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Abstract— In recent years, data mining in graphs or graph 
mining have attracted much attention due to explosive 
growth in generating graph databases. The graph database 
is one type of database that consists of either a single large 
graph or a number of relatively small graphs. Some 
applications that produce graph database are as follows: 
Biological networks, semantic web and behavioral modeling. 
Among all patterns occurring in graph database, mining 
frequent subgraphs is of great importance. The frequent 
subgraph is the one that occurs frequently in the graph 
database. Frequent subgraphs not only are important 
themselves but also are applicable in other aspects of data 
analysis and data mining tasks, such as similarity search in 
graph database, graph clustering, classification, indexing, 
etc. So far, numerous algorithms have been proposed for 
mining frequent subgraphs. This study aims to create 
overall view of the algorithms through the analysis and 
comparison of their characterizations. To achieve the aim, 
the existing algorithms are classified based on their graph 
database and their subgraph generation way. The proposed 
classification can be effective in choosing applications 
appropriate algorithms and determination of graph mining 
new methods in this regard. 
 
Index Terms—Graph database, Data mining, Graph mining, 
Frequent subgraph 
 

I.  INTRODUCTION 

Presenting data as graph make expressing the existing 
connection between data as natural. This characteristic of 
graphs causes the increasing application of them for 
modeling complex structures such as images [8], 
chemical components [20], protein structure [29], 
biological networks [28], social networks [41], web [30] 
and XML documents [5]. Due to the speed of creating 
and increasing the number of graphs of modeling of 
complex structures, it is necessary to use a method to 
analysis efficiently this extensive amount of data. This 
makes data mining among graphs or graph mining an 
important field in data mining. 

Among all patterns occurring in graph database, 
mining frequent subgraphs is of great importance. The 
frequent subgraph is the one that occurs frequently in the 
graph databases. Frequent subgraphs not only are 

important themselves but are applicable in other aspects 
of data analysis and data mining tasks, such as similarity 
search in graph database, graph clustering, classification, 
indexing, etc. In classification and similarity search, 
using frequent subgraphs as feature leads to exact results 
and high scalability [7, 38, 39]. Clustering of spaces with 
high dimension is very challenging. As  the exploration 
of frequent subgraphs in subsets of dimensions are easily 
possible, we can use frequent subgraphs as a solution in 
the clustering of subspace and clustering of spaces with 
high dimension [31]. Efficient search in graph database is 
an unavoidable issue in many applications including 
detection of cancer structures. Large amount of data in 
these databases makes the ordinal research and one-to-
one test of the objects impossible and inefficient. By 
using frequent subgraphs mining strategies via indexing 
of frequent graphs, search speed can be increased 
considerably [37].  

Mining frequent subgraphs is an iterative process 
consisting of two main steps [24]. The first step is 
candidate generation. In this step, the subgraphs that are 
probably iterative or they are frequent candidates are 
generated. The next step is counting step. In this step, the 
frequencies of generated candidates in database are 
counted. To do this, the interested candidate should be 
searched in graph database. The approach of this step is 
different depending upon the type of graph database on 
which graph mining process is done. If database is just 
including one single large graph, the number of 
occurrences of subgraph is counted in it. But if database 
is consisting of multiple small graphs, the number of 
graph occurrences is not important in a special graph and 
it is equal to the number graphs in which that subgraph is 
existing [17]. The generated algorithms for mining on a 
single large graph can be applied for a set of graphs but 
the opposite is not true. In both cases, counting the 
number of occurrences of candidates requires the 
investigation of subgraph isomorphism that is an NP-
complete issue [10] and it is costly for great databases. 

Considering the increasing importance of frequent 
subgraphs, this paper attempts to create a general view 
toward frequent subgraphs mining algorithms by 
introducing these algorithms and presenting their 
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features. As most of the existing researches in this field 
are focusing on candidate generation step and they 
attempt to create algorithms that can mine the minimum 
number of subgraphs at a limited time, the main focus of 
this paper is on different kinds of candidate generation 
approaches. Here, the existing algorithms are classified 
based on their candidate generation method. Applications 
require the assessment of the existing methods for the 
selection of suitable algorithms. Although direct and 
comprehensive assessments of frequent subgraphs mining 
algorithms are not possible, this paper tries to guide the 
researchers in the selection of their required algorithm by 
presenting their obvious features in the form of a table.  

