

 A Novel Approach to Construct Object-Oriented

System Dependence Graph and Algorithm Design

Lin Du
School of Computer Science and Technology, University of Qilu Normal, Jinan, China

Email:dul1028@163.com

Guorong Xiao
School of Computer Science and Technology, Guangdong University of Finance, Guangzhou, China

Email: newducky@126.com

Daming Li

School of Computer Science and Technology, University of Qilu Normal, Jinan, China

Email: deff_lee@sina.com

Abstract—On the basis of analyzing the defects that
traditional system dependence graph have, a novel method
based on ripple effect is proposed to construct coarse-
grained system dependence graph. The method perfects
object-oriented program semantics and reduces the
computation complexity through expanding the signification
of coarse-grained and analyzing ripple effect. Object-
oriented program semantics are described in detail. The
algorithms for analyzing ripple effects and constructing
system dependence graph are designed. Furthermore the
computation complexity of algorithms is analyzed to
validate effectiveness.

Index Terms—object-oriented system dependence graph,
ripple effect, coarse-grained, algorithms implement,
computation complexity

I. INTRODUCTION

Dependence analysis is the most important part of any

program restructuring process. When a compiler tries to
restructure a given program to satisfy a certain goal

without changing the meaning of the program, it must

honor certain dependence constraints. These constraints

are determined by the order in which each program

variable is defined and used during the course of

execution of the program. Object-oriented system

dependence graph (OOSDG) is the technology of

dependence analysis. OOSDG can reflect the semantic
characteristics of object-oriented programs, can deal with

data flow and control flow between processes, can

describe parameter transference and carry out inter-

process analysis.

However, there are the following questions in the

actual construction of system dependence graph.Firstly,

the method to construct system dependence graph is

complicated, what’s more, lack of accuracy. Because of
high complexity, on account of the different study, the

actual construction ignores some of the semantic

characteristics of object-oriented program [1]. This would

result in inaccurate. For example, in the OOSDG, only

one parameter node is constructed for each corresponding

class member variable. The class member variable has a

separate copy in each class instance respectively. That is

to say that a class member variable defined in one place is

used in different places. This would result in the wrong

data dependence among different class instances.

Secondly, traditional construction method results in the

loss of program semantic. System dependence graph
based on analysis of process, lack of semantic association,

does not reflect the characteristics of object-oriented

language completely. The interactions among objects

constitute the main framework of the object-oriented

program. However this interaction doesn’t base on the

order of execution. So the construction of the traditional

system dependence graph would not take into account all

of relationship among objects. Therefore, the semantic of
object-oriented is lost a lot. Sometimes the use of

traditional system dependence graph for program

understanding is more difficult than a complete program.

Based on analyzing above defects that traditional

system dependence graph have, the method based on

ripple effect analysis is presented to construct coarse-

grained system dependence graph. First of all, the

meaning of coarse-grained is extended in order to make
the size of grain come up to object-oriented program’s

semantic unit that is class, instance, member method and

member variable. Ripple effects analysis plays the role of

two aspects. First, the results of the ripple effect are

mapped to the dependence graph in order to add semantic

relationship among different objects. Second, the scope of

analysis through ripple effect is narrowed in order to

reduce the complexity of constructing graph.
The rest of the paper is organized as follows. In section

II, the meaning of coarse-grained is extended to simplify

system dependence graph. The method of ripple effect

analysis is proposed. Object-oriented program semantics

is described in detail. In section III, this paper designs the

algorithms for analyzing ripple effects and constructing

system dependence graph .What’s more, the computation

complexity of the algorithms is analyzed to validate
effectiveness. In the section IV, we show an example to

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 133

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.1.133-140

demonstrate our proposed approach for constructing

coarse-grained system dependence graph. Section V

concludes the whole paper.

II. CONSTRUCTING COARSE-GRAINED SYSTEM

DEPENDENCE GRAPH BASED ON RIPPLE EFFECT

ANALYSIS

A. Expanding the Meaning of Coarse-grained and
Simplifying System Dependence Graph

For the traditional system dependence graph, fine-

grained reach the level of statement, coarse-grained reach

the level of method. In the object-oriented program, the
factor that affect program is not only variable but also the

interaction among objects which constitute the main

framework of the program. In order to analyze object-

oriented programming, it is necessary to make class,

member method, member variable which are separate

semantic units as the research object independently [2].

