
Automatized Checking of Business Rules for
Activity Execution Sequence in Workflows

Cristiano Barros, Mark Song
Informatics Institute

Pontifı́cia Universidade Católica de Minas Gerais
Belo Horizonte, Brazil

Email: falecomigo@cristianobarros.com.br, song@pucminas.br

Abstract— In the present context of high competition, the
enterprises are investing in the improvement of the effi-
ciency of their production and management processes. To
accomplish such tasks, one viable way is to formalize those
processes into business models, so it is possible to evaluate
and improve them. As important as the analysis of software
engineering artifacts prior to building information systems,
also is important the analysis of the definitions existing in
the business models, to ensure that they reflect the reality of
the process and its demands. This paper aims to develop an
approach for the execution of validations of execution rules
incorporated to workflows, using model checking to ensure
the exactitude of the analysis.

Index Terms— workflow, model checking, business rules

I. INTRODUCTION

Several authors define the present business environment
as highly competitive, being essential to search, not only
ways to differentiate their products and services, but also
new ways to increase the efficiency of the whole company,
in order to obtain good economical results. Besides, in the
last years, the business analysis subject has been gaining
more importance due to its capacity to attack problems
originated in the relation between the business and IT
sectors [1]. In that sense, it is becoming popular the
revision of business processes as a way to increase the
efficiency in certain manners: exclusion of unnecessary
activities, integration between processes, simplification
of procedures, automatization of repetitive tasks, among
others [2].

Workflows or business processes are defined as a series
of task in a specific sequence aiming to obtain a de-
termined objective. Inside the information systems engi-
neering field, the business modeling technique formalizes
the sequencing rules of workflows in order to aid the
development of information systems by supporting and
automatizing tasks. It is recognized as a good practice to
model a business process before the actual development
of a software to support it, so that its premises and
rules are well defined, established and derived from the
real procedures and not from an ideal representation.
It is not desirable to invest in the development of an
information system based on inefficient, inaccurate or
ideal procedures.

This work was supported by FIP PUC Minas.

Like software developers worry about bugs and execute
several tests to ensure the quality, business analysts should
also worry and test the models. Some software bugs could
be originated not from mistakes in software engineering
artifacts but from misunderstandings that occurred when
the workflows, over which a system is developed, were
designed. Error due to problems with the business rules
are hard to detect and severely affected the applicability of
a software. Sooner the error are detected, cheaper they are
to fix. The technique of business modeling also increases
the efficiency of software engineering methods because
most of the requirements and details are already defined.

This current work has the main objective to present an
approach to formally check execution sequencing rules
of workflow written in XPDL (XML Process Definition
Language). In more details, this research creates a tool
that imports a XPDL file that contains the specification
of a workflow, translating it to be executed in a model
checker. It allows the user to execute temporal logic
queries that are answered whether the properties are true
or false on that model.

II. BACKGROUND AND RELATED WORK

In order to produce the expected results, it was nec-
essary the understanding of business process modeling,
the XPDL language used to describe workflows and also
model checking, used to validate the execution rules.
Some related works are presented.

A. Business process modeling

Business processes, also known as workflows are the
“combination of a set of activities within an enterprise
with a structure describing their logical order and depen-
dence whose objective is to produce a desired result” [3].

In the last decade was possible to notice an bigger
interest by the organizations to adopt business process
modeling techniques as a way to increase the efficiency
in corporative or even scientific works, being those
supported or not by information systems [4] [5]. The
development of information systems as a means to support
or execute workflows that are inadequate, non-optimized
or non-adherent to previous specifications and models
reveals itself as a considerable source of time and money
waste and also a problem that is hard to detect and solve.

374 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.2.374-381

The business modeling can be formally described with
models or diagrams that identifies activities, information
and the its flow associated with a business operation [6].
To do so, there are notation patterns for workflows which
are nothing more than graphical patterns that associate
shapes and element types [7]. Among those, BPMN1, has
a good acceptability by the market for being dedicated
exclusively to business processes [8].

In order to transform a notation into an executable
format, it is necessary to change the diagrams into process
specifications, using specific languages. There are several
languages available: PSL, DAML-S, RFP, XPDL, BPML
e BPEL. Among those, XPDL2 - XML Process Definition
Language was used in many works.

