
Classification and Analysis of Frequent
Subgraphs Mining Algorithms

Mohammad Reza Keyvanpour

Department of Computer Engineering, Alzahra University, Tehran, Iran
Email: keyvanpour@alzahra.ac.ir

Fereshteh Azizani

Department of Computer Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran
Email: fereshteh.azizani@gmail.com

Abstract— In recent years, data mining in graphs or graph
mining have attracted much attention due to explosive
growth in generating graph databases. The graph database
is one type of database that consists of either a single large
graph or a number of relatively small graphs. Some
applications that produce graph database are as follows:
Biological networks, semantic web and behavioral modeling.
Among all patterns occurring in graph database, mining
frequent subgraphs is of great importance. The frequent
subgraph is the one that occurs frequently in the graph
database. Frequent subgraphs not only are important
themselves but also are applicable in other aspects of data
analysis and data mining tasks, such as similarity search in
graph database, graph clustering, classification, indexing,
etc. So far, numerous algorithms have been proposed for
mining frequent subgraphs. This study aims to create
overall view of the algorithms through the analysis and
comparison of their characterizations. To achieve the aim,
the existing algorithms are classified based on their graph
database and their subgraph generation way. The proposed
classification can be effective in choosing applications
appropriate algorithms and determination of graph mining
new methods in this regard.

Index Terms—Graph database, Data mining, Graph mining,
Frequent subgraph

I. INTRODUCTION

Presenting data as graph make expressing the existing
connection between data as natural. This characteristic of
graphs causes the increasing application of them for
modeling complex structures such as images [8],
chemical components [20], protein structure [29],
biological networks [28], social networks [41], web [30]
and XML documents [5]. Due to the speed of creating
and increasing the number of graphs of modeling of
complex structures, it is necessary to use a method to
analysis efficiently this extensive amount of data. This
makes data mining among graphs or graph mining an
important field in data mining.

Among all patterns occurring in graph database,
mining frequent subgraphs is of great importance. The
frequent subgraph is the one that occurs frequently in the
graph databases. Frequent subgraphs not only are

important themselves but are applicable in other aspects
of data analysis and data mining tasks, such as similarity
search in graph database, graph clustering, classification,
indexing, etc. In classification and similarity search,
using frequent subgraphs as feature leads to exact results
and high scalability [7, 38, 39]. Clustering of spaces with
high dimension is very challenging. As the exploration
of frequent subgraphs in subsets of dimensions are easily
possible, we can use frequent subgraphs as a solution in
the clustering of subspace and clustering of spaces with
high dimension [31]. Efficient search in graph database is
an unavoidable issue in many applications including
detection of cancer structures. Large amount of data in
these databases makes the ordinal research and one-to-
one test of the objects impossible and inefficient. By
using frequent subgraphs mining strategies via indexing
of frequent graphs, search speed can be increased
considerably [37].

Mining frequent subgraphs is an iterative process
consisting of two main steps [24]. The first step is
candidate generation. In this step, the subgraphs that are
probably iterative or they are frequent candidates are
generated. The next step is counting step. In this step, the
frequencies of generated candidates in database are
counted. To do this, the interested candidate should be
searched in graph database. The approach of this step is
different depending upon the type of graph database on
which graph mining process is done. If database is just
including one single large graph, the number of
occurrences of subgraph is counted in it. But if database
is consisting of multiple small graphs, the number of
graph occurrences is not important in a special graph and
it is equal to the number graphs in which that subgraph is
existing [17]. The generated algorithms for mining on a
single large graph can be applied for a set of graphs but
the opposite is not true. In both cases, counting the
number of occurrences of candidates requires the
investigation of subgraph isomorphism that is an NP-
complete issue [10] and it is costly for great databases.

Considering the increasing importance of frequent
subgraphs, this paper attempts to create a general view
toward frequent subgraphs mining algorithms by
introducing these algorithms and presenting their

220 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.1.220-227

features. As most of the existing researches in this field
are focusing on candidate generation step and they
attempt to create algorithms that can mine the minimum
number of subgraphs at a limited time, the main focus of
this paper is on different kinds of candidate generation
approaches. Here, the existing algorithms are classified
based on their candidate generation method. Applications
require the assessment of the existing methods for the
selection of suitable algorithms. Although direct and
comprehensive assessments of frequent subgraphs mining
algorithms are not possible, this paper tries to guide the
researchers in the selection of their required algorithm by
presenting their obvious features in the form of a table.