The rest of this paper is organized as follows. Section 2 
is dedicated to frequent subgraph mining, basic concepts 
and general definitions of frequent subgraphs mining. 
Section 3 classifies the different kinds of frequent 
subgraphs mining algorithms based on their graph 
database and their subgraph generation way. Section 4 
presents analogous assessment of algorithms. Finally the 
paper is concluded in Section 5.   

II.  FREQUENT SUBGRAPH MINING 

If D is the entry database, the frequent subgraphs 
mining aims to mine graphs with more support value in 
comparison with predetermined threshold [1]. The 
support of the subgraph GS is denoted by sub(Gs) and is 
given as 

(௦ܩ)݌ݑݏ = ୘୦ୣ ୬୳୫ୠୣ୰ ୭୤ ୥୰ୟ୮୦ୱ ୭୤ ஽ ୧୬ୡ୪୳ୢୣୢ ೞீ
୘୦ୣ ୲୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୥୰ୟ୮୦ୱ ୧୬ ஽

. (1) 

If Gs is subgraph of graph G, then sup (G) ≤ sup (GS). 
Indeed, it can be said that the subgraph frequency is 
inverse with its length. The subgraphs without this 
feature- by their length increased their frequency is 
increased- are called irrelevant subgraphs. This feature of 
support criterion can be used in premature pruning of 
infrequent subgraphs [13]. Because if a subgraph has less 
support than threshold (not frequent), the next created 
subgraphs from it will have less support considering the 
support criterion feature (it is not frequent) and they can 
be pruned. 

Frequent subgraphs mining is usually starting with 
frequent nodes and edges. Indeed, in the first step 
frequent subgraphs are mined by one node or one edge. 
This is easily possible through counting the frequency of 
the existing nodes and edges in database deleting the ones 
with support value less than threshold. In the next stage a 
new subgraph is generated by adding new nodes and 
edges to the subgraph resulted in the previous step. As it 
is possible that the new generated subgraph is not 
frequent, it is called candidate subgraph or shortly 
candidate [32]. Then the frequency of the candidate or the 
generated candidates are evaluated and the ones in which 
support value is more than threshold or equal with it, are 
returned as the input of the next step. This process 
continues till the time of execution of algorithm reaches a 
predetermined limit or all the frequent subgraphs are 

mined. In the followings two important concepts are 
presented in this area. 

Subgraph isomorphism- To determine the frequency of 
candidate, it is necessary to mine subgraphs that are 
isomorphic with the candidate in D. Two graph G1=(V1, 
E1) and G2=(V2, E2) are isomorphic if there is a mapping 
from V1 to V2 such that each edge in E1 is mapped to a 
single edge in E2 and vice versa. In labeled graphs, the 
labels should be added to the mapping. An automorphism 
is an isomorphism mapping where G1= G2 [21]. Graph G1 
is subgraph isomorphic with G2, if G1 is isomorphic with 
a subgraph of G2. Isomorphism is evaluated by two 
methods of exact and approximate. In exact method, two 
subgraphs are isomorphic if they are topologically 
identical to each other. But in approximate method, two 
graphs are isomorphic even in case of partial differences 
[4, 15]. 

Canonical labeling– The investigation of subgraphs 
isomorphism has high computational complexity. To 
remove this problem by the labels of nodes and edges, to 
each subgraph one unique code is attributed. This code is 
called canonical labeling. Thus, instead of evaluating the 
similarity of two graphs, it is adequate to review that two 
graphs have similar canonical labeling or not [9]. 
Calculation complexity of canonical labeling is at worst 
exponential. Different algorithms by defining different 
canonical labeling try to reduce this problem. 