When modeling a business process, the rules that define
and detail the execution of activities are clearly estab-
lished. According to [10], corporative business rules are
defined as restriction or metadata to business operations.
Those rules can be originated from the logic of the own
process, scientific methods (that is the case of academic
research, for example), or even regulations or standards
[11]. In information systems, those rules can be defined
within the notation or through specific languages.

B. XPDL

XPDL language has a main purpose to formalize the
specification of workflows [12]. It translates the definition
made by graphic notation patterns like BPMN or even
UML. The definitions are written in XML format and
obey the rules created by a consort of companies of this
field called Workflow Management Coalition (WfMC)
[9]. It defines a formal semantics to represent tasks,
its transitions, resources and even actors involved in
a workflow. Its main purpose is to serve as a pattern
for interoperability between systems that use different
standards [13].

The XPDL elements considered in this research was
the definition of processes, subflows, activities and tran-
sitions. The other components present in the language
were not considered since they do not affect the proposed
analysis of this work, such as participants, artifacts, lanes
and application.

C. Model checking

Model checking is a formal method that allows the
exploring of finite state systems as a transition graph,
executing temporal logic validations. For a specific set
of state transitions it is possible to verify temporal logic
affirmatives to ensure whether they are true or false. [14]
formalized a model checking technique with the objective
of automatizing the verification process of software design
in a similar way to that applied to electronic circuits.
Through this technique, the finite set of states a software

1BPMN was created by OMG - Object Management Group with the
purpose to become a pattern specific to graphically represent workflows.

2This language was created by WfMC - Workflow Management
Coalition [9]. Both OMG and WfMC are organizations that congregate
several companies and researchers specialized in this matter.

can assume is tested with temporal logic clauses so it
is possible to evaluate the sequencing of those states,
searching for logical problems. This method has advan-
tages over traditional approaches that use simulation, tests
or deductions, due to the fact that it is automatic and
exhaustive.

D. Workflow verification

The majority of the works deal with the verification
of general rules, intrinsic to the workflow logic, such as
the search of unreachable states, deadlocks or livelocks.
Some other works include also the verification of safety or
liveness properties. Beyond those, some researches have
objectives close to the present work.

In [15] the use of model checking is proposed to verify
business models using the platform Testbed, AMBER
language and checker SPIN. It shows the capability of
the use of such set of tools by non-specialists with the
objective of improving the design process through execu-
tion simulations. In [16] the authors show a method of
transforming a business process into a non-deterministic
state automaton and the application of the model checking
technique on this automaton.

In [12], using XPDL and the SPIN checker, demon-
strates a methodology of verification in a case study
of a travel agency. It not only validates the absence of
unreachable activities, deadlocks and livelocks but also
sequencing of the activities. The XPDL specification is
translated into the Promela language which is further
manually executed in the SPIN.

In [17] is created a tool called VERBUS that allows the
modeling and verification of business processes, showing
its applicability. The main purpose is to evaluate invariant
properties and state reachability. In this same direction,
[18] uses the Promela language and the SPIN checker to
verify specification of sale processes written in XPDL.
Its objective is the creation of a system that allows the
verification of systemic attributes (absence of deadlocks
or livelocks) and also ad hoc properties of dependency
among activities. Using Petri Nets, the article [1] de-
scribes a method to evaluate if the tasks of a flow are
concluded when the whole process is finished and the
capability to reach a certain element of the flow.

The main difference among these researches and this is
due to the removal of the necessity for specific knowledge
about the techniques used. This interface aids the non-
specialists on XPDL or temporal logic to use these
techniques. The knowledge needed to use the software
is just concerning business models and the business logic
involved in each model evaluated. However, this strategy
also presents itself as a limitation for it narrows the pos-
sibilities of evaluations to those defined in the software.

III. APPROACH

In the diagram shown in Figure 1 is presented the
way the software works. In the main interface, the first
step is to choose and load a XPDL file containing the
specification of a workflow. With the file loaded, the

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 375

© 2012 ACADEMY PUBLISHER

Figure 1. Diagram of the software operation

software presents the form elements that will be used to
generate the temporal logic verification clauses.