The rest of this paper is organized as follows. Section 2
is dedicated to frequent subgraph mining, basic concepts
and general definitions of frequent subgraphs mining.
Section 3 classifies the different kinds of frequent
subgraphs mining algorithms based on their graph
database and their subgraph generation way. Section 4
presents analogous assessment of algorithms. Finally the
paper is concluded in Section 5.

II. FREQUENT SUBGRAPH MINING

If D is the entry database, the frequent subgraphs
mining aims to mine graphs with more support value in
comparison with predetermined threshold [1]. The
support of the subgraph GS is denoted by sub(Gs) and is
given as

(௦ܩ)ݑݏ = ୦ୣ ୬୳୫ୠୣ୰ ୭ ୰ୟ୮୦ୱ ୭ ୧୬ୡ୪୳ୢୣୢ ೞீ
୦ୣ ୲୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୰ୟ୮୦ୱ ୧୬

. (1)

If Gs is subgraph of graph G, then sup (G) ≤ sup (GS).
Indeed, it can be said that the subgraph frequency is
inverse with its length. The subgraphs without this
feature- by their length increased their frequency is
increased- are called irrelevant subgraphs. This feature of
support criterion can be used in premature pruning of
infrequent subgraphs [13]. Because if a subgraph has less
support than threshold (not frequent), the next created
subgraphs from it will have less support considering the
support criterion feature (it is not frequent) and they can
be pruned.

Frequent subgraphs mining is usually starting with
frequent nodes and edges. Indeed, in the first step
frequent subgraphs are mined by one node or one edge.
This is easily possible through counting the frequency of
the existing nodes and edges in database deleting the ones
with support value less than threshold. In the next stage a
new subgraph is generated by adding new nodes and
edges to the subgraph resulted in the previous step. As it
is possible that the new generated subgraph is not
frequent, it is called candidate subgraph or shortly
candidate [32]. Then the frequency of the candidate or the
generated candidates are evaluated and the ones in which
support value is more than threshold or equal with it, are
returned as the input of the next step. This process
continues till the time of execution of algorithm reaches a
predetermined limit or all the frequent subgraphs are

mined. In the followings two important concepts are
presented in this area.

Subgraph isomorphism- To determine the frequency of
candidate, it is necessary to mine subgraphs that are
isomorphic with the candidate in D. Two graph G1=(V1,
E1) and G2=(V2, E2) are isomorphic if there is a mapping
from V1 to V2 such that each edge in E1 is mapped to a
single edge in E2 and vice versa. In labeled graphs, the
labels should be added to the mapping. An automorphism
is an isomorphism mapping where G1= G2 [21]. Graph G1
is subgraph isomorphic with G2, if G1 is isomorphic with
a subgraph of G2. Isomorphism is evaluated by two
methods of exact and approximate. In exact method, two
subgraphs are isomorphic if they are topologically
identical to each other. But in approximate method, two
graphs are isomorphic even in case of partial differences
[4, 15].

Canonical labeling– The investigation of subgraphs
isomorphism has high computational complexity. To
remove this problem by the labels of nodes and edges, to
each subgraph one unique code is attributed. This code is
called canonical labeling. Thus, instead of evaluating the
similarity of two graphs, it is adequate to review that two
graphs have similar canonical labeling or not [9].
Calculation complexity of canonical labeling is at worst
exponential. Different algorithms by defining different
canonical labeling try to reduce this problem.

III. CLASSIFICATION OF CANDIDATE GENERATION
APPROACHES

Three main challenges of candidate generation process
are: (i) redundant or isomorphic candidates, (ii)
infrequent candidates and (iii) the candidates that not
exist in the database. Frequent subgraphs mining
algorithms use different approaches to remove or reduce
these challenges. In Fig. 1 different algorithms are
classified based on their graph database and their
subgraph generation way. In the followings these
algorithms are introduced based on the method they use
for candidate generation.

