
A Petri-net and QoS Based Model for Automatic
Web Service Composition

Bin Li, Yan Xu, Jun Wu, Junwu Zhu

School of Information Engineering, Yangzhou University
Yangzhou, China

e-mail: lb@yzu.edu.cn, changzhou213@gmail.com, j_wu@vip.sohu.net, jdkr@163.com

Abstract—Web services are widely used because of their
features of interoperability, loose-coupled and platform
independent. Web services composition is one of the most
popular topics in service computing area. In this paper a
method based on Petri net coverability problem and utility
of Web services is proposed to handle automatic service
composition. The former is for satisfying functional
requirements of service composition while the latter
corresponds to non-functional properties. For a set of given
services, each service is translated into component of Petri
net and the input/output places with same semantics are
merged. According to user’s input and desired output, the
initial marking and target marking can be obtained. Then
the coverability tree and coverability graph can be
constructed. Next, the nodes on the coverability graph
which can cover the target marking should be find out. If
there are more than one coverability paths, we determine
the smallest weight denoted as “SW” on each path. The
weight is defined as the utility calculated according to the
QoS. At last, services on the path with largest SW are
selected as service executing sequence to reach the goal of
automatic service composition.

Index Terms—Petri net; Web services; automatic
composition; coverability; QoS

I. INTRODUCTION
As the rapid development of Internet, current

computing environment has changed into large scale
distributed scene. Due to the open environment and
heterogeneous platform, different applications work
together has become more and more complicated and
difficult. There is no doubt that Web services bring new
livingness to solve the problem. Web services have the
feature of interoperability, loose-coupled and platform
independent [1]. As a result, services are attached more
and more importance.

On the one hand, different services run on different
platform may be created in distinct way and implemented
by different program languages. The user's requests need
to compose reasonable according to application
background. On the other hand, for the purpose of reuse,
single Web service is impossible too complex. In other
words, single service has limited function which can not
satisfy the requirement of practice application. So it is also
necessary to compose multiple services to accomplish
more complicated tasks. A composite service is a service

has more complex structure and more powerful function.
Traditional method of service composition need man-
made definition of interact process between Web services,
and manual coding to complete the task. Both WS-BPEL
[2] and WSCDL [3] provide support for service
composition, in which described how to compose several
basic services to more complicated services. However,
neither of them can do their work automatically because
they work on grammar level. What’s more, both of them
take no account of quality of services (QoS).

 Automatic service composition requires the program
or the Agent to automatically select and assemble suitable
Web services to achieve the goal, while the users only
need to give a task description with regular format on
higher level. The description may consist of what task to
complete and the quality requirements about the task. The
method this paper proposed can properly satisfy this
requirement.

The contribution of this paper on the one hand is to use
the coverability problem of Petri net to judge whether the
service composition satisfy the functional requirements.
On the other hand, we extend the traditional coverability
graph by adding weight on each edge as the accordance to
select the best solution for composition. This paper
focuses on the following work. Given a set of Web
services, according to user’s input and desired output, we
judge whether there exists a subset of the services which
can be composed to satisfy the user’s requirement. If so,
we will find out the subset. What’s more, the executable
order of the services also can be found. Our method is
based on Petri net coverability problem. The given
services are translated into Petri net, whose coverability
tree and coverability graph can be soon constructed. At
last the node on the coverability graph which can cover
the target marking should be find out, then the services on
the coverability path with largest SW means the
executable service sequence to compose.

The rest of this paper is organized as follows. Some
concepts about Petri net and service composition have
been introduced in Section II. In Section III we give more
details about our method. Two algorithms are given to
depict how to compose services automatically.
Subsequently, an example is used to show how our
method performs. Related work is discussed in Section V.
Finally, Section VI concludes.

II. CONCEPTS ABOUT PETRI NET AND WEB SERVICE
COMPOSITION

Petri net theory comes from Carl Adam Petri’s PhD
thesis [4] and was greatly enriched in later decades.
Because Petri net is fit to describe asynchronous and

Project number: 60903130, BK2007074, BK2009698, BK2009699.

Corresponding author: Bin Li, Yangzhou University, Yangzhou, China.
Email: lb@yzu.edu.cn.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 149

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.1.149-155

parallel computer system model, it is widely used in
computer science today. This paper will use Petri net to
solve the problem of automatic service composition, so it
is necessary to introduce the related concepts briefly.