A. Elements analyzed

Each activity, start event or end event are translated
into boolean variables that represent if that element was
executed or not at that time. In each cycle, the checker
determines if a specific element has the condition of
be executed. To translate the different behavior of the
elements on a workflow, some cases were identified:

Figure 2. Simple transition

1) Simple transitions: This first case translates the
simpler occurrences, in which an activity receives only
one transition from another activity. There is just one
condition for the execution of that activity that is the
execution of the previous one. Taking the Figure 2 as an
example, the translation will produce the NuSMV code
(Code 1).
1 n e x t (a t i v i d a d e X) :=
2 case
3 a t i v i d a d e X = 1 : 1 ;
4 a t i v i d a d e X = 0 & a t i v i d a d e Y = 1 : 1 ;
5 1 : 0 ;
6 e s a c ;

Code 1. Translation fragment of a simple transition

The Code 1 shows the different behaviors applied to
activity X. If that activity was previously executed, then
it maintains that status (line 3). If it was not yet executed

but the previous activity was, then it will be executed
at that moment (line 4). For all the other conditions, it
remains unchanged (line 5).

2) Start and end events: A start event is always
executed, prior to any other element. This behavior is
translated by the Code 2. The condition for the execution
of an end event is defined in the same way as an activity.
1 n e x t (a t i v i d a d e 0) := 1 ;

Code 2. Fragment of translation for a start event

It is important however, to establish the difference
between start or end events of subflows. It is possible in
BPMN to enclosure a workflow into an activity, creating
subflows that detail the actions of that element. The start
and end events of subflows are not considered in the
same way as those elements in the most abstract flow.
They serve only as connectors between the elements of
the subflow and the more abstract flow.

3) Exclusive gateways: When the activities being eval-
uated are involved with conditional gateways (Figure 3)
and the condition is not specified, it is necessary to insert
the characteristic of nondeterminism for the execution of
the paths. The model checker will explore the possibilities
derived from that division in the flow, considering all the
possible paths and the elements involved.

Figure 3. Example of exclusive gateway

The nondeterminism does not implicate in loss of
precision because all possible paths are evaluated if there
are no definitions about the condition specified by the
gateway. When the condition is provided, the nondeter-
minism is not inserted.

1 n e x t (a t i v i d a d e Y) :=
2 case
3 a t i v i d a d e X =1 & a t i v i d a d e Y =1: 1 ;
4 a t i v i d a d e X =1 & a t i v i d a d e Z =1: 0 ;
5 1 : { 0 , 1 } ;
6 e s a c ;
7
8 n e x t (a t i v i d a d e Z) :=
9 case

10 a t i v i d a d e X =1 & a t i v i d a d e Z =1: 1 ;
11 a t i v i d a d e X =1 & a t i v i d a d e Y =1: 0 ;
12 1 : 0 ;
13 e s a c ;

Code 3. Fragment of a code for exclusive gateways

The Code 3 shows the translation of the Figure 3. The
nondeterminism was defined by the line 5. In that exam-
ple, the other lines have the purpose of maintain previous
status and also avoid the execution of an exclusive path
if any element of the other paths were executed.

376 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

A more complex case occurs when multiple exclusive
gateways are connected to each other. To evaluate the
condition for each element involved, it is necessary to
consider the interference among all of them. Another case
of different behavior refers to the possibility of detours,
when one of the paths from the gateway joins the other.
That occurrence demands a specific evaluation since it
impose different execution conditions to the activities.

4) Parallel gateways: This case deals with the multi-
plication of the flow originated by parallel gateways. The
parallel execution, as shown in Figure 4, is translated
as the Code 4. The activities of each parallel path are
executed after the activity X.

Figure 4. Example of parallelism with join

In code 4, only the split element is translated. But the
case of the parallel join element is not complex. Since
all the paths are entirely executed (except if encapsulated
cycles occur, as it will be explained later) the condition
for an element after the joining is the same for the first
elements of each parallel paths. In other words, if a
parallel split is reached, its end will also be reached.

When the software receives such type of element, it
analyses the first activities of each path and also the
element after the join that ends the parallelism. It is
considered as a good practice to explicitly indicate the
closure of the parallel paths through a join element [8].
The software does not demand that practice but impose
a pattern that all the elements must be executed for the
flow to continue.

1 n e x t (a t i v i d a d e Y) :=
2 case
3 a t i v i d a d e X =1: 1 ;
4 1 : 0 ;
5 e s a c ;
6
7 n e x t (a t i v i d a d e Z) :=
8 case
9 a t i v i d a d e X =1: 1 ;

10 1 : 0 ;
11 e s a c ;

Code 4. Fragment of the translation with the parallelism

B. Validation types
Seven validation types were made available to test the

relations between the elements:

Figure 5. State diagram for “The execution of an activity implicates in
the execution of another”

1) The execution of an activity implicates in the execu-
tion of another: To evaluate this validation type, shown in
the state diagram in Figure 5, the following command was
used. In that command, ‘x’ and ‘y’ represent activities of
the flow.

