p′ p′ p

1
(ii) Constructing mapping. Adding an activating place 

1  with uncertain state between 1t  and 1 . Adding 
failure transition  and 2  between 1  and 1

′

fp t′
1
ft ft p p′  and 

between 2  and 2  respectively, as shown in Fig. 3(b). 
If 1  fails,  fires and arrives at 1  to forward 
compensate 1  before 1 . If the failure happens after , 

2  fires 2  and arrives at  to compensate 

p p′
t 1p 1

ft p′
t′ t 1t

p ft 2p′ 1t′  before  
(including t ). 

1t
1

Compensation tasks are colored in grey to distinguish 
from the normal tasks. The constructed model is similar 
to the normal task model in term of structure except that 
the flow relation is reversed. This implies that the 
execution of compensation service is always in a reverse 
order of the execution of normal service. According to the 
compensation model above, the formal representation of 
the compensation mechanism of WS process is described 
as follows:  

 
Figure 3. Service compensation modeling. 

Definition 3 Given a transactional composition 
services ( , , , , )TCS I O α β γ= , where , 
suppose that  and  are the sets of failed transitions 
and uncertain state activating places respectively such 
that for each i  there is a unique  and for each 

 there is a unique , then the Service 
Composition Paired Net of  is described as 

( , , , )I P T F= A
fT fP

p P∈ f
it T∈ f

f.jI t T∈ f
jp P∈
I ( ,SCPN P=  

, , )T F A , as shown in Fig. 4, where: (i) { |P P P p P′ ′ ′= ∈∪  
; (ii) }p P∧ ∈ { | . } fT T T t T I t T T′ ′ ′= ∈ ∧ ∈∪ ∪ ; (iii) F =  

fF F F′∪ ∪ , where  

 

{( | ( ) } {( ) |F P T T P F T P′ ′ ′ ′ ′= × × ⊂ ×∪
( ) }, {( ) } {( , ) |, |f f f f f

i i i i i
f

i iF p P t T t pp t ′= ∈ ∧ ∈P T F× ⊂ t∪

} {( , ) | } {( , ) |f f f f f f f
j j jT p P t p t T p P p t p P′ ′ ′∧ ∈ ∈ ∧ ∈ ∈∪ ∪

}jt T

∈

i j j j j

; (iv) { |f
jt′=A A ∪ A ∪ }f f

jt T∈ . ′ ′∧ ∈

 
Figure 4. composition compensation paired net 

According to the structure of SC ,  and PN P P′ ,  
and  are respectively matched so that it is easy to 
construct the mapping from the normal service process to 
the compensation process, which implies to extend the 
service behavior 

T
T

( , , , )I P T F= A  in LRTs to ( , , , )I P T F= A . 

Ⅴ. FAILURE RECOVERY STRATEGIES OF COMPOSITION 
TRANSACTIONS 

To meet the requirements of composition transaction 
recovery, we propose a flexible method to dynamically 
calculate recovery scope according to the dependency 
between task and execution environment in LRTs. 

A. Recovery Scope 
For given execution trace σ  in LRTs, if ,i jI Iσ σ∃ ∀ ∈ ∧  
. , . { ,i jI TBP I TBP Vital Compensable}∈ , one of the transaction 

dependency exd
j iI I〉〉 , 

k

inexd
j I iI I〉〉 , inexd

j iI Iσ ′〉〉 , imd
j iI 〉〉 I  and 

inimd
j iI 〉〉 I  exists between  and iI jI , and I .i Compensated ∧  

, then .jI Compensated σ  is called a compensation 
sequence, denoted as .Compensatedσ .  

It is critical to determine TDP when a task in the 
process fails. Recovery Handler (RH) takes charge of 
backward executing of all the tasks in recovery scope 
until it reaches TDP. When failure occurs, RH executes 
compensation tasks or fixes the failure or chooses an 
alternative execution path to avoid it. For a given LRTs, 
if ,i jI Iσ σ∃ ∀ ∈ ∧ } , 
and one of the data flow dependency 

. ,iI TBP . { ,jI TBP Vital Compensable∈
exd

j iI I , 〉〉
k

inexd
j I iI I〉〉 , 

inexd
j iI Iσ ′〉〉 , imd

j iI 〉〉 I  and inimd
j iI 〉〉 I  exists between  and iI

jI , then  is called the TDP of iI jI , as shown in Fig. 5. If 
jI  fails, (m m )σ σ σ⊆  will be executed from I . i mσ  is 

called the dependency path of jI . Each task in LRTs has 
a specification of TDP. 