Definition 1 [5] (Petri net). A Petri net is a 5-tuple, N
= (S, T; F, W, M0) where:

• S is a set of places and T is a set of transitions,
S T = ∅I , S T ≠ ∅U ,

• F S T T S⊆ × ×U is a set of flow relation,
• () ()dom F cod F S T=U U , where
 () { | : (,) }dom F x y x y F= ∃ ∈ is the domain
of F,
 () { | : (,) }cod F y x x y F= ∃ ∈ is the range of
F,
• W:F {1,2,3,…} is a weight function,
• M0: S {0,1,2,3,…} is the initial marking.
Definition 2 [6] (pre-set and post-set). Suppose x X∈

is arbitrary element of N,
• { | (,) }x y y x F• = ∈ is called pre-set of x,
• { | (,) }x z x z F• = ∈ is called post-set of x.
Definition 3 [6] (coverability). Suppose M and M’ are

two markings of Petri net N = (S, T; F, W, M0), if
s S∀ ∈ : M(s) ≤ M’(s), we say M is covered by M’,

denoted by M ≤ M’.
Definition 4 (coverability path). Suppose S is a node

on coverability graph of Petri net N, S has marking Ms, if
M ≤ Ms, the path from root node of coverability graph to
node S is called the coverability path of M.

Definition 5 (effective transition). Suppose Mg is the
target marking of N= (S, T; F, W, M0), ||M0|| is the support
set of M0, ||Mg|| is the support set of Mg, t T∀ ⊆ , when
and only when

• s∃ ∈ ||M0||, there exists a directed path from s to t,
• ∃ s’∈ ||Mg||, there exists a directed path from t to

s’,
then t is called effective transition.
There are multiple definitions for Web service

composition in academe. This paper gives our definition
as follows.

Definition 6 (Web service composition). Web service
composition is to select a set of services from several
available services. The selected services can form a new
executable service which is more complex and can accept
user’s input to create the desired output according to
specific construct method.

III. THE METHOD OF AUTOMATIC WEB SERVICE
COMPOSITION

Figure 1. Service to Petri net

In the process of composing Web services, a set of
services can be found in the register center such as UDDI
[7]. The way of looking up service is based on key words
match, so there are always multiple services can
implement specific function. We consider QoS as the
select standard. On the other hand, it is not clear whether
exists a set of services among available services which
can meet user’s requirement exactly by composition. Petri
net is useful tool to analysis this question.

A. From Web services to Petri net
Web services are functional entities with certain input

and output. Each service has one or more input and
output. We map every input and output of single service
into places of Petri net. At the same time treat each service
as a transition. Input places are the pre-set of transition,
while output places are the post-set of transition. Services
can be expressed as the form in Figure 1. Figure (a) means
service1 has one input and one output. Figure (b) means
service2 has three inputs and one output.

Users will provide necessary input, which can be
looked upon tokens in the input places. For example, in
Figure 1(a), one token in place a means user input the
information about a. The reason for one token in place c
in Figure 1(b) is the same.

In a large number of places, there will be several
places with the same semantic meaning. All places with
same semantics should be merged to one place with the
tokens totally added. For instance in Figure 2(a), two
services are listed. The service bookInfoQuery accepts
bookName as input and output bookInfo. The service
bookDeal accepts bookName and quantity as input and
then output bookDealList. Here the “bookName” input in
both services has the same semantics, so the two places
are merged into one place, in which the number of tokens
is sum of tokens before being merged. Here, the semantics
of these places can be mapped from external ontology.
Details are not discussed in this paper.

Figure 2. Merge the places with the same semantic meaning

After merging all the places with the same semantics,
all the services organized as a Petri net. Of course, current
Petri net may be connected or not. As we know transitions
represent services, in terms of the definition of effective

150 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

transition in Definition 5, if a transition is not effective,
there not exists causality between the transition and input
or desired output. Obviously, the corresponding services
will never be used. As a result, the services can be deleted
from Petri net. This operation brings the benefit of
reducing service select scope and improving the
composition efficiency. According to the number of
tokens in all the places initial marking can be obtained.
Further more, the target marking Mg is got by setting
desired output places with the value “1” and other places
“0” instead.

B. The utility of services
In the register center, different services may have the

same function with distinct qualities. If we choose bad
service to compose, the overall quality of the composite
service is impossible good. Therefore, we have to consider
the quality about each member service. When given a set
of service to compose to a specific one, if several
solutions exist, we can determine the best solution by
QoS.

In this paper we take QoS into account as following
aspects.