SPEC AG(activityx -> AF(activityy));

The command can be translated as: “in all states of
the model, whenever the activity ‘x’ is executed, then
in all the possible paths of execution, in the future,
the activity ‘y’ will be executed”. As an example of
this validation, it is possible to test in a corporative
procurement process if, whenever a supervisor approves
an order, the products bought must be delivered. If there
are possibilities specified in the workflow that prevent
this outcome after the approval, then the software would
answer negative to that validation case.

Figure 6. State diagram for “The execution of an activity implicates in
the non-execution of another”

2) The execution of an activity implicates in the non-
execution of another: To evaluate this relationship type
(Figure 6), it is used the following command:

SPEC AG(activityx -> AG(!activityy));

It can be understood as: “in all the states of the model,
whenever the activity ‘x’ is executed, it will implicate
that in all paths, in the future, the activity ‘y’ will be
not executed”. Taking the previous example, it could be
verified if the order being reproved by the supervisor, the
procurement would never be completed.

Figure 7. State diagram for “The execution of an activity represents the
possibility of the execution of another”

3) The execution of an activity represents the possi-
bility of the execution of another: To test this relation
(Figure 7), the following command is used:

SPEC EF((atividadex -> EF(atividadey)) & (E[!atividadey U atividadex]));

It can be translated as: “if the activity ‘x’ is executed,
there is at least one path in which, in the future, the
activity ‘y’ will also be”. In the previous example, a rule
that could be tested is whether a procurement process,
after being reproved by an auditing team, could still be
completed. If in that workflow, the auditors could revise
the process and approve it, then this rule would be true.

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 377

© 2012 ACADEMY PUBLISHER

Figure 8. State diagram for “The execution of an activity depends on
the previous execution of another”

4) The execution of an activity depends on the previ-
ous execution of another: For this rule (Figure 8), the
command is:

SPEC !EF(!activityx & activityy) & !EF(!activityx & !activityy & EX(activityx

& activityy));

That evaluation is made in two steps. Firstly it tests
if there is no path where the activity ‘x’ is not executed
but ‘y’ is. The second step tests if both activities aren’t
executed simultaneously. Using these two tests, it is
guaranteed that activity ‘y’ will only be executed after
the execution of ‘x’.

This validation could be used to verify if activities that
should be sequential are disposed in exclusive or parallel
paths. Using the procurement example, it could be tested
if the approval and payment are necessarily sequential
rather than in parallel or exclusive paths.

Figure 9. State diagram for “Is possible that a specific activity is not
executed”

5) Is possible that a specific activity is not executed:
To evaluate this relation type, shown in Figure 9, the
following command is used.

SPEC !EG(!activityx);

That command is translated as: “there is a path in
which the activity ‘x’ is not executed”. In the procurement
example, it could be test if there is a possibility that the
activity of evaluation by a supervisor is not executed if
the total cost does not reach a certain value.

Figure 10. State diagram for “A specific activity is never executed”

6) A specific activity is never executed: This command
is used to test the relation shown in Figure 10.

SPEC AG(!activityx);

Through this command it is tested if, in all the paths,
the activity ‘x’ is not executed. That can only happen
if an element has no transition directed to it, staying
disconnected from the flow. This type of validation is
more usable to test errors in the modeling process rather
than logical problems.

7) Is always possible to reach the end event: To test
this rule is used this command:

SPEC AG(activitya -> AF(activityb));

In that command the activity ‘a’ is understood as the
start event of the flow and ‘b’ the end event. Therefore,
the command is translatable as: “whenever the start event
is executed, the end event will also be”. Three possibilities
can generate a negative answer for this rule: no end event,
paths with disconnected elements or uninterrupted cycles.

C. Execution of the translation

The whole translation, including the temporal logic
rule to be validated, is then saved in a SMV file that
is executed in the model checker. The answer of the
validation is captured by the interface, which is then
shown to the user. If the rule evaluated if false, then a
counter example is received and also shown to the user.
The interface (Figure 11) and the translator were created
in Java.