After TDP is determined, RH executes mσ  in reverse 
from failed task to try to eliminate the effects brought by 
committed tasks in recovery scope. For a given LRTs, if 

jI ( jI σ∈ ) fails (the set of dependency path of jI  is 

1 2 k
{ , ,..., }m m mσ σ σ ), RH rolls back to I  and injects 
corrected parameters, executes the compensation tasks of 

i

i

mσ ( 1 i k≤ ≤ ), after that, jI  is committed successfully. 
The set of recovery scopes of { ,

1 2
,..., }

km m mσ σ σ , is { ,1 2Ξ Ξ  

 

2I
  

 
1'I

2'I

1st

1'st

1jt

1'jt

3p′ 4p′

0p′ 1p′
0
ft 1

f

4
f

3
ft

f

t

t

1I0p 1p

s1p

f
1p

f
2p

f
j1p

3p 4p

ι
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f
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, }k⋅ ⋅ ⋅ Ξ . The cost of reverse compensation is so high that 
it is necessary to minimize the compensation tasks in 
recovery scope, which is called minimal recovery scope, 
denoted as . minΞ

 
Figure 5.  Recovery scope of the failed business process. 

B. Nesting of Scope 
The nesting description of Ξ  is similar to that of 

control flow structure. As shown in Fig. 6, 1n nS S −a  
denotes 1n  is the sub scope of nS . The number in S −

subscript indicates the nesting level. In general, 
2 1nS S⋅ ⋅ ⋅a a aS  represents that scope Ξ  has  nesting levels 

which includes zero or more tasks.  
n

 
Figure 6.  Nesting of scope based on Petri nets. 

Ⅴ. RECOVERY STRATEGIES OF LRTS 

Most existing specifications consider about backward 
recovery, which didn’t support forward recovery. The 
recovery strategies for LRTs proposed in this paper 
includes backward recovery, forward recovery and 
alternative recovery. 

These three recovery strategies are always associated 
with Ξ , fig. 7 depicts the mapping from LRTs to Ξ . The 
recovery strategy is enclosed in dashed lines. In this 
strategy, Compensation Handler (CH), RH and Abortion 
Handler (AH) will be activated by  

and 
( ),Compensate Cp

( )Recovery Rv ( )Abort A  respectively to execute the 
compensation tasks in Ξ . If the handlers executed 
successfully, then failure transition is transferred to 

 and  respectively, 
which means they have finished the compensation or 
recovery of failed process successfully. 

(Compensated Cpd ) Recoveried(Rvd)

A. Backward Recovery Strategy 
When the engine failed in the executing process, the 

failed task jI  throw ()fail  to terminate execution of 
forward flow. RH is triggered to calculate Ξ  and to get 
the log ( , , , , , , , , )ActID Desc QoS TBP State Behavior In OutΓ  of 
the successfully executed tasks. It constructs input 

interface .iI in′  of compensation task according to the 
input/output interface  of the committed tasks, 
sets the external state place Cp  of  and fires 

, activates and executes . For convenience, 
we assume that LRTs consists of forward execution flow 
and backward compensation flow when failure occurs, 
which are associated with normal transaction behavior 
and compensation behavior of a task, as shown in Fig. 7. 
Since tasks in 

i i(I .in,I .out)

iI
()Compensate iI ′

Ξ  hold  , RH 
gets the corresponding I

. { ,iI TBP Vital∈ }Compensable

i′  and constructs the mapping 
between iI ′  and , which is called compensation pair iI

i iI I ′÷ . 

 
Fig. 1 The recovery model of composition Web transaction. 

