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Abstract—In the team orienteering problem (TOP) a set of 
locations is given, each with a score. The goal is to determine 
a fixed number of routes, limited in length, that visit some 
locations and maximize the sum of the collected scores. The 
team orienteering problem is often used as a starting point 
for modeling many combinatorial optimization problems. 
This paper studies the dynamic team orienteering problem 
considering the travel cost varying with times and visiting 
time constraints. After a mixed integer programming model 
is proposed, a novel optimal dynamic labeling algorithm is 
designed based on the idea of network planning and 
dynamic programming. Finally, a numerical example is 
presented to show the validity and feasibility of this 
algorithm.  
 
Index Terms— team orienteering problem, time-dependent 
network, travel time, optimal algorithm 

I.  INTRODUCTION 

In the orienteering problem (OP) a set of n locations i 
is given, each with a score si. The starting point 
(location1) and the end point (location n) are fixed. The 
time tij needed to travel from location i to j be known for 
all location pairs. A given T  limits the time to visit 
locations. The goal of the OP is to determine a single 
route, limited by T, in order to maximize the total 
collected score. Each location can be visited at most once. 
The Team Orienteering Problem (TOP) is an OP that 
maximizes that total collected score of m routes, each 
limited to T. The team orienteering problem (TOP) first 
appeared in Butt and Cavalier [1] under the name of the 
Multiple Tour Maximum Collection Problem. The term 
TOP, first introduced in Chao et al. [2], comes from a 
sporting activity: team orienteering. A team consists of 
several members who all begin at the same starting point. 
Each member tries to collect as many reward points as 
possible within a certain time before reaching the 
finishing point. Available points can be awarded only 
once. Chao et al. [2] also created a set of instances, used 
nowadays as standard benchmark instances for the TOP.  

The TOP is an extension to multiple-vehicle of the 
orienteering problem (OP), also known as the selective 
traveling salesman problem (STSP). The TOP is also a 
generalization of vehicle routing problems (VRPs) where 
only a subset of customers can be serviced. Several 
researchers propose solving the OP with exact algorithms 
based on a branch-and-bound [3,4] and branch-and-cut 
approach [5,6]. With the branch-and-cut procedure, 

instances of up to 500 locations can be optimally solved 
[5], provided sufficient calculation time is available. 
Since the OP is NP-hard [11], obviously these exact 
algorithms are extremely time consuming so most 
research has focused on heuristic approaches[7-9]. 

As an extension of the OP, the TOP clearly appears to 
be NP-hard. Many TOP real applications are described in 
the literature: the sport game of orenteering[10], the home 
fuel delivery problem[11], athlete recruiting from high 
schools [12], technician routing and scheduling 
problem[13], TSPs with profits [14], etc. Butt et al. [15] 
present an exact algorithm based on column generation to 
solve the TOP. They deal with problems up to 100 
locations, provided that the number of selected locations 
in each tour remains small. Boussier et al. [16] propose a 
branch-and-price approach to solve problems with up to 
100 locations. Only problems in which the number of 
possible locations in a route is low, namely, up to about 
15 per route, can be solved in less than 2h of calculation. 
The first published TOP heuristic was developed by Chao 
et al [17]. Tang and Miller-Hooks [13] developed a tabu 
search heuristic embedded in an adaptive memory 
procedure. Archetti et al. [18] came up with two variants 
of a tabu search heuristic and a slow and fast Variable 
Neighbourhood Search (VNS) algorithm. Ke et al. [19] 
developed four variants of an ant colony optimization 
approach for the TOP. Vansteenwegen et al. [20, 21] 
implemented a Guided Local Search (GLS) and a Skewed 
Variable Neighbourhood Search (SVNS) algorithm. 
Souffriau et al. [22] designed a path relinking 
metaheuristic approach. Bouly et al. [23] proposed a 
simple hybrid genetic algorithm.  