III.  CLASSIFICATION OF CANDIDATE GENERATION 
APPROACHES 

Three main challenges of candidate generation process 
are: (i) redundant or isomorphic candidates, (ii) 
infrequent candidates and (iii) the candidates that not 
exist in the database. Frequent subgraphs mining 
algorithms use different approaches to remove or reduce 
these challenges. In Fig. 1 different algorithms are 
classified based on their graph database and their 
subgraph generation way. In the followings these 
algorithms are introduced based on the method they use 
for candidate generation. 

A.  Inductive Logic Programming  
In this approach, subgraphs are displayed instead of 

labeled graph as first order predicates by inductive logic 
programming (ILP) [25]. For example, in a molecular 
database, first order predicates such as atomel (C, A1, c), 
atomel (C, A2, s), bond (C, A1, A2, BT) respectively 
mean: carbon atom in chemical component of c is 
denoted by parameter A1, Sulphur atom in chemical 
component of C is denoted by A2 parameter and these 
two atoms are connected by a bond of BT type. This kind 
of graph representation is of two advantages. First, 
without considering the type of connectivity of database, 
we can easily display any database by first order 
predicates. Second, two nodes in subgraph can be 
mapped into one parameter in database while, in other 
subgraphs mining algorithms this is not possible [3]. 
Thus, the candidate subgraphs mining issue is changed 
into candidate first order predicates mining.  
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Figure 1.  Classification of frequent subgraphs mining algorithms

WARMR [6] is the first system that uses ILP strategy 
for candidate generation. Frequent predicates mining 
requires equivalence checking. However, as no especial 
subsumption is attributed for predicates equivalence 
checking, its calculation complexity is very high. To 
remove this problem, FARMAR [27] uses less strict 
equivalence criterion. It means that even in case of 
having partial differences in two predicates, they are 
considered equivalent. This fact causes that in output 
there will be multiple equivalent predicates with different 
forms. The existing challenges in the counting stage of 
this stagey changes that to unsuitable strategy. The main 
advantage of this kind of candidate generation method is 
the high power of displaying detected patterns. 

B.  Joining  
The main idea of candidate generation by join was 

raised in Apriori algorithm [1]. This algorithm is used for 
mining frequent itemsets and creates frequent itemsets 
((k+1) itemsets) by joining two frequent itemsets (k-
itemsets). By this method, Apriori uses support condition 
property that was explained in section 2, to delete 
infrequent k-itemsets. Generalizing this idea and fitting it 
for graphs mining lead into algorithm Fig. 2 [11]. A lot of 
algorithms use this approach. The differences of these 
algorithms are in the type of their building block and in 
the condition that they use for joining. The building block 
based on the type of algorithm is node, edge or path. 

Candidate generation by this approach includes three 
kinds of costs. This first cost is related to core 

identification, second subgraphs joining cost and the third 
is counting the number of subgraphs frequencies [4]. As 
in this paper only candidate generation approaches are 
taken into consideration, only the two first costs reduction 
strategies are introduced. One of the strategies to reduce 
these costs is the reduction in the number of candidates. 
AGM [17, 18, 19] by using this idea finds the only 
induced subgraphs of database with definite support. A 
subgraph GS = (VS, Es) of G = (V, E) is induced if Es 
contains all the edges of E that connect vertices in VS.  

This algorithm uses node for candidate generation. 
Indeed, it bonds two frequent candidates with size k, 
when it has common section with k-1 nodes. Although 
induced subgraph mining reduces the research space of 
the candidates, the candidates that are not induced are not 
distinguished by algorithm. An induced subgraph can be 
disconnected consisting of separate parts. As in most of 
the applications connected graphs are considered, limiting 
research to connected subgraphs doesn’t influence the 
applicability of graph mining. FSG [22] algorithm by this 
idea, only detects connected frequent subgraphs in 
database. FSG uses edge building block and applies 
different strategies to reduce candidate generation costs. 
FSG stores canonical labels of all (k-1)-subgraphs of a k-
graph to reduce the cost of core identification. Therefore, 
it can calculate the common core between two k-graphs 
just by computing the intersection between canonical 
label set of their subgraphs. Joining two subgraphs leads 
into the generation of multiple graphs. As it is shown in 
Fig. 3, one of the reasons is the presence of some 
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Figure 2. Mining frequent subgraphs by joining 

 