Figure 7. Recovery model of LRTs. 
As Fig. 8 shows,  and  both represent atomic 

transactions with states. Business process and its 
compensation process are enclosed by dashdotted lines. 
Transition models the internal behaviors of tasks while 
place carries out the internal and external interaction 
between sub transactions. If state place failed, it triggers 
RH to make control flow turn to compensation flow. 
Backward Compensation Paired Strategy (BCPS) is 
introduced to formally describe it: 

iI iI ′

The Petri Net of I  and their compensation tasks I ′  in 
LRTs are denoted as ( ), ,I P T F=  and ( ), ,I P T F′ ′ ′= ′

)′
 

respectively. | ( , ) ( ,I cpair I I T T′∃Ξ∀ ∈Ξ ∈ , where t  is 
the transition from I  to 

n
i

i 1iI + ,  is the failure transition 
from  to 

f
it

iI iI ′ , and t c
i′  is the compensation transition from 

iI ′  to 1iI +′ . The triple of BCPS is denoted as ( , , 
where: (i) 

, )P T F
fP P ;  (ii) P P′= ∪ ∪ f n cT T  

r a ; (iii) 
T T T T′ ′= ∪ ∪ ∪ ∪

t tτ∪{ , , } 1{( , . ), ,n f c aF F F F F F t I p′ ′ ′= ⋅ ⋅ ⋅∪ ∪ ∪ ∪ ∪
I= 1) ( , . )n n

i i it t I p+∪
 

,  where F  ,  ( , . )}a
nt I p′ ( . ,n

i p ( . ,f
iF I p=

R
 

A
 

Cm
 

F
 

Ad
 

R
 

A
 

Cm
 

F
 

Ad
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A

Cm
 

F
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) ( , . )f f
i i it t I ′∪ p p, , as shown in 

Fig. 8. 
1{( . , ) ( , . )c c c

i i i iF I p t t I+′ ′ ′ ′ ′= ∪

BCPS is constructed by RH in two steps. Firstly, it 
captures the failure of I , analyzes failure type of 

, calculates Ξ  of , sends execution request to 
, get  according to  and , and constructs 

recovery flow. Secondly, it starts up the compensation 
flow to execute backward recovery. Fig. 8 illustrates that 
the failed I  aborts the forward control flow and turns to 
recovery flow with the help of  or . 

i

.nI Failed iI

iI ′ .iI In′ .iI In .iI Out

i
f

ip f
it

 
Figure 8. Backward recovery model. 

According to all committed tasks and compensation 
dependency between them, RH calculates Ξ  and I ′  to 
construct compensation business process. The algorithm 
of BCPS is given as follows: 

Algorithm 1 Construct recovery process. 
Input: the set of tasks in business process BP , failed 

task IA  and compensation dependency set  CP
Output: Compensation Business Process  CBP

( , );taskstate getTaskState I RecordLog= A  
if  thentaskstate Failed=  

1 ( );icalculateCompensationScope IΞ = /*calculate the failure recovery 
scope  of */ 1Ξ IA
else if  thentaskstate Aborted=  

2 ( ); /*calculate the abortion 
recovery scope  of */ 

icalculateCompensationScope IΞ =

for each  or  or I I I∈Ξ ∈Ξ ∈Ξ
    if  ( , ) and ( , )  thenibinding I ws getTaskState I RecordLog Committed=

2Ξ IA
else if  thentaskstate Cancelled=  

3 ( );icalculateCompensationScope IΞ = /*calculate the cancellation 
recovery scope  of */ 3Ξ IA

1 2 3i i i  
A

for committed task  in iI BP , ,i iI I ′→ ( ) ( ), , , ,P T F P T F′ ′ ′→
3

;  
1 2for each ( , ) and (  or  or )i i i i icpair I I I I I′ ∈Ξ ∈Ξ ∈Ξ   

    if ( , )  theni idep I I true′ =  
Constructing  and the side ,i iI I ′ 1( , ), ( , ), ( , ), ( , ), ( , )c f f c c

i i i i i i i i i ip t p t t p p t t p+′ ′ ′ ′ ′  
between adjacent , construct compensation business process 1,i iI I +′ ′ Rflow ; 
return Rflow  

The complexity of this algorithm depends on the 
number of tasks in LRTs and the number of 
compensation tasks of 1 2 3, ,Ξ Ξ Ξ . If max(| |,| |)BP nΞ = , 
then the time complexity of this algorithm is . ( )O n