A. Inductive Logic Programming
In this approach, subgraphs are displayed instead of

labeled graph as first order predicates by inductive logic
programming (ILP) [25]. For example, in a molecular
database, first order predicates such as atomel (C, A1, c),
atomel (C, A2, s), bond (C, A1, A2, BT) respectively
mean: carbon atom in chemical component of c is
denoted by parameter A1, Sulphur atom in chemical
component of C is denoted by A2 parameter and these
two atoms are connected by a bond of BT type. This kind
of graph representation is of two advantages. First,
without considering the type of connectivity of database,
we can easily display any database by first order
predicates. Second, two nodes in subgraph can be
mapped into one parameter in database while, in other
subgraphs mining algorithms this is not possible [3].
Thus, the candidate subgraphs mining issue is changed
into candidate first order predicates mining.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 221

© 2012 ACADEMY PUBLISHER

Figure 1. Classification of frequent subgraphs mining algorithms

WARMR [6] is the first system that uses ILP strategy
for candidate generation. Frequent predicates mining
requires equivalence checking. However, as no especial
subsumption is attributed for predicates equivalence
checking, its calculation complexity is very high. To
remove this problem, FARMAR [27] uses less strict
equivalence criterion. It means that even in case of
having partial differences in two predicates, they are
considered equivalent. This fact causes that in output
there will be multiple equivalent predicates with different
forms. The existing challenges in the counting stage of
this stagey changes that to unsuitable strategy. The main
advantage of this kind of candidate generation method is
the high power of displaying detected patterns.

B. Joining
The main idea of candidate generation by join was

raised in Apriori algorithm [1]. This algorithm is used for
mining frequent itemsets and creates frequent itemsets
((k+1) itemsets) by joining two frequent itemsets (k-
itemsets). By this method, Apriori uses support condition
property that was explained in section 2, to delete
infrequent k-itemsets. Generalizing this idea and fitting it
for graphs mining lead into algorithm Fig. 2 [11]. A lot of
algorithms use this approach. The differences of these
algorithms are in the type of their building block and in
the condition that they use for joining. The building block
based on the type of algorithm is node, edge or path.

Candidate generation by this approach includes three
kinds of costs. This first cost is related to core

identification, second subgraphs joining cost and the third
is counting the number of subgraphs frequencies [4]. As
in this paper only candidate generation approaches are
taken into consideration, only the two first costs reduction
strategies are introduced. One of the strategies to reduce
these costs is the reduction in the number of candidates.
AGM [17, 18, 19] by using this idea finds the only
induced subgraphs of database with definite support. A
subgraph GS = (VS, Es) of G = (V, E) is induced if Es
contains all the edges of E that connect vertices in VS.

This algorithm uses node for candidate generation.
Indeed, it bonds two frequent candidates with size k,
when it has common section with k-1 nodes. Although
induced subgraph mining reduces the research space of
the candidates, the candidates that are not induced are not
distinguished by algorithm. An induced subgraph can be
disconnected consisting of separate parts. As in most of
the applications connected graphs are considered, limiting
research to connected subgraphs doesn’t influence the
applicability of graph mining. FSG [22] algorithm by this
idea, only detects connected frequent subgraphs in
database. FSG uses edge building block and applies
different strategies to reduce candidate generation costs.
FSG stores canonical labels of all (k-1)-subgraphs of a k-
graph to reduce the cost of core identification. Therefore,
it can calculate the common core between two k-graphs
just by computing the intersection between canonical
label set of their subgraphs. Joining two subgraphs leads
into the generation of multiple graphs. As it is shown in
Fig. 3, one of the reasons is the presence of some

ILP

FARMAR

WARMR

Mining in multiple small graphs

Frequent subgraphs mining algorithms

Mining in single large graph

Replacing

AGM / ACGM

FSG

Joining

Extending

Gaston

GSPAN

MOFA

SUBDUE

GBI

Grew

Joining

H-SIGRAM

PATH Extending

SEUS

FSMA

Combinational

FFSM

222 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

Figure 2. Mining frequent subgraphs by joining

1. Find all subgraphs composed of a single building block

and eliminate nonfrequent subgraphs.
2. Find all candidate subgraphs composed of two building

block and eliminate nonfrequent candidates.
3. In step n:

a. Generate candidate subgraphs with n+1
building block by merging two subgraphs
with n building block that have a common
core with n-1 building block.

b. Eliminate nonfrequent candidates.
c. Stop when no more frequent subgraphs can

be generated.

automorphism in the core. FSG in core identification
step, stores the existing automorphisms in each core. So,
in join stage, instead of recalculating the automorphisms,
the stored automorphisms are used and joining cost is
reduced in this way.