 
1. Find all subgraphs composed of a single building block 

and eliminate nonfrequent subgraphs. 
2. Find all candidate subgraphs composed of two building 

block and eliminate nonfrequent candidates. 
3. In step n: 

a. Generate candidate subgraphs with n+1 
building block by merging two subgraphs 
with n building block that have a common 
core with n-1 building block.  

b. Eliminate nonfrequent candidates.  
c. Stop when no more frequent subgraphs can 

be generated.  

automorphism in the core. FSG in core identification 
step, stores the existing automorphisms in each core. So, 
in join stage, instead of recalculating the automorphisms, 
the stored automorphisms are used and joining cost is 
reduced in this way. 

FSG for candidate generation joins all the subgraphs 
with common core. This case creates multiple candidates 
that makes it inefficient in great database despite all its 
candidate generation techniques. HSIGRAM [21] for the 
reduction of the number of candidates joins two 
subgraphs only when there is no common primary 
subgraph. Two (k-1)-subgraphs of graph G, when among 
all canonical labels of (k-1)-subgraphs have the smallest 
canonical labels are called G primary subgraphs. This 
candidate generation approach reduces the number of 
irrelevant and redundant subgraphs. Another approach to 
reduce candidates is increasing the size of building block 
in the given algorithm in Fig. 2. [11] and [33] by using 
this idea, use path building block and by less frequencies 
detect frequent subgraphs (this algorithm is shown in Fig. 
1 and Table I as path). 

C.  Replacing 
In this strategy after detecting the frequent subgraph in 

each stage, the detected subgraph is replaced by a node in 
the main graph and in the next stage, mining process 
continues on a new graph obtained from graph 

replacing.Subdue [15] is the first algorithm in this group 
uses this idea that the higher the number of subgraphs, the 
more compressed graph is obtained while replacing it 
with a node. This algorithm is starting by frequent nodes 
and in each stage extends them by more nodes. To 
determine the number of candidate’s frequencies, total 
description length is used. Total description length of 
candidate S in graph G shows compressing power S and 
is obtained by the following equation: 

 I(S) + I(G|S). (2) 

I(S) is the number of the required bits to describe S and 
I(G|S) is the number of required bits to describe graph G 
while replacing S with one node. The candidate which 
minimizes this value, it has high compressing power and 
is recognized as the frequent subgraph. In this stage the 
mining process is stopped and the input graph is rewritten 
by replacing the detected frequent subgraph by a node 
and the next iteration is started by the new input graph. 
So, Subdue in each stage, makes input graph more 
compressed and it is possible to compress the input graph 
to one node. 

GBI [40] has also candidate generation method similar 
to Subdue. To avoid more compression of the graph 
(about one node), the size of the explored subgraphs and 
the compression amount of graph is determined by 
experimental methods. In this algorithm in each stage the 
aim is to find the best pair of node that by replacing it, a 
compressed graph is obtained. The process is shown in 
Fig. 4. This process continues till the graph size reaches 
the determined amount. GBI despite Subdue stores the 
existing data in each stage and it can recover the primary 
graph in each stage of the search. 

Subdue algorithm in each stage detects a frequent 
structure. GBI also in each stage, checks one frequent 
edge. This feature makes them inefficient in dense 
databases. Because in dense database, the number of 
input edges are more in comparison with the number of 
nodes [11] and checking just one candidate in each stage 
is very unsuitable. In addition, if database includes small 
subgraph with high frequency , these two algorithms are 
stopped after detecting it and they don’t check the 
iteration of bigger subgraphs. GREW [23] is another 
algorithm of this group applying some improvements for 
the problems of two previous algorithms. This algorithm 
in each moment can search some frequent edges and 
replace them. To increase the diversity of subgraphs and 
not just restricted to frequent sub graphs with high 
frequency, it uses stochastic processes to select pair of 
nodes. 

D.  Extending  
If we consider search space of subgraphs as a tree 

consisting of all database subgraphs, as the first level is 
including no subgraph, the second level is consisting of 
subgraphs with one edge and Kth level is including all the 
subgraphs with k+1 edge, the joining-based approaches 
for mining frequent subgraphs in this tree are obliged to 
use breadth first search. Because these algorithms before 
mining the (k+1)-subgraphs, mine totally k-subgraphs. 