RH monitors the execution of business process, once 
failure occurs during execution, RH is triggered to deal 
with failure recovery. After commit of each task in LRTs, 
the initial execution condition of its compensation task 
will be created. If ()fail  is sent by executing , which 
then transited to Fai , RH is triggered to execute 
compensation. If I

iI
led

i′  has corresponding compensation 
service, then Compensation Business Process (CBP) is 
invoked and executed. Meanwhile, abortion or 
cancellation is executed according to the compensation 
dependency of iI ′ . The compensation handling algorithm 
is described as follows: 
Algorithm 2 The execution of RH. 
Input: the set of tasks in BP , Rflow  
Output: the information of compensation service that is 
executed successfully or not 
for  ( , )       each LogItem seek RecordLog I of task I in the committed process=
if .  theniI state Completed=  
 for each ( , )ibinding I ws  
  , , , , , , , ,   iI ActID Desc QoS TBP Behavior State In Out log informatin of ws′ ← Γ

if . theniI Failed true=
;

 
 trigger   ;Compensating Handler CH  

if   . { , }   .       theni i iI TBP Compensable Vital and I state Completed and I is atomic task∈ =
 for   ieach compensation task I ′  

    CH excute  and record excution information ofi iI I′ ′  
else  if   is composition task theniI  

1 2   {      , , ,  i i i ikdivide task I into subtask I I I′ ′ ′ ′⋅⋅ ; 
1 for each subtask (     )kI from i to i′A A  

 excute( );}I ′A  
else  if ( )  and  is atomic task theni icompensate I false I=  
   Forward ,compensation continue;iI ′  

if ( ) thennotExit CBP  
         ;Compensation flow CBP is not exist  

for each task iI  
if  and .  thenAbt

j i iI I I state running〉〉 =  
        {   ()    ;iCH send abort to ws  
           set task  state as " ";}i

 
I s Aborted′  

for each task iI
if   and .  thenCnl

j i iI I I state active〉〉 =  
        {   ()    ;iCH send cancel to ws  
           set task  state as " ";}iI s cancelled′  

for each task iI  
if   thenCpt

j iI I〉〉  
  Compensate task  , set '  state as " ";i iI I s cancelled′ ′  
if allcompensation( )=true thenCBP  

return success  
else  
   return failure;
}  

For | | , ( ) ,Rflow n Edge I m I Rflow= = ∈A A , where | |Rflow  
and is the number of tasks and edges in CBP 
respectively, then the time complexity is . 

( )Edge IA
( )O mn

B. Forward Recovery Strategy 
Forward recovery strategy is similar to BCPS except 

that when rolling back to TDP, which RH injects proper 
input parameters and restart the expected execution of 
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forward flow. The Paired Net of each task in LRTs can be 
denoted as ( ), ,I P T F= . For failed task jI , TDP of  is 
calculated and Ξ  is  determined. Similar to BCPS, a 
triple  is used to represent Forward Compensation 
Paired Strategy (FCPS), where: (i) 

iI

( , , )P T F
I I I

{ }f rP P P P p=
I

∪ ∪ ∪ ; 
(ii) { }rtT T T= ∪ ∪

I
; (iii) 1{( , ),( , ), ,c r c r

n nF F F t p t p−′ ′= ⋅ ⋅ ⋅∪ ∪

2

I
 

1( , )} {( , )}c r rt p p τ′ ∪ , as shown in Fig. 9. 

 
Figure 9. Forward Recovery Model. 

RH constructs FCPS in 3 steps: Firstly, it terminates the 
execution of LRTs and determines the TDP and Ξ  of ; 
secondly, it executes recovery; finally, it injects proper 
parameters at  and restarts the LRTs from . Note that 
if TDP is I , there is no difference between BCPS and 
FCPS during recovery. 

iI

iI iI

1

Algorithm 3 Forward recovery algorithm 
Input: failure task , log, IA BP  
Output: the information of success or failure of the 
recovery 
{ ( ,taskstate getTaskState I RecordLog= );

;

 
, )