FSG for candidate generation joins all the subgraphs
with common core. This case creates multiple candidates
that makes it inefficient in great database despite all its
candidate generation techniques. HSIGRAM [21] for the
reduction of the number of candidates joins two
subgraphs only when there is no common primary
subgraph. Two (k-1)-subgraphs of graph G, when among
all canonical labels of (k-1)-subgraphs have the smallest
canonical labels are called G primary subgraphs. This
candidate generation approach reduces the number of
irrelevant and redundant subgraphs. Another approach to
reduce candidates is increasing the size of building block
in the given algorithm in Fig. 2. [11] and [33] by using
this idea, use path building block and by less frequencies
detect frequent subgraphs (this algorithm is shown in Fig.
1 and Table I as path).

C. Replacing
In this strategy after detecting the frequent subgraph in

each stage, the detected subgraph is replaced by a node in
the main graph and in the next stage, mining process
continues on a new graph obtained from graph

replacing.Subdue [15] is the first algorithm in this group
uses this idea that the higher the number of subgraphs, the
more compressed graph is obtained while replacing it
with a node. This algorithm is starting by frequent nodes
and in each stage extends them by more nodes. To
determine the number of candidate’s frequencies, total
description length is used. Total description length of
candidate S in graph G shows compressing power S and
is obtained by the following equation:

 I(S) + I(G|S). (2)

I(S) is the number of the required bits to describe S and
I(G|S) is the number of required bits to describe graph G
while replacing S with one node. The candidate which
minimizes this value, it has high compressing power and
is recognized as the frequent subgraph. In this stage the
mining process is stopped and the input graph is rewritten
by replacing the detected frequent subgraph by a node
and the next iteration is started by the new input graph.
So, Subdue in each stage, makes input graph more
compressed and it is possible to compress the input graph
to one node.

GBI [40] has also candidate generation method similar
to Subdue. To avoid more compression of the graph
(about one node), the size of the explored subgraphs and
the compression amount of graph is determined by
experimental methods. In this algorithm in each stage the
aim is to find the best pair of node that by replacing it, a
compressed graph is obtained. The process is shown in
Fig. 4. This process continues till the graph size reaches
the determined amount. GBI despite Subdue stores the
existing data in each stage and it can recover the primary
graph in each stage of the search.

Subdue algorithm in each stage detects a frequent
structure. GBI also in each stage, checks one frequent
edge. This feature makes them inefficient in dense
databases. Because in dense database, the number of
input edges are more in comparison with the number of
nodes [11] and checking just one candidate in each stage
is very unsuitable. In addition, if database includes small
subgraph with high frequency , these two algorithms are
stopped after detecting it and they don’t check the
iteration of bigger subgraphs. GREW [23] is another
algorithm of this group applying some improvements for
the problems of two previous algorithms. This algorithm
in each moment can search some frequent edges and
replace them. To increase the diversity of subgraphs and
not just restricted to frequent sub graphs with high
frequency, it uses stochastic processes to select pair of
nodes.

D. Extending
If we consider search space of subgraphs as a tree

consisting of all database subgraphs, as the first level is
including no subgraph, the second level is consisting of
subgraphs with one edge and Kth level is including all the
subgraphs with k+1 edge, the joining-based approaches
for mining frequent subgraphs in this tree are obliged to
use breadth first search. Because these algorithms before
mining the (k+1)-subgraphs, mine totally k-subgraphs.

Figure 3. multiple automorphisms of a single core [22].

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 223

© 2012 ACADEMY PUBLISHER

Figure 4. Working method of GBI algorithm [40].

But extending-based approaches are flexible in using
search method and besides breadth first search, they can
use depth first search. The approaches using depth first
search for candidate generation are introduced as without
candidate generation appraoches in some of graph mining
researches [12, 14]. Because these appraoches instead of
generating all k-candidates and checking their iteration,
in each stage generate one candidate and check its
iteration simultaneously.