However, most of the previous research for TOP in the 
literature seldom takes into account changes to the 
network over time. Clearly, the route between two 
locations does not depend only on the distance traveled, 
but on many other time dependent properties of the 
network such as congestion levels, incident location, and 
construction zone on certain road segments, which would 
change the travel cost on that segment. Therefore, based 
on above literature, this paper will consider the time-
dependent team orienteering problem (TDTOP for short) 
which meets the needs to real-world problems. Here, the 
transportation cost of traveling (time cost in our 
terminology) varies with time and the travel cost from 
one location to another depends on the start time. So 

 

JOURNAL OF SOFTWARE, VOL. 7, NO. 2, FEBRUARY 2012 249

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.2.249-255



 

decision-makers could choose the right route, locations 
and departure time according to their own situation.  

The remaining of this paper is structured as follows: 
the time-dependent team orienteering problem is 
described in Section 2. A mixed integer programming 
model for TDTOP is proposed in Section 3. And an 
optimal dynamic labeling algorithm is designed in 
Section 4. Moreover, in Section 5, a numerical example is 
introduced to show the validity and feasibility of the 
algorithm. Finally, the concluding remarks and further 
research are included in Section 6. 

II.  PROBLEM DESCRIPTION 

This paper will study the team orienteering problem on 
transportation network with a given source and 
destination node, in which the travel cost is dependent on 
time and primarily on the start time on the edge. It is 
assumed that time is discredited into small units (such as 
1 hour or less 10 minutes). In the TDTOP, each location 
has a score. It consists in visiting some of the locations in 
order to maximize the total collected score of multiple 
tours within a given time budget. And each location can 
be visited at most once. We don’t consider the 
phenomenon of return and round in traveling road. The 
road segments may not satisfy the “first-in-first out” 
property. On this basis, taking into account the 
application in real world, this paper will consider time-
dependent travel cost, location stay time and total 
transportation time constraint to study the team 
orienteering problem. Therefore, the time-dependent team 
orienteering problem is actually a multi-routes-selection 
one in the time-dependent network with the determination 
of the departure time from each node on the selected 
route. 

Given a transportation network , where 
is the node se }V
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III.  MATHEMATICAL MODEL 

A.  Notations 
),( EVG = : Transportation network; 

)(iP : Set of predecessor nodes of node ; iv
)(iS : Set of successor nodes of node ; iv

R : Set of multiple routes, ; },,2,1|{ mdrR d L==

T : Set of unvisited nodes; 
T : The total time budget of the route; 

is : Score of node ; iv

ivt : Visiting time on node ; iv

ia : Arrival time at node ; iv

ib : Departure time from node iv ; 
)(ttij : Travel time on edge  when the entry time is t ; ije

)(txijd : If edge on route is entered at time t , 

then =1, else =0. 
ije dr

)(txijd )(txijd

B.  Model 
Choose node  as the source point and node  as the 

destination point. So we establish the following mixed 
integer programming model. 
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The objective of the TDTOP is to maximize the total 

collected score, as shown in (2). In this formulation, 
constraint (3) and (4) are flow-conservation constraints. 
Constraint (5) ensures that every location is visited at 
most once. Constraint (6) and (7) guarantees that if one 
edge is visited in a given tour, the arrival time of the edge 
following node is the sum of the preceding arrival time, 
visiting time and the edge travel time. Constraint (8) is 
the start time and latest finish time constraint. Constraint 
(9) and (10) are the variables constraint. 

IV.  OPTIMAL ALGORITHM 

A.   Definition and Proposition 
Definition 1:  is the label of node , where i  

is the subscript of node  followed by node , and k  
shows which stage it is.  

),,( kai j jv

iv jv

Definition 2:  is the set of nodes belong to the k  
stage, for ,  is the set of predecessor 
nodes belong to the  stage, 

kL

kj Lv ∈∀ )(1 jPk−

1−k )()( 11 jPLjP kk ∩= −− . 
Definition 3:  represents the optimal collected 

score from sourcing node to the node at time
),( tjUk
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Definition 4:  represents the optimal collected 

score from sourcing nodes  to node .  
)(iU

1v iv
According to the definition, we have the following 

proposition, the proof of which is straightforward, and 
hence omitted. 

Proposition 1: , 
where 

},,2,1|),(max{)( KkaiUiU ik L==
K is the maximum of stages division.  