• Response time. It denotes the time from requests
send out to results back. The time consists of three
parts. The following expression can calculate
response time. Tresponse = TsendRequest + Texecute +
TsendResult, where TsendRequest means the transmission
time of the request send to the server, Texecute is the
execution time of the service and TsendResult denotes
the duration of result transmitted to the user.

• Reliability. We use it to measure the probability
of successful executing services. Here, success
means the services can return accurate results. R =
s / n, where s is the number of times the service
successfully execute within a certain time, n is the
number of invocations in the same time interval.
Obviously, the higher reliability brings the better
service quality.

• Usability. This property shows the probability of
the services can be available on line since they
published. The expression U = Ton / (Ton + Toff)
can calculate the usability. Ton is the time of the
service available on line while Toff figures out the
failure time.

• Cost. It means the fee has to pay for the service.
Whether the service is cheap depends on the
provider.

Different QoS property has different measurement.
For instance, response time measured by milliseconds or
seconds, both reliability and usability are probability, and
cost is scaled by currency. It’s a problem how to turn
these different measurements to the utility we need. Paper
[8] introduced a method, which had two phases. In the
first phase, namely scaling phase, QoS properties with
different measurements were transformed to the values
between [0, 1]. Then in weighting phase, the second phase,
different QoS values multiplied different weights to get
the overall utility of the service. The importance of the
different QoS values depends on the user’s preference. For
example, some users take more importance on reliability
and usability while some users prefer cheaper services.

C. Construct the coverability tree and coverability
graph
In [5] a method to construct coverability tree is given.

How to transform the coverability tree to coverability
graph is also introduced. This paper extends the traditional
coverability tree and graph by adding utilities of services
on edges as weights of transitions. For net N = (S, T; F,
W, M0), the algorithm to construct coverability tree T(N) is
listed as follows.

Algorithm 1
Input: the Petri net N=(S, T; F, W, M0), the value pairs

of the transitions and the utilities {<t1, u1>, <t2, u2>, … ,
<tn, un>}

Output: the coverability tree T(N)
(1) Label the initial marking M0 as the root and tag it

“new.”
(2) While “new” markings exist, do the following:

(2.1) Select a new marking M.
(2.2) If M is identical to a marking on the path

from the root to M, the tag M “old” and go
to another new marking.

(2.3) If no transitions are enabled at M, tag M
“dead-end.”

(2.4) While there exist enabled transition at M,
do the following for each enabled
transition t at M:

 (2.4.1) Obtain the marking M’ that results
from firing t at M.

 (2.4.2) On the path from the root to M if
there exists a marking M’’ such that
M’(s) ≥ M’’(s) for each place s and
M’≠ M’’, that is, M’’ is coverable,
then replace M’(s) by ω for each s
such that M’(s) > M’’(s).

 (2.4.3) Introduce M’ as a node, draw an arc
with label t from M to M’, label the
corresponding utility of t as the
weight of this arc, and tag M’ “new.”

Using former algorithm we can get coverability tree
T(N), which can be translated to coverability graph G(N)
via establishing full mapping h: T(N) G, where [6]

• If x is a node on T(N), then h(x) is a node on G
and h(x) has the same label with Mx which is the
label where x has on T(N).

• If (x, y) is a directed arc on T(N) with label of
transition t and w as the weight, then (h(x), h(y)) is
a directed arc on G with label of t and weight of w.

• x and y are the different nodes on T(N), h(x) =
h(y) when and only when Mx=My and both x and y
on the same path on T(N) from the root node r.

D. Automatic composing
The target marking Mg is determined by the desired

output, i.e., each of the corresponding place has one token
in it while there is no token in other places. Thereby, if
there exists a node with marking M on the coverability
graph, and Mg≤ M, then each desired output place has
token under marking M. That is to say, subset of available
services can be found out to satisfy user’s requirement
after composing. Here, on the coverability graph the node
which can cover Mg may be not single. So we have to find
out each coverability path for the corresponding
coverability node. Then we determine the smallest weight,

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 151

© 2012 ACADEMY PUBLISHER

denoted as “SW”, on each path. The transitions on the
coverability path with largest SW stand for the subset of
available services can be composed. The executive order
is from root to the coverability node on the path.

E. Algorithm for automatic composition
As we narrate previously, an algorithm for automatic

Web services composition is concluded.
Algorithm 2
Input: a set of available services, user’s input and

requirement about QoS.
Output: executive service sequence or the information

about composing failed.
(1) Translate each available service with the form of

places and transitions, construct their binary
relation.

(2) In terms of user’s input, add a token to each
corresponding place.