In this approach in each stage, frequent subgraph is
extended by adding edge in each possible situation of
frequent subgraph that was generated in the previous
stage. This case creates many redundant candidates.
Algorithms of this group use different methods to avoid
the creation of redundant candidates. As the existing
algorithms in this group are more than the previous
groups algorithms [2, 11, 26, 35, 36], just some of them
are discussed in this section.

Mofa [2] is the first algorithm of these series created
for molecular database but we can use it for the
considered graphs. This algorithm uses three kinds of
pruning to reduce redundant candidates. These prunings
are including: pruning based on size, pruning based on
support and structural pruning. In pruning based on size
some branches of trees leading into subgraphs, in which
the number of edges and nodes are more than
predetermined threshold, are pruned. Pruning based on
support uses support condition property for pruning. The
final and most important kind of pruning in this algorithm
is structural pruning that is possible by local numbering.
As the existing nodes in subgraph are numbered with the
order of their adding to the subgraph. When an edge is
added to node n in subgraph Gs, the next edges only can
be added to node n or bigger nodes. If we add to node n
some edges at the same time, the existing edges are
ordered based on their label and the label of the existing
nodes at their ends are ordered as ascending. Although
this kind of numbering method prevents considerably the
generation of redundant candidates, the algorithm still
generates many redundant candidates and then it uses
isomorphism test for redundancy pruning.

gSpan [36] uses a standard label for a graph, called
dfs-code. dfs-graph traversal is the order in which nodes
are observed. By joining the presence of edges in this
order, dfs-code will be the result. Candidate generation in
this algorithm is limited into two methods. At first,

subgraphs can be extended just in nodes that are in the
right path of dfs-tree. Second, gSpan stores for each
subgraph a list of database graphs including the related
subgraph. So, during subgraph extending, instead of
mining of the entire database, only the graphs in this list
are mined. As these two pruning rules can not totally
prevent the generation of redundant candidates, gSpan for
each subgraph calculates one canonical dfs-code and only
extends some parts with the minimum canonical code and
deletes the remaining.

SEUS [11] for rapid pruning of infrequent candidates
uses data structure with the name of Summary. This
structure is obtained by putting all input graph nodes with
similar label in one node and creates a compressive
representation of input graph. This data structure is just
suitable when the input graph is consisting of a little
number of frequent subgraphs with high frequency and it
is not suitable in cases where the database are including
multiple number of frequent subgraphs with low
frequency.

E. Combinational Approaches
The final types of algorithms are algorithms using the

ideas of previous approaches that were mentioned before
as combinational. Indeed, they are considered as smart
approaches that using the advantages of the different
candidate generation methods to remove the existing
challenges. FFSM [16] is the first algorithm of this group
that use combination of joining and extending for
candidate generation. Joining two subgraphs with
common core can leads into the generation of some
similar candidates. In addition, a single candidate can be
generated by many joining processes. This makes the
joining approach inefficient in great databases. In
extending approach, extension is only limited to some
nodes into which the new edge leads. Thus the algorithm
requires much time to check all the nodes. FFSM using a
different structure for displaying graphs and the
combinational method of joining and extending to
remove these challenges.

IV. THE EVALUATION OF FREQUENT SUBGRAPHS MINING
ALGORITHMS

Considering the multiple number of the existing
algorithms for frequent subgraphs mining, the selection
of a good algorithm can be very challenging. As the
claims of the proposed algorithms are based on the
special database that they have been tested on it, we
cannot guarantee their success in other databases and the
absolute evaluation of these algorithms are not possible.
But there are still some strategies for the evaluation of
these algorithms and the selection of appropriate
algorithm. These strategies are the following questions:

 What kind of graph is mined?
 Is background knowledge important during

mining?
 Is the exact or approximate nature of the result

important?
 What is the capacity of the available memory?

224 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

 Is it necessary that user during mining manages
the mining process?

 How important is losing subgraphs?

Table I.