Proposition 2: The sub-route of the maximum colleted 
score route may not be optimal route from the source 
node  to node . 1v iv

B.   Optimal Algorithm and Steps 
According to the constraints in the mathematical model 

and above proposition, this paper will study an 
optimization problem without loop. Considering the 
travel time is time-dependent, a novel dynamic node 
labeling algorithm is presented based on the idea of 
network planning and dynamic programming. The basic 
idea of the algorithm is : for a given time-dependent 
network, firstly, the stages are divided according to the 
number of edges on the route. Then calculating the 
collected score to every node and labeling using strategy 

space iteration method for uncertainty multi-stage 
decision problem. Here, Q  is the decision set, 

 is state set, and state variables satisfy the 
constraints (6)-(9).  is the total collected 
score funciton. So, the iteration is carrired out to the last 
step. Finally, we get the maximum total collected score to 
the destination node. According to the label, the optimal 
route is selected by reverse back. The algorithm is 
finished until every route is selected. The solution of the 
algorithm is optimal based on the optimization theory of 
dynamic programming. 

))(txijk (
)( ik aS

)( kkk , SQU

Optimal algorithm is presented in the following: 
Step 1 (Initialization):  

Given the score  and visiting time  on node , is ivt iv
1,,2 −= ni L . Let 01 == nss , , 01 == nvtvt 1=d , 

VV = ; 
Step 2 (Stages division):  

According to the arcs on the route, the time dependent 
network )  ( , EVG =  is divided into K  stages;  is the 
sourcing node, let 

1v
11 =a ， ， ; 0=k 0)1,1(0U =

Step 3 (Calculation of arrival time on stage ):  k
For each node  in , we find the  which is 

the predecessor nodes set of ; for 
jv kL )(1 jPk−

jv )(1 jPv ki −∈ , 

calculating , if , then 

, else go to step 4. 

)( iijiij btvtaa ++= Ta j >

0),( =jk ajU
Step 4 (Calculation of the collected score and labeling 
on stage ):  k

Calculating the total collected score to node  at , jv ja

)),((max),( 1
),(

iik
tiTi

k saiUtjU += −
∈

, labeling ; ),,( kai j

Step 5 (Judgment of the iteration on stage ):  k
Let , if}{\ jkk vLL = φ=kL , then the iteration is 

finished on stage ; ifk Kk = , then go to step 6, else 
1+= kk , go to step 3; 

Step 6 (Calculation of the total collected score): 
Calculating ),(max)( nk

k
anUnU = ; 

Step7 (Backward the maximum collected score route):  
According to the label, reverse deduction and find out 

the maximum collected score route:      =),( 1 nd vvP  
( ) ( ) ( ) ( )},,,,,,,,,,,,{

111111 nnndddddd bavbavbavbav
www

L ,  

the visiting route is ; },,,,{
11 nddd vvvvr

w
L=

Step 8 (Judgment of the iteration in route set ):  R
Update },,{\

1 wdd vvVV L= , if },{ 1 nvvV = , then the 
iteration is finished, else if , then the iteration is 
finished, else 

md =
1+= dd ,go to step 2. 

V. NUMERICAL EXAMPLE 

The efficiency and feasibility of algorithm would be 
demonstrated by the following numerical example in this 
section. Given a TDTOP directed graph, where there are 
20 nodes and 189 edges, node 1 is the source vertex, node 
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20 is the destination vertex, and there are 18 valid 
vertices. To simplify the problem, we only consider the 
one-way travel. The time unit is assumed to be 6 minutes. 
We consider two routes selection, and the duration of the 
trip is 10 hours(e.g. from 9:00 am to 5:00 pm). So, the 
time budget is T=80 minutes. The graph parameters are 
set as follows: The average travel times on edges are 
generated with random integer on the interval [3, 20]; 
The matrix of average travel times is shown in table 1, 
where the blank spaces represent both nodes can’t reach 

each other; The travel times on edges at each time are 
selected with random integer of the fluctuation range 
α =30% to average travel times; The average visiting 
times are generated with random integer on the interval 
[5,15] as shown in table 2, where the average visiting 
times for node 1 and node 20 are set 0; The scores for 
every node are generated with random integer on the 
interval [1,10] as shown in table 3, where the scores for 
node 1 and node 2 are set 0. 