 
Figure 3. multiple automorphisms of a single core [22]. 
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Figure 4. Working method of GBI algorithm [40]. 

But extending-based approaches are flexible in using 
search method and besides breadth first search, they can 
use depth first search. The approaches using depth first 
search for candidate generation are introduced as without 
candidate generation appraoches in some of graph mining 
researches [12, 14]. Because these appraoches instead of 
generating all k-candidates and checking their iteration, 
in each stage generate one candidate and check its 
iteration simultaneously.  

In this approach in each stage, frequent subgraph is 
extended by adding edge in each possible situation of 
frequent subgraph that was generated in the previous 
stage. This case creates many redundant candidates. 
Algorithms of this group use different methods to avoid 
the creation of redundant candidates. As the existing 
algorithms in this group are more than the previous 
groups algorithms [2, 11, 26, 35, 36], just some of them 
are discussed in this section.  

Mofa [2] is the first algorithm of these series created 
for molecular database but we can use it for the 
considered graphs. This algorithm uses three kinds of 
pruning to reduce redundant candidates. These prunings 
are including: pruning based on size, pruning based on 
support and structural pruning. In pruning based on size 
some branches of trees leading into subgraphs, in which 
the number of edges and nodes are more than 
predetermined threshold, are pruned. Pruning based on 
support uses support condition property for pruning. The 
final and most important kind of pruning in this algorithm 
is structural pruning that is possible by local numbering. 
As the existing nodes in subgraph are numbered with the 
order of their adding to the subgraph. When an edge is 
added to node n in subgraph Gs, the next edges only can 
be added to node n or bigger nodes. If we add to node n 
some edges at the same time, the existing edges are 
ordered based on their label and the label of the existing 
nodes at their ends are ordered as ascending. Although 
this kind of numbering method prevents considerably the 
generation of redundant candidates, the algorithm still 
generates many redundant candidates and then it uses 
isomorphism test for redundancy pruning.  

gSpan [36] uses a standard label for a graph, called 
dfs-code. dfs-graph traversal is the order in which nodes 
are observed. By joining the presence of edges in this 
order, dfs-code will be the result. Candidate generation in 
this algorithm is limited into two methods. At first, 

subgraphs can be extended just in nodes that are in the 
right path of dfs-tree. Second, gSpan stores for each 
subgraph a list of database graphs including the related 
subgraph. So, during subgraph extending, instead of 
mining of the entire database, only the graphs in this list 
are mined. As these two pruning rules can not totally 
prevent the generation of redundant candidates, gSpan for 
each subgraph calculates one canonical dfs-code and only 
extends some parts with the minimum canonical code and 
deletes the remaining. 

SEUS [11] for rapid pruning of infrequent candidates 
uses data structure with the name of Summary. This 
structure is obtained by putting all input graph nodes with 
similar label in one node and creates a compressive 
representation of input graph. This data structure is just 
suitable when the input graph is consisting of a little 
number of frequent subgraphs with high frequency and it 
is not suitable in cases where the database are including 
multiple number of frequent subgraphs with low 
frequency. 

E.  Combinational Approaches 
The final types of algorithms are algorithms using the 

ideas of previous approaches that were mentioned before 
as combinational. Indeed, they are considered as smart 
approaches that using the advantages of the different 
candidate generation methods to remove the existing 
challenges. FFSM [16] is the first algorithm of this group 
that use combination of joining and extending for 
candidate generation. Joining two subgraphs with 
common core can leads into the generation of some 
similar candidates. In addition, a single candidate can be 
generated by many joining processes. This makes the 
joining approach inefficient in great databases. In 
extending approach, extension is only limited to some 
nodes into which the new edge leads. Thus the algorithm 
requires much time to check all the nodes. FFSM using a 
different structure for displaying graphs and the 
combinational method of joining and extending to 
remove these challenges. 