The obvious properties of frequent subgraphs mining algorithms

The above questions are the ones that are suitable in the
selection of appropriate algorithm for a specific
application. For example, it is better that the applications

facing with memory shortage, use candidate generation
algorithms with depth first search. Or at times when the
speed is more important than exactness, it is better to use

Comparison Criteria

Algorithms

Effective
application area

Action
in dense
database

Search type Interaction
with user

Using of
background
knowledge

Isomorphism
test type

Search
method

Kind of
mined
subgraphs

Topology of
input
graph(s)

year

Databases
without
subgraphs with
high frequency

bad incomplete no yes approximate greedy connected labeled 1994 SUBDUE

Databases
without
subgraphs with
high frequency/
databases with
many nodes with
same label

bad incomplete no no exact greedy connected not limited 1994 GBI

- good incomplete no no exact greedy connected
Labeled,
undirected 1998 Grew

Proof of concept
of a framework bad

Based on
background
knowledge

no yes exact breadth
first connected not limited 1998 WARMR

Proof of concept
of a framework bad

Based on
background
knowledge

no yes approximate breadth
first connected not limited 1998 FARMAR

- bad complete no no exact breadth
first induced

not
limited 2000 AGM

Databases with
variety of node
and edge labels

bad complete no no exact breadth
first connected undirected 2001 FSG

High-scale
sparse graph bad complete no no adjustable breadth

first connected
Labeled,
undirected 2004 HSIGRAM

Data mining on
the increasing
fraction of
online
documents

bad complete no no exact breadth
first connected not limited 2006 PATH

Molecular
databases bad complete no no exact depth first connected

Labeled,
undirected 2002 Mofa

- bad complete no no exact depth first connected
Labele,
undirected 2002 gSpan

- bad complete no no exact depth first connected
Labele,
undirected 2004 Gaston

- good complete no no exact breadth
first connected labeled 2008 FASM

- bad complete no no exact depth first connected
Labele,
undirected 2003 FFSM

- bad adjustable yes no exact depth first connected
Labele,
undirected 2006 SEUS

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 225

© 2012 ACADEMY PUBLISHER

approximate isomorphism determination method to
increase speed. By answering these questions and the
similar questions, we can easily select the best algorithm
by the properties of algorithms shown in Table 1. In
addition, Table 1 also shows the properties of database in
which the related algorithms are undoubtedly having
good results.

V.CONCLUSION

In this paper frequent subgraphs mining algorithms were
investigated. At first, these algorithms were classified
based on their graph database and their subgraph
generation way and then in order to help the applications
in the selection of their suitable algorithms, their obvious
properties were presented in a form of table. Considering
the results, among the existing challenges in this field we
can refer to the worst action of most of the algorithms in
dense databases, the lack of interaction with the user, the
lack of presenting the middle results and time and
memory complexities. The presented evaluation is usefull
for creating combinational strategies that combine the
advantages of different strategies of candidate generation
to solve the challenges. Another direction for future
research is adding more algorithms and strategies to the
above classification The comparison and classification of
frequent subgraphs mining algorithms based on the
method they use to determine isomorphism is one of the
research fields taken a little attention and it can be
effective in designing efficient algorithms in this field

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms For Mining
Association Rules”, In Proceeding of the 20th Very Large
Dada Base . Conference(VLDB'94), Santiago, pp.487-499,
1994.

[2] C. Borgelt, MR. Berthold, “Mining Molecular Fragments:
Finding Relevant Substructures of Molecules”, In
Proceeding of the international conference on data mining
(ICDM’02), Japan, pp. 211–218, 2002.

[3] D. Chakrabarti and C. Faloutsos, “Graph Mining: Laws,
Generators, and Algorithms”, ACM Computing Surveys,
New York, pp.2-69, 2006.

[4] J. Cook and L. Holder, “Substructure Discovery Using
Minimum Description Length and Background
Knowledge”, Journal of Artificial Intelligence Research,
pp. 231-255, 1994.

[5] E. Damiani , B. Oliboni, E. Quintarelli and L. Tanca,
“Modeling Semistructured Data by Using Graph-Based
Constraints”, In Proceedings of OTM Workshops, pp.22-
23, 2003.

[6] L. Dehaspe and H. Toivonen, ” Discovery of Frequent
Datalog Patterns”, Data Mining and Knowledge Discovery,
pp.7-36, 1999.