Figure 11. Interface showing a negative answer with a counterexample

IV. CASE STUDY

Figure 12. Workflow of case study (abstract view)

378 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

The workflow used in the case study was one that mod-
els the process of retirement grant to public employees of
the State Government of Minas Gerais in Brazil, modeled
in BPMN (Figure 12). In the end of the validation of that
workflow, 75 elements were considered in total, excluding
from that number the transitions among them.

The initial strategy for the validation of the case study
was to validate all revisions of a model to compare if
the corrections made to them are detectable through the
software. Unfortunately, it was not possible to obtain
previous versions of the case study. Then, all the seven
validation types were tested for all the hypothesis of true
or false responses. Some of them are presented as follows.

A. Results

1) The execution of an activity implicates in the exe-
cution of another: Take the example in Figure 13. When
the rule “The execution of Receive RP implicates in the
execution of Distribute RP” is tested, the answer obtained
is true. That answer is correct because, in all the paths
after the execution of the first activity, the second is
always executed.

Figure 13. Flow “Receive and distribute RP”

In another test in the same workflow, a negative answer
is obtained. The rule “The execution of Receive RP
implicates in the execution of Archive RP” is false because
there is an execution sequence in which that second
activity is not executed after the first. That possibility
derives from the exclusive gateway that exists between
those activities.

Whenever the answer for a validation is false, it is
shown a counterexample in the interface (Figure 11). The
counterexample shows a sequence that is obtainable in
the model and that violates the rule tested.

Another possibility of obtaining false for the first val-
idation type is when, between the elements being tested,
there is a non-interruptible cycle. That kind of cycle
occurs when it is not used the encapsulation property
available in BPMN and XPDL, which has also a counter
that limits the execution of a giving cycle. The model
explained in this article has a limitation to process these
uninterrupted cycles. Two cycles exist in the workflow
of the case study (Figure 12). Therefore, when tested if
the execution of an activity in the beginning of the flow
implicates in the execution of an activity in the end, the
result is a negative answer from the software. Whenever
a negative answer is obtained, a counterexample is given

to show an execution sequence in which the rule does not
apply.

Finally, the third possibility of obtaining false as an
answer for this test occurs when there is no possible paths
to reach an activity after the execution of another. That
possibility is present in the flow shown in Figure 12. In
that flow, it is noticeable that there is not a sequence in
which the execution of Tax and correct RP implicates in
the execution of Receive and distribute RP. Therefore,
when that rule is tested, the software returns false as
answer.

2) The execution of an activity implicates in the non-
execution of another: This validation type is not the exact
opposite of the last. Negative answers for that validation
do not guarantees a positive answer here. That is the case
in the validation of the rule involving Receive RP and
Archive RP in Figure 13. When tested in the last validation
type, the answer was negative. When tested with the type,
the answer is also negative since it is not impossible
to execute the second activity after the first. Therefore,
negative answers are obtained when there is a sequence
in which both activities are executed. The first two tests
in the last type were also tested for this validation and,
as expected, both got negative answers.

Positive answers are given if the elements tested are
in excluding paths. Excluding paths are derived from
exclusive gateways not inserted in cycles. Elements after
an exclusive gateway but inside a cycle could be executed
in sequence even when in excluding paths. The only
exclusive gateway not inserted in cycles occurs in the
subflow Tax and correct RP (Figure 14).

Figure 14. Flow “Tax and correct RP”

When tested the elements in the excluding paths after
the gateway in that flow, the answer obtained was true.

3) The execution of an activity represents the pos-
sibility of the execution of another: Positive answers
for this validation are obtained if there is at least one
possibility for both activities to be executed in sequence.

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 379

© 2012 ACADEMY PUBLISHER

Logically, all positive answers for the first validation type
will generate positive answers in this one. And also, all
positive answers for the second type will produce negative
answers in this one. Therefore, the rules tested in the last
validation types that received such answers were again
tested. The answers given were all as expected.

It is not correct to conclude that negative answers
for the first type would mean negative answers here
or also that, negative answers for the second would
produce positive answers in this current type. Once again,
this affirmative was proved by remaking the tests that
produced the referred answers in the first two validation
types, obtaining the expected results.

4) The execution of an activity depends on the previous
execution of another: This validation can be considered
as an specific case of the first type. To obtain positive
answers, it is necessary, not only to obtain true in that
type, but also that the activities analyzed are not executed
simultaneously. Therefore, it is guaranteed that one certain
activity will only be executed if another is before.