IV.  THE EVALUATION OF FREQUENT SUBGRAPHS MINING 
ALGORITHMS 

Considering the multiple number of the existing 
algorithms for frequent subgraphs mining, the selection 
of a good algorithm can be very challenging. As the 
claims of the proposed algorithms are based on the 
special database that they have been tested on it, we 
cannot guarantee their success in other databases and the 
absolute evaluation of these algorithms are not possible. 
But there are still some strategies for the evaluation of 
these algorithms and the selection of appropriate 
algorithm. These strategies are the following questions: 

 What kind of graph is mined? 
 Is background knowledge important during 

mining? 
 Is the exact or approximate nature of the result 

important? 
 What is the capacity of the available memory? 
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 Is it necessary that user during mining manages 
the mining process? 

 How important is losing subgraphs?

 
Table I.  

The obvious properties of frequent subgraphs mining algorithms 

 
The above questions are the ones that are suitable in the 
selection of appropriate algorithm for a specific 
application. For example, it is better that the applications 

facing with memory shortage, use candidate generation 
algorithms with depth first search. Or at times when the 
speed is more important than exactness, it is better to use 

Comparison Criteria  

 

Algorithms  

Effective 
application area 

Action 
in dense 
database 

Search type Interaction 
with user 

Using of 
background 
knowledge 

Isomorphism 
test type 

Search 
method 

Kind of 
mined 
subgraphs 

Topology of 
input 
graph(s) 

year 

Databases 
without 
subgraphs with 
high frequency 

bad incomplete no yes approximate greedy connected labeled  1994 SUBDUE 

Databases 
without 
subgraphs with 
high frequency/ 
databases with 
many nodes with 
same label 

bad incomplete no no exact  greedy connected not limited 1994 GBI 

- good incomplete no no exact greedy connected 
Labeled, 
undirected  1998 Grew 

Proof of concept 
of a framework bad 

Based on 
background 
knowledge 

no yes exact breadth 
first connected not limited  1998 WARMR 

Proof of concept 
of a framework bad 

Based on 
background 
knowledge 

no yes approximate breadth 
first connected not limited  1998 FARMAR 

- bad complete no no exact breadth 
first induced 

not 
limited  2000 AGM 

Databases with 
variety of node 
and edge labels 

bad complete no no exact breadth 
first connected undirected  2001 FSG 

High-scale 
sparse graph bad complete no no adjustable breadth 

first connected 
Labeled, 
undirected  2004 HSIGRAM 

Data mining on 
the increasing 
fraction of 
online 
documents 

bad complete no no exact breadth 
first connected not limited  2006 PATH 

Molecular 
databases bad complete no no exact depth first connected 

Labeled,
undirected  2002 Mofa 

- bad complete no no exact depth first connected 
Labele, 
undirected  2002 gSpan 

- bad complete no no exact depth first connected 
Labele, 
undirected  2004 Gaston 

- good complete no no exact breadth 
first connected labeled  2008 FASM 

- bad complete no no exact depth first connected 
Labele, 
undirected  2003 FFSM 

- bad adjustable yes no exact depth first connected 
Labele, 
undirected  2006 SEUS 
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approximate isomorphism determination method to 
increase speed. By answering these questions and the 
similar questions, we can easily select the best algorithm 
by the properties of algorithms shown in Table 1. In 
addition, Table 1 also shows the properties of database in 
which the related algorithms are undoubtedly having 
good results. 

V.CONCLUSION  

In this paper frequent subgraphs mining algorithms were 
investigated. At first, these algorithms were classified 
based on their graph database and their subgraph 
generation way and then in order to help the applications 
in the selection of their suitable algorithms, their obvious 
properties were presented in a form of table. Considering 
the results, among the existing challenges in this field we 
can refer to the worst action of most of the algorithms in 
dense databases, the lack of interaction with the user, the 
lack of presenting the middle results and time and 
memory complexities. The presented evaluation is usefull 
for creating combinational strategies that combine the 
advantages of different strategies of candidate generation 
to solve the challenges. Another direction for future 
research is adding more algorithms and strategies to the 
above classification The comparison and classification of 
frequent subgraphs mining algorithms based on the 
method they use to determine isomorphism is one of the 
research fields taken a little attention and it can be 
effective in designing efficient algorithms in this field 
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