For understanding of object-oriented programming,

analyzing the interaction relationship among multiple
units is better than analyzing single statement. The

meaning of coarse-grained is extended in order to make

the size of grain come up to object-oriented program’s

semantic unit that is class, instance, member method and

member variable. Coarse-grained expanded is defined as
follows.

Definition 1. The graph G which meets the following
characters is referred to as coarse-grained. (1) Graph G
contains statement and predicate in the main(),class,
instance, member method and member variable.(2) If a
statement which is in the member method M belongs to G,
then M also belongs to G. (3) If the instance, member
method or member variable in the class A belongs to G,
then class A also belongs to G.

On the basis of defining the coarse-grained, system

dependence graph is simplified. Describing the process

dependence doesn’t need to enter the process inside but

indicate process prelude node only. The data dependence

which belongs to parameter nodes of different methods is
indicated by data dependence among multiple methods. It

is achieved by data dependence edge which point to the

call directly. Take the following figures for example,

figure 1 is a traditional system dependence graph, figure

2 shows the meaning of edges in the graph, and figure 3

is the corresponding system dependence graph which is

simplified by our method.

 Entry main

j = 0 i = 1 While (i<6) Cout<<j

Call func

x_in = j y_in = i j = x_out i = y_out

entry func

Call funa y = y_in x = x_in Call funb x_out = x y_out = y

a_in = x b_in = y x = a_out z_in = y y = z_out

entry funa

b = b_in a = a_in a = a + b a_out = a

z_out = z

b_in = i z = a_out

entry funb

call funa z = z_in i = 1

a_in = z

Figure 1. an example of traditional system dependence graph

134 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

Figure 2. the meaning of edges

 Entry main

j = 0 i = 1 While (i<6) Cout<<j

Call func

entry func

Call funa Call funb

entry funa

entry funb

call funa i = 1

Figure 3. simplified system dependence graph

B. Ripple Effects Analysis

 Ripple effects analysis plays the role of two aspects.

First, the results of the ripple effect are mapped to the
dependence graph in order to add semantic relationship

among different objects. Second, the scope of analysis

through ripple effect is narrowed in order to reduce the

complexity of constructing graph.

Analyzing ripple effect is to record the units involved

by the ripple of one unit which is called the source of

ripple. The following method is used. First step, the

complete ripple graph which reflects corresponding
object-oriented programming is constructed. Starting

from the source of ripple, the direct and indirect ripple

unit can be found through traversal all the ripple edges.

However above method has problem as follows. The

method to construct the complete ripple graph is

complicated whose computation complexity is same as

constructing system dependence graph. The result does

not match our original intention we want to reduce the

analysis scope through ripple effects analysis. Object-

oriented program has the following properties. The

interaction among the various units is either direct or

indirect. In particular, the indirect relationship can be
expressed by the direct relationship among multiple units.

This is called transitive. We can draw on the experience

of the method to process transitive in the cluster. Ripple

effect can be recorded through the use of matrix. Thereby

the complete ripple effects can be calculated through

matrix transitive operations.

Example 1. Let us consider the following example in
which L1...L13 is the number of the corresponding

statement.
L1: class A

{ public:
L2: virtual int F(){…}

}
L3: class B: class A

{ public:
L4: virtual int F() {…}

}
L5: class C

{ public:
L6: A *ca;
L7: int V()
L8: { A *a; }
L9: a=new A();

}
L10: a->F();
L11: ca=a;
L12: delete a;
L13: ca->F();

The matrix is defined as follows. It is the first to make

sure the units participated in ripple effect. If the number

of all the units is n, then n * n matrix is constructed. In

the matrix, the elements can be used 1 or 0 to represent

ripple or not. Each row (or column) corresponds to the
ripple unit. If the row number is the same as the column

number, then its corresponding ripple unit is same. For

each unit which is located in row i and column j, if ripple

effect exits because corresponding ripple unit of row i

acts on column corresponding ripple unit of column j, the

unit’s value is 1.On the contrary, the unit’s value is 0. All

the diagonal units’ values are 1 because ripple effect

influences units themselves. The matrix defined as above
records ripple effect of the object-oriented program.

For above experimental codes, the unit B is the source

of the ripple which launches the ripple. Both REO and

REA are 10 * 10 matrix. The units corresponding to the

row (or column) in accordance with row number (or

column number) are arranged in order of size as follows.