The first test, between the activities Receive RP and
Distribute RP in Figure 13, was used to test the correct-
ness of the answer for this type. When tested whether the
second activity depends on the previous execution of the
first, the answer received was true, as expected.

A negative result would occur whenever a negative
answer is obtained in the first validation. To test that,
the three rules that produced that outcome were again
validated, generating the expected negative answers.

The other possibility of obtaining false, even if a
positive answer is obtained in the first validation type,
occurs when the activities are simultaneously executed.
In that case, it was identified an error in the studied
workflow. It was detected that in the flow it is possible
to publish a retirement process without the signing of a
supervisor because these activities were in parallel paths.
When these activities were tested in this fourth validation
type, the answer was negative.

Figure 15. Flow “Create and publish retirement approval”

It is important to highlight that, even after several
revisions made by the teams involved in the studied
workflow, the software was able to detect this flaw. It
is also important to highlight that one only error being
detected does not indicate lack of effectiveness of the

software but indicates the almost complete correctness of
the modeling process.

5) Is possible that a specific activity is not executed:
For this validation type, positive answers is obtained
if the element analyzed is in excluding path after an
exclusive gateway or it is located after an uninterrupted
cycle. Testing this type with the activities Receive RP and
Archive RP in Figure 13, it was obtained true because the
whole subflow is located in a excluding path after the
gateway Process returning from correction?.

To obtain negative answers, it is necessary that the
element analyzed is executed in all possible sequences.
In the studied workflow, that condition applies only to
the start and end events, as it can be observed in Figure
12.

6) A specific activity is never executed: In some cases,
due to the fact that not all the possibilities for all the
validation types were available to be tested in the case
study, some controlled errors were inserted. That was the
case in this test. This condition only happens if the tested
element is disconnected from the flow. If an element has
any transition pointing at it, then this rule does not apply.

The activity Attach approval to RP in Figure 15 was
tested by removing the transition pointing at it. Before re-
moving, the answer obtained was false. After the removal,
the answer was true. The same test was done with the
activity Publish retirement approval, in the same flow. The
same answers were obtained before and after the removal
of the transition.

7) Is always possible to reach the end event: To obtain
a positive answer here, it is necessary that an end event
exists, that it is not disconnected and that there is no
uninterrupted cycles in the flow. When the studied work-
flow is tested, the answer is false because uninterrupted
cycles exist in the flow. To obtain a positive answer, was
necessary to change the workflow to incorporate those
cycles into activities with the Standard Loop property
defining an execution limit to those cycles. With that
modification, the desired answer was obtained.

It was also tested the other possibilities for a negative
answer. By removing the end event, the software shows
an error message, preventing this validation to be run. If,
after restoring the end event and removing the transitions
to it, the validation is run but the answer is false, as
expected.

V. CONCLUSION

The subject of the verification of business models
is getting more attention in the last decade and it has
shown that is effectible for early inconsistencies solution
that may represent increasing costs to solve. The model
checking technique shows itself as adequate for this
purpose. So does the tool created in this research to allow
a comprehensive evaluation of rules concerning activity
execution in workflows.

As a premise to this work, the software should not
present an effort of adaptation of the models already
created in BPMN or XPDL. The tool should conform to

380 JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012

© 2012 ACADEMY PUBLISHER

the definitions of the patterns. Another premise was that
the users should not need to know about model checking
or the languages to use the software in their flows. The
software is intended to be used by business specialist and
not system analysts or programmers.

Nowadays, it is common to adapt workflows from a
business analysis perspective to an orchestration environ-
ment. It is essential to maintain the same business rules
from one to the other. In those adapted flows, the approach
in this paper can be useful to validate the adherence to
those rules.

The tool was able, not only to detect all the hypotheses
for all the validation types, involving or not inserted
errors, but also detected a error existing in the final
version of the case study. By detecting controlled errors
and even mistakes in models that were considered to
be final versions, the software proved to be useful to
those concerned about activity execution business rules.
It facilitates the process of verification and offers more
exactitude to that kind of analysis.

Some complementary works are viable like including
other languages or model checkers, including new kinds
of relation between activities, create a feature to simulate
behaviors, development of a plugin to adapt this software
to a modeling tool, among others.

REFERENCES

[1] T. Takemura, “Formal semantics and verification of bpmn
transaction and compensation,” 2008 IEEE Asia-Pacific
Services Computing Conference, 2008.