(3) Merge all the places with the same semantics to
make the services compose to a Petri net. At the
same time, the number of tokens in merged places
is the sum of tokens before being merged.

(4) Check each transition whether it is an effective
transition, if not, delete the transition. If its input
places and output places become isolated, delete
them as well as the tokens in, else decrease a
token in input place on condition that there are
tokens in before.

(5) Get the initial marking M0 of the new Petri net.
(6) The target marking Mg is gained by setting desired
output places with the value “1” and other places “0”
instead.
(7) Compute the QoS value as the utility of each
service.
(8) Construct the coverability tree and coverability
graph.
(9) Look up all over the coverability graph

 (9.1) If there exists a node S with marking M on
the coverability graph, and Mg≤ M, then get
the coverability path. If there are more than
one node like this which bring more
coverability paths, find out every smallest
weight (SW) on each path. Compare with
these SW values, transitions labeled on the
path with maximal SW means the executive
sequence of Web service.

 (9.2) If there not exists any node whose marking
can cover Mg, return composing failed.

IV. CASE STUDY
In this section a simple example is given to show how

Algorithm 2 performed to compose services
automatically.

Figure 3. Available services

Figure 4. Translate services into Petri net

Supposing a user want to buy book on line. He or she
can query the details about the books through book query
services. When buying books, the user has to input the
information such as book name and address. The buyer
won’t get books shipped from the seller until he or she
pays on line. A few available services are listed in Figure

3. On the left of the symbol “ ” are inputs of the services
while the outputs are on the right side.

The user provides book name, address, quantity, zip
code, phone number, recipients, bank account and
password as input and relevant requirement on QoS. We
assume the user prefers pay service with higher reliability

152 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

and ship service with shorter response time. The desired
output is shipped.

As mentioned in previous section, first we represent
every service with places and transitions. Then add tokens
to places in terms of user input and merge places with
same semantic meaning. The corresponding Petri net is
shown in Figure 4.

According to the definition of effective transition, we
find t0 and t1 are not effective transitions. So they can be
deleted from the compositive Petri net to simplify the
following operations. In terms of Algorithm 2, the places
keywords and bookInfo can also be deleted. The number
of tokens in bookName decrease 1. After simplifying the
Petri net, it looks like in Figure 5.

Figure 5. The simplified Petri net

The initial marking M0 = (1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
0, 0), and the target marking Mg = (0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1).

The extended coverability graph is constructed as
described in Algorithm 1 and Algorithm 2. It is shown in
Figure 6. The weight of each transition keeps accordant
with the QoS given in Figure 3.

Figure 6. coverability graph

Here, S0 is the same node with the root node on the
coverability tree. Its marking is M0 = (1, 1, 1, 1, 1, 1, 0, 0,
0, 1, 1, 0, 0), node S1 has marking (0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 0, 0), node S2 has marking (0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 1, 0), node S3 has marking (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1).

Only the marking of node S3 can cover the target
marking Mg, all the executable sequences are: t2 t3 t5,
t2 t3 t6, t2 t4 t5 and t2 t4 t6. The smallest
weights of them are 0.76, 0.87, 0.71 and 0.71. Obviously,
t2 t3 t6 has highest SW value 0.87. Thus, we find out
the services can be composed to fit users’ requirement,
and achieve the goal of composing Web services
automatically.

V. RELATED WORK
Many researchers in and out of home have made great

study about services composition, mainly considered
aspects as follows.

• Static service composition based on WS-BPEL
WS-BPEL mainly referred to Web service

orchestration. A center node plays the role of commander
who is responsible for coordinating other services by
invoking them. Each member service is selected before
running, as well as the flow is defined. If problems
emergent when running, only compensate mechanism
defined beforehand can work to handle the problems.
Dynamic regulating is not supported. Therefore, the
composition based on WS-BPEL is static. In paper [9]
interoperation between Web services are described as
business flow. The composition method is based on WS-
BPEL, so it can’t compose automatically.

• Dynamic composition based on semantic Web
services

Semantic Web services relate to ontology. The goal of
ontology [10] is to obtain knowledge about related
domain, provide common comprehension for the domain
knowledge and determine vocabulary in the domain. The
knowledge provided by ontology enables the computer to
deal with information automatically. Semantic Web
services are described by ontology description language
such as OWL-S [11]. User’s preference and QoS
requirements can also depict when compose services.