A, B, C, AF, BF, CV, C.ca, C.V.a, C.ca.F, C.V.a.F. The

following matrixes are derived from above matrix
definitions and algorithms.

control dependence

 data dependence

summary edge

parameter-in edge

parameter-out edge

 call edge

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 135

© 2012 ACADEMY PUBLISHER

úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú

û

ù

ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï

ð

î

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0100000000

0000000000

úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú

û

ù

ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï

ð

î

0000010001

0000010010

0000010101

0000001010

0000010000

0000100011

0001000011

0010011000

0100100000

1111001100

úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú
úúú

û

ù

ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï
ïïï

ð

î

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0100110011

0000000000

 (a) (b) (c)

Figure 4. (a) the initial REO; (b) REA; (c) the final REO

For the final REO, the value of each unit doesn’t

change after the calculation is done over. If the unit value

is 1, the unit is involved by ripple whose ripple source is

class B. These units are the following(B, B.F, C.V,
C.ca.F, C.V.a.F). It means that these units change with

class B together.

C. Semantic Description

Object-oriented program semantics is described in
detail in the system independence graph based on ripple

effect as follows.

(1) Description of Class, Instance, Member Method,

the Relationship among Member Variables

In order to express membership, instance node,

member method prelude node and member variable node

are connected to the accessory class prelude node.
Method and process have the same status. For method

and process we do not achieve internal processing but

provide prelude node. The meaning of method prelude

node is expanded through hiding data transference

among multiple parameter nodes. The expression of data

dependence among parameter nodes of different methods

relies on data dependence among methods. Then three

kinds of nodes should be increased as follows. Member
variable node should be increased because member

method refers to member variable. Instance node should

be increased because member method refers to class

instance node. When a method is called by the class

instance, instance node expressing message receiver

object is increased in the method node. The aim is to

reflect the change of object’s state.

(2) Description of Class Inheritance

In order to express inheritance, different class prelude

nodes which have inheritance are connected. When one

class interacts with another class, it is convenient to

couple each other through class prelude node and class

member edge. In order to reflect the inheritance

hierarchy clearly and reduce backtracking, we take the

following approach. If a virtual method in the child class
which inherits from the parent class is modified, the

method is described only in the child class. Meantime,

associated edge should be increased between class

prelude node of the parent class and method prelude node

of the child class [3]. This makes the expression of

inheritance mechanism and virtual method doesn’t

require increasing associated edge between method of the

parent class and method of the child class. Only the

associated edge is increased between class prelude node

and method prelude node.

(3) Description of Polymorphism and Dynamic

Binding
Polymorphism can be expressed completely by the

virtual method prelude node and polymorphism call edge.

Through multiple call edge, call node can be connected

to each method node which is called by object possibly.

The dynamic selection can be expressed by multiple

polymorphism nodes which have the same protocol. This

method can express all the possibilities.

III. ALGORITHM DESIGN AND ANALYSIS OF THE

COMPUTATION COMPLEXITY OF ALGORITHMS

A. Algorithm Design

（1）Computing Ripple Effect

Algorithm 1. Ripple effect analysis.
Input: the source of the ripple
Output: the units influenced by the ripple source
Step 1: The range of analysis which consists of the source of

the ripple and all the units which participate in the
ripple effect analysis is determined.

Step 2: The matrix REA and the matrix REO are defined.
REA recorded the direct ripple effect of all the units.
REO is defined as follows. The value of the unit
which is the source of the ripple is 1.Another units’
value are 0. It’s easy to find that the unit whose

value is 1 is must located in the diagonal of the
matrix REO.

Step 3: The transmission of ripple effect is calculated.
REO=REO*REA. For the matrix REO, all the units’
value is modified 1 if the value is not 0.

Step 4: If the matrix REO is different from the initial REO,
then the algorithm return to step 3.Otherwise, the
algorithm would carry on the next step.

Step 5: If the matrix REO varies no longer, the ripple effect
analysis is over. For the final REO, the units whose
value is 1 are the required units.

(2) Constructing system dependence graph

The scope of the description of the system dependence

graph is reduced to the statement, the predicate in the

main () and class, instance, member method and member

variable achieved by the ripple effect analysis.The

object-oriented program is represented as a two-tuples(M,

C) in which M is the main () and C is a collection of

classes. The algorithm calls the function connect ()
which connect call node of process dependence graph

and method prelude node . Meantime class graph and the

main program are connected [4-5].