TABLE  I. 
THE MATRIX OF AVERAGE TRAVEL TIMES 

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1  5 10 10 5 11 4 8 15 20 17 6 12 16 13 14 8 5 15  

2   8 17 14 15 12 14 11 5 3 16 3 9 18 14 8 15 13 13

3    6 10 18 10 15 17 3 13 15 4 12 9 18 18 16 16 9

4     8 12 11 17 4 14 11 7 4 3 7 12 16 6 6 7

5      6 5 11 14 8 6 19 11 6 13 20 15 14 3 9

6       9 10 15 11 12 8 9 12 17 4 15 3 3 18

7        7 9 4 5 10 12 18 19 10 5 18 14 16

8         7 8 17 4 10 7 15 16 16 5 4 5

9          6 10 18 17 3 5 18 9 14 20 9

10           3 19 11 3 20 9 11 7 9 10

11            3 19 6 17 20 9 6 4 16

12             11 6 8 12 6 9 17 16

13              19 16 19 13 13 14 20

14               7 11 20 5 9 19

15                10 12 8 9 11

16                 18 9 4 8

17                  19 10 10

18                   19 5

19                    5

20                     

 

TABLE  II. 
THE AVERAGE VISITING TIMES FOR EVERY NODE 

Nodes 1 2 3 4 5 6 7 8 9 10 

vti 0 8 10 8 12 15 8 6 7 14 

Nodes 11 12 13 14 15 16 17 18 19 20 

vti 13 5 8 6 9 5 5 8 9 0 

 

TABLE  III. 
THE SCORES FOR EVERY NODE 

Nodes 1 2 3 4 5 6 7 8 9 10 

si 0 6 5 3 4 1 3 4 10 7 

Nodes 11 12 13 14 15 16 17 18 19 20 

si 5 5 10 6 5 9 6 7 10 0 
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TABLE  IV. 
STAGES DIVISION WHEN 1=d  

Stages 0 1 2 3 4 5 6 7 8 9 
Node Set {1} {2-19} {3-20} {4-20} {5-20} {6-20} {7-20} {8-20} {9-20} {10-20} 

Stages 10 11 12 13 14 15 16 17 18 19 
Node Set {11-20} {12-20} {13-20} {14-20} {15-20} {16-20} {17-20} {18-20} {19,20} {20} 

 

According to the dynamic node labeling algorithm, a 
simulation program is developed with MATLAB 7.0 and 
conducted on a server with 1.6 GHZ CUP, 1GB RAM 
and MS Windows XP OS. The optimal routes for TDTOP 
are designed as shown in the following.  

Given , , =2, |  0201 == ss 0201 == vtvt m { drR =

}2,1=d , }19,,2|{ L=== iiVV , ;  11 =a
When , the stages are divided as shown in table 4. 

According to the algorithm iteration steps, the route is: 
1=d

)20,1(1P ={(1,1,1),(7,3,11),(8,15,21),(9,25,32), (14,35,41), 
(16,54,59),(19,62,71),(20,74,74)}. The route travel time 
is 74 minutes and the total collected score is 42.  

When  unvisited node set is 2=d , the ,,2|{ L== iiV  
19, e divided as shown 

in table 5. So, the route is )20,1(2P ={(1,1,1), (2,6,14), 
(11,17,30),(12,33,38),(13,48,56),(18,66,74),(20,79,79)}. 
The route travel time is 79 minutes and the total collected
score is 33. 

To illustr

}16,14,9,8,7{\}19  and the stages ar

 

ate the influence of time-dependent travel 
time, the average values run 100 times with α =30% in 
time-dependent network are compared with e values 

(

th

α =0) in static network as shown in table 6. From the 
table, we can obtain the following conclusion. 

• The routes designed with α =30% in time-

n time-

dependent network vary with changing travel time. 
It indicates that the results of static network can’t 
be applied to the time-dependent network. 