The composition of semantic Web services always
combines with Multi-Agent System (MAS) [12] and
Agent organization [13]. Some frameworks have already
been proposed. Agent is initiative with reasoning
capability, so it always used as a procurator for the service
to coordinate the interactions among them. This
composition method is suitable in dynamic environment.
If the environment changed, the composite service can
adapt itself, e.g. change the structure or the flow of
composite service. The ALIVE project [14, 15] discussed
the service how to self-adapt in dynamic environment.

• Automatic composition based on formal methods
Formal tools consist of automata, Petri net and process

algebras.
In [16] the author study an abstract form of service

composition where Web services are represented as
nondeterministic communicating automata. The service
composition problem consists, given a client service, a
goal service and a community of available services, to
determine whether there exists a mediator service able to
communicate with the client and the services of the given
community in such a way that their global behavior
satisfies the client service request expressed as the given
goal service.

In [17] a Petri net-based algebra for composing Web
services is proposed. The formal semantics of the
composition operators is expressed in terms of Petri net by
providing a direct mapping from each operator to a Petri
net construction. Thus, any service expressed using the
algebra constructs can be translated into a Petri net
representation.

In [18] an automatic service composition method is
given. The services available are translated into a set of
Horn clauses. User’s input and output requirements are
modeled as a set of facts and a goal statement in the Horn
clauses respectively. Then Petri net is chosen to model the
Horn clause set and T-invariant technique is used to
determine the existence of composite services fulfilling
the user’s input/output requirements.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 153

© 2012 ACADEMY PUBLISHER

Paper [19] introduces a service-oriented software
architecture called WS-NET which based on colored Petri
net. WS-Net describes each web services component in
three layers: interface net, interconnection net and
interoperation net. It is executable, expressive and easy to
use. However, transferring the WSDL specifications into
the WS-Net specifications have to be manually.

In [20] the authors advocate the use of process
algebras to describe, compose, and verify web services,
with a particular focus on their interactions. To this aim, a
case study is given in which they use CCS to specify and
compose web services as processes.

VI. CONCLUSIONS AND FUTURE WORK
An automatic Web services composition method is

proposed in this paper. Both functional and non-functional
requirements are considered. For the functional aspect,
Web services are translated into Petri net by merging the
places with same semantics. Delete all the non-effective
transitions and isolated places. Initial marking and target
marking are determined in terms of user’s input and
desired output. Then construct the extended coverability
graph of the Petri net to find out the node which can cover
the target marking. If exists the node, that means the
subset of given services can satisfy the functional needs.
Otherwise, the composition fails.

We calculate utilities of each service through QoS
properties and user’s preference (e.g. which property is
more important). When construct coverability graph the
utilities are labeled onto related arcs as weights. If there
are multiple coverability paths, find out every smallest
weight of the services on each path. Choose the services
on the path with maximal SW to compose. Non-functional
requirement can also meet.

The method introduced in this paper can compose the
Web services effectively. Nevertheless, this method didn’t
consider the potential restriction of executing order
between services. We will take care of this problem next.
In addition, if the composed service has runtime
exceptions, a common solution is to replace the
corresponding services. If there is no suitable service as
alternative, the method proposed in this paper can also be
useful to compose a service to replace. This is also our
consideration in the future.

ACKNOWLEDGMENT
This paper is supported by the National Science

Foundation of China under Grant No. 60903130, and the
Natural Science Foundation of the Jiangsu Province of
China under Grant No. BK2007074, BK2009698,
BK2009699.

REFERENCES
[1] A. Tsalgatidou and T. Pilioura, “An overview of standards

and related technology in Web services,” Distributed and
Parallel Databases, Vol. 12, Sep. 2002, pp. 135–162, doi:
10.1023/A:1016599017660.

[2] Web Services Business Process Execution Language
Version 2.0, OASIS Standard, April 2007, Available at:
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[3] Web Services Choreography Description Language
Version 1.0, W3C Candidate Recommendation, November
2005, Available at: http://www.w3.org/TR/ws-cdl-10/.

[4] C. A. Petri, “Kommunikation mit automaten, ” PhD thesis,
Institut fur Instrumentelle Mathematik, Schriften des IIM 2,
Bonn, Germany 1962.

[5] T. Murata. “Petri nets: properties, analysis and
applications,” Proc. IEEE, vol. 77, No. 4, Apr. 1989, pp.
541-580, doi: 10.1109/5.24143.

[6] C. Y. Yuan, “The principles and applications of Petri net,”
publishing house of electronics industry, Mar. 2005, (in
Chinese).

[7] UDDI Spec TC Version 3.0.2, OASIS Standard, October
2004, Available at: http://uddi.org/pubs/uddi_v3.htm.