Algorithm 2. Constructing system dependence graph..
Input: the abstract syntax tree of P = (M, C)
Output: the OSDG of P

136 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

void ConstructOSDG ()
{ for (class Ci of C)

{ for (method m defined in Ci)
{if (m is “marked”)

make Ci and the“marked”
method of base class
connected as membership;

else{
 calculate the PrDG of m;
 make m as“marked”;
 }

}
}

connect();
}//end ConstructOSDG

 B. Analysis of the Computation Complexity of
Algorithms

In order to validate effectiveness of this paper’s

algorithm, let us compare the algorithms among another

methods and this paper’s method. The multiple variables
which influence the computation complexity are defined

in the table as follows [6].

TABLE I.

variables which influence the computation complexity

Name of the variable Meaning of the variable

Vertices the maximum number of predicates and

assignment statements in the method or

process

Edges the maximum number of edges in the

method or process

Globals the number of global variables

InstanceVars the maximum number of instance

variables in the class

CallSites the maximum number of call nodes in the

method or process

TreeDepth the number of call path which is direct or

indirect

Methods The number of methods or processes

(1) The computation complexity of constructing

process-based program system dependence graph.

 The parameters of a method include formal parameter
input node, formal parameter output node, actual

parameter input node and actual parameter output node.

Upper bound for the parameters of the method m shows

as follows.

Parameter(m)=Params+Globals+InstanceVars (1)

The meaning of Params is the number of parameters.
Then the computation complexity of the method m

shows as follows.

Size(m)=O(Vertices+CallSites*(1+TreeDepth*(2*Para

meter(m)))+2*Parameter(m)) (2)

 (2) The computation complexity of constructing

traditional object-oriented program system dependence

graph.

 The parameters of a method include formal parameter
input node and formal parameter output node. This is

different from the process-based program system

dependence graph as above. Then the computation

complexity of the method m shows as follows [7-8].

Size(m)=O(Vertices+CallSites*(1+TreeDepth*Param

Vertices(m))+ParamVertices(m)) (3)

(3) The computation complexity of this paper.

The matrix records only direct ripple. Indirect ripple

can be calculated through matrix transitive operations.

Expressing dependence needs only one edge in ripple

graph. However, multiple dependence edges are need in

traditional system dependence graph. The meaning of

method prelude node is expanded through hiding data

transference among multiple parameter nodes. The
expression of data dependence among parameter nodes

of different methods relies on data dependence among

methods. The parameters of a method include statement

and predicate in the main(), class, instance, member

method and member variable.Upper bound for the

number of the nodes depends on Size(m) as follows.

 Size(SDG) = O(Size(m) * Methods) (4)

In summary, the computation complexity of this

paper is lower than traditional method.

IV. CASE STUDY

In this section, we show an example to demonstrate

our proposed approach for constructing coarse-grained

system dependence graph. Based on our method, ripple

effects analysis plays the role of two aspects. First, the
results of the ripple effect are mapped to the dependence

graph in order to add semantic relationship among

different objects. Second, the scope of analysis through

ripple effect is narrowed in order to reduce the

complexity of constructing graph. On the basis of

defining the coarse-grained, system dependence graph is

simplified. Describing the process dependence doesn’t

need to enter the process inside but indicate process
prelude node only. The data dependence which belongs

to parameter nodes of different methods is indicated by

data dependence among multiple methods. It is achieved

by data dependence edge which point to the call directly.

Next, we apply this paper’s method to construct coarse-

grained system dependence graph for case codes in the

figure 5. And figure 6 shows the meaning of edges and

nodes in the system dependence graph. Corresponding
system dependence graph for case codes is showed in

figure 7.

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 137

© 2012 ACADEMY PUBLISHER

L 1 : c la s s D 2 Ve c to r { in t e x te n d _ z (D 3 Ve c to r & v, in t n){

 p r o te c te d : L 3 6 : v. z = v. z * n ;

L 2 : in t x ; L 3 7 : r e tu r n v . z ;

L 3 : in t y ; }

 p u b l ic : in t s u m (D 3 Ve c to r v) {

L 4 : D 2 v e c to r () { L 3 8 : in t v _ s u m ;

L 5 : x = 0 ; L 3 9 : v _ s u m = v . x + v. y + v. z ;

L 6 : Y = 0 ;} L 4 0 : r e tu r n v _s u m ;

L 7 : D 2 v e c to r (in t a , in tb) { }

L 8 : x = a ; m a in (in t a r g c) {

L 9 : y = b ;} L 4 1 : D 2 Ve c to r * v p ;

L 1 0 : D 2 v e c to r (c o ns t D 2 v ec to r & p){ L 4 2 : D 3 Ve c to r v 3 (1 0, 1 0 , 1 0);