A

 
 

if  thentaskstate Failed=
1 ( );icaculateCompensationScope IΞ = /*calculate the failure recovery 

scope  of */ 1Ξ IA
if  thentaskstate Aborted=  
 fo  r    .keach task I state Running=
   1if  and  thenAbt

k kI I I〉〉 ∈ΞA

         kInterrupte each task I in runningflow
1for  each I ∈ΞA  

  {i  f ( , ) thengetTaskState I RecordLog committed=A

{ (LogItem seek RecordLog I= A  
    o        and  ;linput the value f the LogItem to task I compensate Il

Delete record in FailedLog AbortedLog CancelledLog

 
   o         and -   ;lchange the value f the LogItem to task I re excute IA  

}}  
if .  or .  or .  thenI state Failed I state Cancelled I state Aborted= = =A A A   

 log    , , ;  
}  

The time complexity of reverse execution of recovery 
process and restart forward recovery from TDP are both 

, thus the complexity of this algorithm is .  ( )O n ( )O n

C. Alternative Recovery Strategy (ARS) 
When executing I  fails, TDP of I  is calculated and j j

Ξ  is determined. If there exists { } , then 
occurrence of failure is caused by executing task itself 
rather than output of the committed tasks. In this situation, 
it is not necessary to perform backward compensation 
recovery. A simple and direct way to solve the problem is 
to trigger alternative recovery tasks I  of , then the 
execution of the subsequent process proceeds. The formal 
description of  ARS is given as follows. 

{ }j iI I= = Ξ

′′j jI

The Petri Net of each task in LRTs is denoted as 
( ), ,I P T F= . For failed task I , TDP of I  is calculated 

and 
j j

Ξ  is determined. If |j iI I jI∀ ∈Ξ =
T F

∃Ξ , then 
alternative task I P( , , )′′ ′′ ′′ ′′=  and alternative state place 
p′′  is added. ARS can be denoted as a triple ( , , )P T F

K K K
, 

where: (i) P P P′′=
K

∪ ; (ii) f r aT T T  T T T′′=
K

∪ ∪ ∪ ∪ τ∪ ; 
(iii) 1 2{( . , ),( , . ),( , . ),( . , )}f f r r

i i i i i iF F F I p t t I p t I p I p t′′ ′′ ′′ ′′=
K

∪ ∪ , as 
shown in Fig. 10. 

 
Figure 10. Alternative Recovery Model. 

If failure occurs during execution, proper recovery 
strategy will be selected according to failure types. In 
general, the cost of BCPS is the biggest while ARS is the 
smallest and FCPS between them. This is the main reason 
why FCPS is introduced in this paper. When a task fails, 
retry will be selected firstly considering the cost, if it still 
fails, ARS will be selected. Finally, if RH has ability of 
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compensation or abortion, BCPS or FCPS will be 
selected to ensure the consistency of the whole 
composition service. 

Ⅵ. EXPERIMENTAL RESULTS AND ANALYSIS FOR 
TRAVELING RESERVATION PROCESS (TRP) 

We take TRP for example to analyze and verify LRT’s 
algorithm, as shown in Fig. 11. The classical TRP which 
is composed of more than 40 tasks and 100 services 
(recovery services included). We use LCFR algorithm 
and non-LCFR algorithm respectively to reduces 
execution time and cost, and decrease the failure rate. The 
experiment is taken on PCs with Intel Pentium Dual Core 
E5200 2.5 GHz, 2GB RAM, Windows XP SP2, Apache 
Tomcat server, jUDDI registry, Active Bpel designer, 
Axis, eclipse 3.2.2. 

The TRP has the following possible transaction 
behaviors. Firstly, traveler makes a Customer 
Requirements Specification (CRS) according to his 
traveling plan and submits it to travel agent. Then, 
according to CRS, travel agent carries out Flight Booking 
(FB) or Train Reserving (TR), Hotel Booking (HB), Car 
Renting (CR) or Bus Renting (BR) sequentially. Then, 
after the reservations are confirmed, traveler carries out 
Online Payment (OP). Finally, express company carries 
out Ticket Delivery with EMS (TDE) or UPS (TDU), and 
sends “reservation successful” message to traveler to do 
Traveler Confirmation (TC). Using hierarchical nesting 
enhances the efficiency of aggregation nesting TRP. 

This work implements as part of the TRPFlow projects 
which objectively compares the providers’ and requests’ 
service profiles. TRPFlow implements with the Activekit 
platform which permits the development of distributed 
applications using composition transaction principles. Fig. 