[8] L. Z. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J.
Kalagnanam and H. Chang, “QoS-Aware Middleware for
Web Services Composition,” Software Engineering, IEEE
Transactions on Volume 30, Issue 5, May 2004, pp:311 –
327, doi: 10.1109/TSE.2004.11.

[9] D. Mandell and S. McIlraith, “Adapting BPEL4WS for
the Semantic Web: The Bottom-Up Approach to Web
Service Interoperation,” Proc. of the 2nd International
Semantic Web Conference (ISWC 2003), LNCS 2870,
2003, pp. 227-241.

[10] N. F. Noy, “Semantic integration: a survey of ontology-
based approaches,” ACM SIGMOD Record Volume 33,
Issue 4, Special section on semantic integration, December
2004, pp. 65-70.

[11] OWL-S: Semantic Markup for Web Services, W3C
Member Submission, November 2004, Available at:
http://www.w3.org/Submission/OWL-S/.

[12] M. Wooldridge, “An introduction to multiAgent systems,”
John Wiley and Sons, 2002.

[13] J. Ferber, O. Gutknecht and F. Michel, “From Agents to
Organizations: An Organizational View of Multi-agent
Systems,” Agent-Oriented Software Engineering IV,
Volume 2935/2003, Springer 2004, pp.443-459, doi:
10.1007/b95187.

[14] H. Aldewereld, L. Penserini, F. Dignum and V. Dignum.
“Regulating organizations: The ALIVE approach,” In
Workshop on Regulations Modelling and Deployment
(ReMoD-08), @CAISE’08, 2008, pp. 37-48.

[15] L. Penserini, H. Aldewereld, F. Dignum and V. Dignum,
“Adaptivity within an organizational development
framework,” Second IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, October 2008,
pp. 477-478, doi: 10.1109/SASO.2008.13.

[16] P. Balbiani, F. Cheikh and G. Feuillade, “Composition of
interactive Web services based on controller synthesis,”
Congress on Services - Part I, 2008. SERVICES '08, IEEE
July 2008, pp: 521 – 528, doi: 10.1109/SERVICES-
1.2008.11.

[17] R. Hamadi, B. Benatallah, “A Petri net-based model for
Web service composition,” Proc. Fourteenth Australasian
Database Conference on Database Technologies, Vol. 17,
Adelaide, Australia, 2003, pp.191-200.

[18] X. F. Tang, C. J. Jiang, Z. J. Ding and C. Chen, “A Petri
net-based Semantic Web service automatic composition
method,” Journal of Software, Vol. 18, No.12, December
2007, pp. 2991-3000, doi: CNKI:SUN:RJXB.0.2007-12-
006 (in Chinese with English abstract).

[19] J. Zhang, C. K. Chang, J. Y. Chung, S. W. Kim, “WS-Net:
A Petri-net based specification model for Web services,”
Proc. IEEE International Conference on Web Services
(ICWS 04), IEEE Press, Jun. 2004, pp. 420-427, doi:
10.1109/ICWS.2004.1314766.

154 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

[20] G. Salaun, L. Bordeaux and M. Schaerf, “Describing and
reasoning on Web services using process algebra,” Proc.
IEEE International Conference on Web Services, July
2004, pp. 43-50, doi: 10.1109/ICWS.2004.1314722.

Bin Li was born in Yangzhou, Jiangsu Province, China, in
1965. He received the Ph.D. degree in computer application
technology from Nanjing University of Aeronautics &
Astronautics, Jiangsu, China in 2001.

Currently, he is a Professor of Yangzhou University and
conducts research in the areas of service oriented computing,
multi-agent system and artificial intelligence.

Yan Xu was born in 1984, M. S. candidate. Her main

research interests include service computing oriented computing,
software agent.

Jun Wu was born in Yangzhou, Jiangsu Province, China, in

1970. He received the Ph.D. degree in computer application
technology from Southeast University, Jiangsu, China in 2005.

Currently, he is a Associate Professor of Yangzhou
University and conducts research in the areas of service
oriented computing, computer network and formal method.

Junwu Zhu was born in Yangzhou, Jiangsu Province,
China, in 1972. He received the Ph.D. degree in computer
application technology from Nanjing University of Aeronautics
& Astronautics, Jiangsu, China in 2008.

Currently, he is an Associate Professor of Yangzhou
University and conducts research in the areas of service
oriented computing, Ontology and artificial intelligence.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 155

© 2012 ACADEMY PUBLISHER