L 11 : x = p . x + 1 ; L 4 3 : in t v 3 s u m ;

L 1 2 : y = p . y + 2 ;} L 4 4 : in t d im _ z ;

L 1 3 : v ir tu a l v o id s c a le (in t n) { L 4 5 : if (a r g c > 1)

L 1 4 : x = x * n ; L 4 6 : v p = n ew D 3 Ve c to r (1 , 1 , 1) ;

L 1 5 : y = y * n ;} e ls e

L 1 6 : v o id r e s e t () { L 4 7 : v p = n ew D 2 Ve c to r (1 , 1) ;

L 1 7 : x = 0 ; L 4 8 : v p - > s c a le (1 0) ;

L 1 8 : y = 0 ;} L 4 9 : v 3 s u m = s u m (v 3) ;

} L 5 0 : d im _ z = e x te n d _ z (v 3 , 1 0) ;

L 1 9 :c la s s s D 3 Ve c to r { L 5 1 : c o u t< < v 3s u m < < e n d l;

 p r o te c te d : L 5 2 : c o u t< < d im _ z < < e n d l;

L 2 0 : in t z ; }

 p u b l ic :

L 2 1 : D 3 Ve c to r () {

L 2 2 : D 2 Ve c to r () ;

L 2 3 : Z = 0 ;}

L 2 4 : D 3 Ve c to r (in t a , in t b , in t c) {

L 2 5 : D 2 Ve c to r (a , b)

L 2 6 : z = c :}

L 2 7 : D 3 Ve c to r (c o ns t D 3 Ve c to r & p) {

L 2 8 : x = p . x ;

S 2 9 : y = p . y ;

L 3 0 : z = p . z ;}

L 3 1 : v o id s c a le (in t n) {

L 3 2 : D 2 Ve c to r ::S c a le (n) ;

L 3 3 : z = z * n ;}

L 3 4 : f r ie n d in t e x te n d _ z (D 3 Ve c to r & , in t) ;

L 3 5 : f r ie n d in t s u m (D 3 Ve c to r) ; }

Figure 5. case codes

s e n t e n c e n o d e

m e t h o d p r e lu d e n o d e

v ir t u a l m e t h o d

p r e lu d e n o d e

c la s s p r e lu d e n o d e c o n t r o l d e p e n d e n c e e d g e

c a ll e d g e

f r ie n d e d g e

d a t a d e p e n d e n c e e d g e

p o ly m o r p h ic e d g e

in h e r it a n c e e d g e

T / F

p u b

f r i

m e m b e r v a r ia b le n o d e

in s t a n c e n o d e

in s t a n c e d e p e n d e n c e e d g e

m e m b e r m e t h o d

d e p e n d e n c e e d g e

p r i

p r o

p r e d ic a t e n o d e

in s t a n t ia t e

m e m b e r v a r ia b le

d e p e n d e n c e e d g e

Figure 6. the meaning of edges and nodes

138 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

 Main Entry

L42 L43 L44 L48 L49 L50 L51

L46 L47

L52

T F

L19

x y z

pro pro pro L21

L22 L23

L4

L5 L6

L1

pro pro

pub

L24

L25 L26

L7

L8 L9

L27

L29 L30 L28

L31

L34

L36 L37

L35

L38 L39 L40

L32 L33

L13

L14 L15

pub pub

fri

fri

L10

L12 L11

pub

pub

pub

L16

L17 L18

pub

pub

L41

pri

L45

Figure 7. system dependence graph for case codes

V. CONCLUSION

The defects that traditional system dependence graph

have include high computation complexity, deficiency of
accuracy and loss of program semantic. In this paper the

method based on ripple effect is proposed to construct

coarse-grained system dependence graph. Coarse-grained

is extended and defined in order to make the size of grain

come up to object-oriented program’s semantic unit that

is class, instance, member method and member variable.

Ripple effects analysis plays the role of two aspects. First,

the results of the ripple effect are mapped to the
dependence graph in order to add semantic relationship

among different objects. Second, the scope of analysis

through ripple effect is narrowed in order to reduce the

complexity of constructing graph. Finally, the algorithms

for analyzing ripple effects and constructing system

dependence graph are designed. Furthermore the

computation complexity of algorithms is analyzed to

JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012 139

© 2012 ACADEMY PUBLISHER

validate effectiveness. This paper’s constructing methods

correctly reflect the semantic of object-oriented programs,

also provide a solid foundation for the further analysis

and reengineering of legacy software. Recent works

about dependence analysis are concerned on improving

the precision of constructing algorithms. We strongly

believe that, in the near future, this research field will be
paid more and more attentions by the researchers and

will promote the fundamental theories research in the

related fields, for example program debugging [9-10],

program testing [11-13], software measurement [14-15]

and software maintenance [16].