12 shows a screenshot of TRPFlow, which partially 
shown in Fig. 12 is implemented and users can visualize 
its corresponding PNO-tree and a partial view of TRP. 
Interface of RH transforms the eXtended Markup 
Language (XML) output from other RHs to the current 
platform with XML Stylesheet Language (XSL).  

 
Figure 11. Traveling reservation process 

As shown in Fig. 13, the LCFR curve is the 
accumulative execution time and cost curve, while non-
LCFR curve does not takes execution time and cost into 
account. The LCFR curve means once the executing 
engine executes a task in LRTs, execution time and cost 
is evaluated. This experiment aims to compare the 
difference of execution time and cost between LCFR and 
non-LCFR and to discuss performance of LRTs. Observe 
that during execution of the LRT process, the number of 
composed tasks of the orchestration increases, so does the 
dependency between tasks. Compared with LCFR, in 
non-LCFR the average growth rate of execution time and 
cost of TRP is 0.69 and 0.16 respectively, while in LCFR 
they are effectively cut down. Also, the average negative 
growth rate of reliability, reputation and availability is 
1.93, 1.12 and 1.24 respectively. As Fig. 13 shows, the 
more tasks are executed in the LRT, and the more 
complicate nesting levels are, the greater benefit will be 
gained by LCFR. 

 
Figure 12. The Implementation of TRP with LCFR 
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Figure 13.  Comparison between LCFR and non-LCFR 

As shown in Fig. 14, LCFR1, LCFR2, LCFR3, LCFR4 
and LCFR5 are LCFR curves that lead to different failure 
rate. We select five sets of WS to compose TRP. Only a 
set of WS is successfully executed and the other four 
groups failed in the 3rd, 4th, 7th and 8th task respectively. 
Observe that the inflection point of failure rate is in 
accordant with that of response time in the 7th and 8th task 
and the execution time and cost almost unchanged 
compared with that before starting recovery strategies. 
However, for composition process which requires high 

real-time performance, response time and execution time 
are prior to the other metrics. 

The LCFR1, LCFR2, LCFR3, LCFR4 and LCFR5 in 
Fig. 15 are curves after recovery respectively. Forward 
recovery is executed respectively at the 3rd, 4th, 7th, 8th and 
9th task and number of corresponding compensated tasks 
is 7, 11, 15, 21 and 28 respectively. Observe that when 
failure occurs, the RH will be triggered and compensation 
context be constructed so that the response time will 
increase, but it has little effect to execution time and cost. 

 
Figure 14.  Comparison of LCFR with different failure rate  

 
Figure 15. Comparison of response time, execution time and cost with LCFR 

Ⅶ. RELATED WORK 

When using LRTs to composite WS, it is necessary to 
make sure the atomicity of a set of interactive WS, LRTs 
undo the effects of failed transactions by executing 
compensation tasks. N. B. Lakhal and T. Kobayashi et al. 
put forward a failure endurable execution framework of 
nested-composition transaction and composition 
transaction architecture, which discuss the effects to the 
current layer that brought by failed tasks, support a on-off 
failure dependency that orients the whole composition 
transaction, define arbitrary nesting, state, vitality degree 
and compensation, and analyze the execution semantics 
of recursive nested transactions [1, 2, 3]. R. Yi and Q.Y. 
Wu et al. put forward the failure recovery algorithm 
ensuring LRTs which avoid unnecessary compensation 
and enhance the efficiency of failure recovery, they focus 
on handling the complexity and long-running and 
reducing the failure rate of transaction execution[4]. K. 
Wiesner and R. Vacul et al. present a new dynamic 

recovery mechanism based on semantics, which 
dynamically discover failure and execute recovery with 
equivalent alternative service, in the context of recovery 
and process adaptation [5]. It is hard for LRTs to select 
partner and predict execution time, thus it is forbidden to 
suspend LRTs, T. Minh et al. proposed a web transaction 
protocol based on semantics [6]. S. Bhiri and O. Perrin et 
al. put forward a reliable and flexible Web composition 
transaction method, which according to control flow and 
data flow dependency of aggregation patterns, ensure the 
highly cohesive of control flow and transaction patterns 
and the relaxed atomicity of composition transactions 
using the properties of Acceptable Termination 
State(ATS) [7, 8]. 