[7] M. Deshpande , M. Kuramochi.M and G. Karypis,
“Frequent sub-structure-based approaches for classifying
chemical compounds”,In Proceedings of the international
conference on data mining (ICDM’03), pp. 35–42, 2003.

[8] AD. Doulamis, ND. Doulamis and ND. Kollias, “A
Pyramidal Graph Representation for Efficient Image
Content Description”, IEEE International Workshop on
Multimedia Signal Processing (MMSP), Denmark, pp.109-
114, 1999.

[9] S. Fortin, “The graph isomorphism problem”, Technical
Report TR96-20, Department of Computing Science,
University of Alberta, 1996.

[10] M. R. Garey and D. S. Johnson, “Computers and
Intractability:A Guide to the Theory of NP-Completeness”,
W. H.Freemanand Company, New York, 1979.

[11] E. Gudes, E. Shimony and N. Vanetik, “Discovering
Frequent Graph Patterns Using Disjoint Paths”, IEEE
Transactions on Knowledge and Data Engineering, Los
Angeles, pp.1441–1456, 2006.

[12] J. Han, H. Cheng, D. Xin and X. Yan, ”Frequent Pattern
Mining: Current Status and Future Directions”, Data
Mining and Knowledge Discovery (DMKD’07), 10th
Anniversary Issue, pp.55–86, 2007.

[13] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, Second edition:Morgan Kaufmann, 2005.

[14] J. Han, J. Pei and Y. Yin, “Mining Frequent Patterns
without Candidate Generation”, In Proceedings of the
ACM-SIGMOD International Conference on Management
of Data, Texas, pp.1–12, 2000.

[15] LB. Holder, DJ. Cook and S. Djoko, “Substructure
Discovery in the Subdue System”, In Proceeding of the
AAAI’94 workshop knowledge discovery in databases
(KDD’94), WA, pp 169–180, 1994.

[16] J, Huan, W. Wang, J. Prins, “Efficient mining of frequent
subgraph in the presence of isomorphism”, In Proceeding
of the international conference on data mining (ICDM’03),
Melbourne, pp.549–552, 2003.

[17] A. Inokuchi, T. Washio and H. Motoda, “An Apriori-
Based Algorithm for Mining Frequent Substructures from
Graph Data”, In Proceedings of the 4th European
Conference on Principles and Practice of Data Mining and
Knowledge Discovery(PKDD), pp.13–23, 2000.

[18] A. Inokuchi, T. Washio and H. Motoda ,”Complete Mining
of Frequent Patterns From Graphs: Mining graph data”,
MachineLearning, pp.321–354, 2003.

[19] A. Inokuchi, T. Washio, Y. Nishimura and H. Motoda,
“General Framework For Mining Frequent Patterns in
Structures”, In Proceedings of the ICDM workshop on
Active Mining (AM), Netherlands, pp.23–30, 2002.

[20] A. Kerber, R. Laue, M. Meringer and C. Rücker,
“Molecules in Silico: A Graph Description of Chemical
Reactions”, Journal of Chemical Information and
Modeling, pp.805-817, 2007.

[21] M. Kuramochi.M and G. Karypis, “Finding Frequent
Patterns In a Large Sparse Graph”, in Proceedings of the
4th SIAM International Conference on Data Mining (SDM
2004), USA, 2004.

[22] M. Kuramochi, G. Karypis, “Frequent Subgraph
Discovery”, In Proceedings of the international conference
on data mining (ICDM’01), California, pp.313–320, 2001.

[23] M. Kuramochi and G. Karypis, “GREW: A Scalable
Frequent Subgraph Discovery Algorithm”, In Proceeding
of the international conference on data mining
(ICDM’04), Brighton, pp.439–442, 2004.

[24] T. Meinl, C. Borgelt.C and Berthold.MR, “Discriminative
Closed Fragment Mining and Perfect Extensions in MoFa”,
In Proceedings of the 2th Starting AI Researchers'
Symposium (STAIRS), pp.3-14, Spain, 2004.

[25] S. Muggleton and L. DeRaedt, “Inductive Logic
Programming: Theory and Methods”, Journal of Logic
Programming, pp.629-679, 1994.