[2] A guide to the Business Analysis Body of Knowledge
(BABOK Guide) - Version 2.0, International Institute of
Business Analysis, 2009.

[3] R. S. Aguilar-Saven, “Business process modelling: Review
and framework,” International Journal of Production Eco-
nomics - Volume 90 - Issue 2 - 28 July 2004, vol. 90, pp.
129–149, 2004.

[4] A. Andrade, A. Ribeiro, E. Borges, and W. Neves, “Um
estudo de aplicacao de modelagem de processo de negocio
para apoiar a especificacao de requisitos de um sistema,”
VI Simposio Internacional de Melhoria de Processos de
Software, Sao Paulo - SP, Brasil. 24-26/11/2004, 2004.

[5] J. S. Conery, J. M. Catchen, and M. Lynch, “Rule-based
workflow management for bioinformatics,” The VLDB
Journal - The International Journal on Very Large Data
Bases, Volume 14, Issue 3 - September 2005, 2005.

[6] L. An and J.-J. Jeng, “On developing system dynamics
model for business process simulation,” Proceedings of the
2005 Winter Simulation Conference, 2005.

[7] C.-H. Tsai, H.-J. Luo, and F.-J. Wang, “Constructing a bpm
environment with bpmn*,” Proceedings of the 11th IEEE
International Workshop on Future Trends of Distributed
Computing Systems (FTDCS’07), 2007.

[8] OMG, Business Process Modeling Notation (BPMN)
Specification, version 1.2, Object Management Group
(OMG), 01 2009, especificao da notao BPMN. [Online].
Available: www.bpmn.org

[9] WfMC, XPDL 2.1 Specification, wfmc-tc-1025-oct-10-
08-a ed., The Workflow Management Coalition, 10
2008. [Online]. Available: http://www.wfmc.org/View-
document-details/WFMC-TC-1025-Oct-10-08-A-Final-
XPDL-2.1-Specification.html

[10] N. Zsifkov and R. Campeanu, “Business rules domains
and business rules modeling,” International Symposium on
Information and Communication Technologies, 2004.

[11] M. zur Muehlen, M. Indulska, and G. Kamp, “Business
process and business rule modeling languages for compli-
ance management: A representational analysis,” Twenty-
Sixth International Conference on Conceptual Modeling -
ER, 2007.

[12] P. Matousek, “Verification of business process models,”
Departament of Computer Science - University of Ostrava,
Tech. Rep., 2003.

[13] A. Haller, W. Gaaloul, and M. Mateusz, “Towards an
xpdl compliant process ontology,” 2008 IEEE Congress
on Services, 2008.

[14] E. M. Clarke, Model checking. MIT Press, 1999.
[15] W. Janssen, R. Mateescu, S. Mauw, P. Fennema, and

P. van der Stappen, “Model checking for managers,” Pro-
ceedings of the 5th and 6th International SPIN Workshops
on Theoretical and Practical Aspects of SPIN Model
Checking, 1999.

[16] J. Khoeler, G. Tirenni, and S. Kumaran, “From business
process model to consistent implementation: A case for
formal verification methods,” 6th International Enterprise
Distributed Object Computing Conference (EDOC 2002),
2002.

[17] J. A. Fisteus, A. M. Lopez, and C. D. Kloos, “Verbus:
A formal model for business process verification,” Infor-
mation Resources Management Association International
Conference. New Orleans, Louisiana, USA, 2004.

[18] Y.-H. Huang, “Using model checking to verify the con-
sistency between business process models,” Department
of Accountancy - National Cheng-Kung University, Tech.
Rep., 2006.

Mark A. J. Song was born in Belo Horizonte, Brazil. He
received the B.S. (1991), M.S. (1996) and Ph.D. (2004) degrees
in Computer Science from the Federal University of Minas
Gerais, Belo Horizonte, Brazil.

Since 1997 he hold research and teaching position at Pon-
tifical Catholic University of Minas Gerais, Brazil. Professor
Song has research interest in formal methods - especially SMC
(Symbolic Model Checking).

Cristiano de M. Barros was born in Coronel Fabriciano,
Brazil. He received the B.S. in Public Management in 2001, B.S.
in Computer Science in 2004 and M.S. in Computer Science in
2010.

He holds a teaching position at State University of Minas
Gerais and works as a Specialist in Public Policies and Govern-
ment Management in the State Government of Minas Gerais.

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 381

© 2012 ACADEMY PUBLISHER