Compensation transaction is a new transaction which 
includes two flow types: normal flow and compensation 
flow, where the first describes normal business logic and 
later semantically undo the effects of normal flow. S. 
Rinderle and M. Reichert et al. present a method to 
realize forward recovery according to dynamic workflow 
changes. It allows semi-adaptive workflow in case of 
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failure, which introduces operations such as deleteAct, 
jumpTo and insertAct to implement transaction recovery 
[9, 10]. However, there are two main disadvantages: 
firstly, it can only realize semi-automatic adaptation. 
Secondly, this kind of workflow change needs rigid 
definition. Z. Yang and L. Lin et al. put forward a 
backward recovery compensation method that supports 
business process, which mentions forward recovery but 
doesn’t focus on it. This method considers compensation 
logic as part of coordination logic, which leads poor 
flexibility of compensation [11, 12].  

Existing transaction mechanism only provides limited 
compensation ability. In most cases, backward recovery 
is used to maintain consistency after aborting the 
executing tasks. M. Schafer and P. Dolog et al. extend the 
current WS coordination architecture and infrastructure, 
propose an advanced compensation environment based 
on forward recovery strategy. This method separates 
compensation logic from coordination logic and realizes 
the dynamic plug in and plug out of compensation 
strategies [13]. M. Schafer and P. Dolog et al. put 
forward an engineering compensation method based on 
WS environment that discuses engine dependency rules 
and constructs compensation method based on rules [14]. 
Y. Kim and J. Kim propose a WS composition 
framework allowing user-specified failure handling, 
which defines user requirement based on general business 
logic and failure acceptable specification [15]. R. Bruni 
and G. Ferrari et al. put forward an framework called 
Java Transactional WS (JTWS), which is a Java API 
providing suitable primitives for wrapping and invoking 
WS as activities in LRTs [16]. Therefore, with the 
backward recovery approach, the failure of any single 
participating WS can trigger the abort of many 
transactions and thus lead to cascading compensations 
(called the domino effect), which can result in a huge loss 
of time and cost. To sum up, it is necessary to further 
research flexible recovery strategy based on LRTs. 

Most of the existing formal composition business-
process-modeling methods based on Petri nets do not 
support transaction mechanism, and exception behavior is 
beyond normal behavior logic, we need to extend Petri 
net. G. Dobson and M. Kovacs et al. propose a formal 
modeling technique for BPEL business process including 
fault and compensation handling based on Petri net, 
which give the mapping of various fault patterns to WS-
BPEL [17, 18, 19]. W.L. Dong and X.G. Deng et al. use 
Colored Petri Nnets(CPNs) to model WS choreography 
and orchestration, and they analyzes and tests BPEL 
composition business process using HPNs [20, 21, 22, 
23]. L. Garcıa-Banuelos proposes an executable 
transaction model based on ASML that allows seamless 
add/modify behavior, and extends failure handler in WS-
BPEL [24]. R. Hamadi and B. Benatallan propose a Self-
Adaptation Recovery Net (SARN) based on Petri net, 
which extends Petri net model to specify fault or 
exceptional behavior in business process. SARN 
incorporates with recovery region [25, 26, 27, 28], but it 

is not suitable for handling business transaction in P2P 
environment.  

Ⅷ. CONCLUSION AND FUTURE WORK 

Composition transactions incorporate different 
transactional semantics and behavioral patterns, 
composed tasks usually have following properties: (i) 
different tasks may have different execution behaviors or 
transactional properties; (ii) service provider can define 
different transaction coordination mechanism; (iii) 
different failure handling and recovery strategies should 
be defined. Therefore, ATS is introduced in this paper to 
implement relaxed atomicity, and recovery strategies 
ensure consistency. To ensure reliable LRTs execution, 
state token, functional token and nonfunctional token are 
introduced, transaction isolation and atomicity are relaxed. 
Failure recovery starts from log analysis, which uses a set 
of dependency rules to construct the recovery flow of 
transaction. Our future work includes several issues such 
as global transaction structure, subtransaction properties, 
inter-subtransaction dependencies, mechanisms of 
handing-over, success and failure criteria should be 
considered. 
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