[26] S. Nijssen, J. Kok, “A Quickstart in Frequent Structure
Mining Can Make a Difference”, In Proceeding of the
ACM SIGKDD international conference on kowledge
discovery in databases (KDD’04), Washington, pp.647–
652, 2004.

226 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

[27] S. Nijssen.S and J. Kok, “Faster Association Rules For
Multiple Relations”, In Proceeding of the 17th
International Joint Conference on Artificial Intelligence,
pp.891-896, 2001.

[28] JA. Peng, LM. Yang, JX. Wang, Z. Liu and Li. Ming,
“An Efficient Algorithm for Detecting Closed Frequent
Subgraphs in Biological Networks”, in Proceedings of the
International Conference on BioMedical Engineering and
Informatics, USA, pp.677-681, 2008.

[29] R. Samudrala and J. Moult, “A graph-theoretic algorithm
for comparative modeling of protein structure”, Journal of
Molecular Biology, USA, pp.287-302,1998.

[30] A. Schenker, M. Last, H. Bunke and A. Kandel,
“Classification of Web Documents Using a Graph Model”,
In Proceedings of the 7th International Conference on
Document Analysis and Recognition (ICDAR'03), pp.233-
251, 2003.

[31] M. Shahriar Hossain and R. A. Angryk., “GDClust: A
Graph-Based Document Clustering Technique”, In
Proceedings of the 7th IEEE International Conference on
Data Mining, pp.417-422, 2007.

[32] T. Washio and H. Motoda, “State of the Art of Graph-
Based Data Mining”, ACM SIGKDD Explorations
Newsletter, NewYork , pp. 59–68, 2003.

[33] N. Vanetik, E. Gudes, SE. Shimony, “Computing Frequent
Graph Patterns From Semistructured Data”, In Proceedings
of the international conference on data mining
(ICDM’02), Japan, pp.458–465,2002.

[34] M. Worlein, T. Meinl, I. Fischer and M. Philippsen, “A
Quantitative Comparison of the Subgraph Miners MoFa,
gSpan, FFSM and Gaston”, In Proceedings of the 9th
European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD’05), Portugal,
pp.392–403, 2005.

[35] J. Wu and L. Chen, “Mining Frequent Subgraph by
Incidence Matrix Normalization”, Journal of Computers,
pp.109–115, 2008.

[36] X. Yan, J. Han, “GSpan: Graph-Based Substructure
Pattern Mining”, In Proceeding of the international
conference on data mining (ICDM’02), Japan, pp.721–724,
2002.

[37] X. Yan, PS. Yu and J. Han, “Graph Indexing: a Frequent
Structure-Based Approach”, In Proceedings of the
international conference on management of data
(SIGMOD’04), Chicago, pp.335-346, 2004.

[38] X. Yan, PS. Yu and J. Han, “Searching Substructures
With Superimposed Distance”, In Proceedings of the
International conference on data engineering (ICDE’06),
PP.888-989, 2006.

[39] X. Yan , PS. Yu and J. Han, “Substructure Similarity
Search in Graph Databases”, In Proceedings of the
international conference on management of data
(SIGMOD’05), pp.766-777, 2005.

[40] K. Yoshida, H. Motoda and N. Indurkhya, “Graph-based
Induction as a Unified Learning Framework”, Journal of
Applied Intelligence, pp.297–328.

[41] A. V. Zhdanova, L. Predoiu, T. Pellegrini, D. Fensel, “A
Social Networking Model of a Web Community“, In
Proceedings of the 10th International Symposium on
Social Communication , Cuba, pp. 537-541, 2007.

Mohammad Reza Keyvanpour is an
Associate Professor at Alzahra
University , Tehran, Iran. He received
his B.s in software engineering from
Iran University of Science
&Technology, Tehran, Iran. He
received his M.s and PhD in software
engineering from Tarbiat Modares
University, Tehran, Iran. His research

interests include image retrieval and data mining.

Fereshteh Azizani received her B.s in
software engineering from Islamic Azad
University, Qazvin Branch, Qazvin,
Iran. Currently, she is pursuing M.s in
software engineering at Islamic Azad
University, Qazvin Branch, Qazvin,
Iran. Her research interests include data
mining and graph mining.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 227

© 2012 ACADEMY PUBLISHER