ACKNOWLEDGMENT

This work is partially supported by the Shandong

Province High Technology Research and Development
Program of China (Grant No. 2011GGB01017);

Research Foundation of Qilu Normal University; Soft

Science Research Program of Shandong Province (Grant

No. 2011RKB01062).

REFERENCES

[1] Chae HS, Kwon YR:A cohesion measure for classes in
object-oriented systems, Proceedings of the 5th
International Software Metrics Symposium. IEEE
Computer Society Press, 1998, pp.158-166.

[2] Briand LC, Morasca S, Basili VR: Defining and validating
measures for object-based high-level design. IEEE
Transactions on Software Engineering, vol.25, no. 5,1999,
pp.722-743.

[3] B.Korel, L.Taha, A.Bader: Slicing of state based models，
Proceedings of the IEEE International Conference on
Software Maintenance, 2003, pp.34-43.

[4] Mary Jean Harrold: Regression Test Selection for Java
Software, OOPSLA 2001, pp.313-326 .

[5] Ap Xu BW, Zhou YM: Comments on a cohesion measure
for object-oriented classes, Software--Practice and
Experience, vol.31, no.14, 2001, pp.1381-1388.

[6] Chen ZQ, Zhou YM, Xu BW, Zhao JJ, Yang HJ:A novel
approach to measuring class cohesion based on
dependence analysis, IEEE International Conference on
Software Maintenance,2002, pp.377-383.

[7] Chen ZQ: Slicing object-oriented Java programs, ACM
SIGPLAN Notices, vol.36, no. 4, 2001, pp.33-40.

[8] Xu BW, Chen ZQ, Zhou XY: Slicing object-oriented

Ada95 programs based on dependence analysis. Journal of
Software, vol.12, no. 12, 2001, pp.208-213.

[9] Jiang,S, Zhang,C: A Debugging Approach for Java
Runtime Exceptions Based on Program Slicing and Stack
Traces. In: Proceedings of the 10th Quality Software
International Conference, 2010.

[10] Horwitz, S.,Liblit, B.,Polishchuk, M: Better Debugging
via Output Tracing and Callstack-Sensitive Slicing.

Software Engineering, 36(1), 2010, 7-19.
[11] Seoul, Korea: Test Sequence Generation from Combining

Property Modeling and Program Slicing. In: Proceedings
of the 34th Annual Computer Software and Applications
Conference, 2010.

[12] Rupak Majumdar, Ru-Gang Xu: Reducing Test Inputs
Using Information Partitions. Lecture Notes in Computer
Science, Vol 5643,2009, 555-569.

[13] Seoul: An Approach to Regression Test Selection Based
on Hierarchical Slicing Technique. In: Proceedings of
2010 IEEE 34th Annual Computer Software and

Applications Conference.
[14] San Diego, California: Program Execution-Based Module

Cohesion Measurement. In: Proceedings of the 16th IEEE
International Conference on Automated Software
Engineering, 2001.

[15] Meyers, T.M, Binkley, D: Slice-based cohesion metrics
and software intervention. In: Proceedings of the 11th
working conference on Reverse Engineering, 2004.

[16] Emily .Hill,Lori.pollock: Exploring the neighborhood with
dora to expedite software maintenance. In: Proceedings of
the twenty-second IEEE/ACM international conference on
Automated software engineering, 2007.

Lin Du, born in 1978, earned a B.S. and M.S. degree in

Computer Science& Technology from Shandong University, in
2002 and 2006 respectively. After graduate school, he joined
school of Computer Science & Technology, Qilu Normal

University in 2006. His current research interests include
software reengineering, system comprehension, software
measurement and image retrieval.

Guorong Xiao, received the B.E. and M.E. degrees in
computer science and technology from South China University
of Technology, Guangzhou City, China. He is currently a
lecturer at the department of computer science and technology,
GuangDong University of Finance, China. His research

interests are data mining, data warehouse and financial analysis
etc. He has finished several banking, securities and mobile data
warehouse.

Daming Li, born in 1964, Ph.D. degree, he is an associate

professor of computer department in Qilu Normal University,
engages in the teaching and scientific research. The main area
of his research is algorithm analyzing and design.

140 JOURNAL OF SOFTWARE, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