• The average route cumulative travel time i
dependent network with α =30% decreases by 
0.59% compared with the correspongding value in 
static network. That indicates dynamic labeling 
algorithm can improve the route travel time, but it 
is not significant. 

• The average route cumulative collected score in 
time-dependent network with α =30% increased 
by 5.86% over the results in static network. This 
shows that dynamic labeling algorithm can 
optimize the route according to time-dependent 
travel time and improve the route collected score 
significantly. 

TABLE  V. 
STAGES DIVISION WHEN 2=d  

Stages 0 1 2 3 4 5 6 

Node Set {1} {2-6,10-13, 
15,17,18} 

{3-6,10-13, 
15,17,18,20} 

{4-6,10-13, 
15,17,18,20} 

{5,6,10-13, 
15,17,18,20} 

{6,10-13,15, 
17,18,20} 

{10-13,15, 
17,18,20} 

Stages 7 8 9 10 11 12 13 

Node Set {11-13,15, 
1718,20} 

{12,13,15, 
17,18,20} 

{13,15,17, 
18,20} {15,17,18,20} {17,18,20} {18,20} {20} 

 

TABLE  VI. 
COMPARISON OF RESULTS WITH STATIC NETWORK AND TIME-DEPENDENT NETWORK 

 Static network Time-dependent network withα =30% 

 Routes Travel time Collected score Routes Average travel time Average collected score 

d=1 1-2-9-14 
-16-19-20 75 41 Variation 77.44 42.72 

d=2 1-7-8-12 
-13-18-20 80 29 Variation 76.64 31.38 

Cumulative value  155 70  154.08 74.1 

 
 

Sensitivity analysis is conducted furtherly. Let 
α =10%，30%，50%，70%，90% respectively, which 
represents the fluctuation range of travel time in the time-
dependent network. For every α , we obtain the average 

values of 100 times simulation. The results are shown in 
figure 1 and figure 2. Figure 1 represents the average 
route travel time of different α value. Figure 2 shows the 
average route collected score of different α value. 
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Figure 1.  Average route trave time of different α value. 
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Figure 2.  Average route collected score of different α value. 

 
From figure 1 and figure 2, we can have the following 

conclusion. 
• As the increase of α  value, the average route 

travel time decreases, which indicates that 
dynamic labeling algorithm can improve route 
travel time. It is worth noting that when ≤α 50%, 
the reduction rate of α =30%, 50% is 0.46% and 
0.41% respecitvely, which means the improve-
ment is not significant, and when >α 50%, the 
reduction rate of α =70%, 90% is 0.96% and 
1.68% respectively, which menas the improve-
ment is effective. 

• As the increase of α  value, the average route 
collected score ascendes, which indicates that 
dynamic labeling algorithm can increase the route 
collected score. When ≤α 50%, the increase rate 
of α =30%, 50%  is 1.67% and 1.55% 
respectively, which indicates the improvement is 
small, but when >α 50%, the increase rate of 
α =70%, 90% is 3.95% and 4.54% respectively, 
which shows the improvement is significant. 

Based on above analysis, it shows that the dynamic 
labeling algorithm is effective to solve the time-
dependent team orienteering problem. This algorithm can 
reduce the route travel time and increase the route 
collected score at the same time, especially when 

>α 50%, the algorithm is very effective to optimize the 
visiting route. 

VI. CONCLUSION 

The team orienteering problem is often used as a 
starting point for modeling many combinatorial 
optimization problems. Study on the time-dependent team 
orienteering problem is rarely performed at present, 
especially the travel cost varying with time, which makes 
it rather difficult to solve the problem. Based on previous 
literatures, a time-dependent team orienteering problem 
considering the time-varying travel cost and location 
visiting time is studied. A corresponding mixed integer 
programming model is presented and an optimal dynamic 
labeling algorithm is also designed based on the idea of 
network planning and dynamic programming. Then the 
validity and feasibility of the algorithm is demonstrated 
by a numerical example. The study of this problem is 
beneficial for decision-makers to choose the right route, 
locations and departure time according to their own 
situation in limited time budget. Further study will 
consider more realistic factors such as the time windows 
and capacity constraints of locations.  
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