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Abstract—Maximal frequent itemsets are one of several
condensed representations of frequent itemsets, which store
most of the information contained in frequent itemsets using
less space, thus being more suitable for stream mining.
This paper considers a simple but effective algorithm for
mining maximal frequent itemsets over a stream landmark.
We design a compact data structure named FP-FOREST
to improve an state-of-the-art algorithm INSTANT; thus,
itemsets can be compressed and the support counting can
be effective performed. Our experimental results show our
algorithm achieves a better performance in memory cost
and running time cost.

I. INTRODUCTION

Frequent itemset mining is a traditional and impor-
tant problem in data mining. An itemset is frequent
if its support is not less than a threshold specified by
users. Traditional frequent itemset mining approaches
have mainly considered the problem of mining static
transaction databases. In these methods, transactions are
stored in secondary storage so that multiple scans over the
data can be performed. Three kinds of frequent itemset
mining approaches over static databases have been pro-
posed: reading-based[3], writing-based[15], and pointer-
based[18]. [14] presented a comprehensive survey of
frequent itemset mining and discussed research directions.

Many methods focusing on frequent itemset mining
over a stream have been proposed. [13] proposed FP-
Stream to mine frequent itemsets, which was efficient
when the average transaction length was small; [22]
used lossy counting to mine frequent itemsets; [7],[8],
and [9] focused on mining the recent itemsets, which
used a regression parameter to adjust and reflect the
importance of recent transactions; [27] presented the
FTP-DS method to compress each frequent itemset; [10]
and [1] separately focused on multiple-level frequent
itemset mining and semi-structure stream mining; [12]
proposed a group testing technique, and [17] proposed
a hash technique to improve frequent itemset mining;
[16] proposed an in-core mining algorithm to speed up
the runtime when distinct items are huge or minimum
support is low; [19] presented two methods separately
based on the average time stamps and frequency-changing
points of patterns to estimate the approximate supports
of frequent itemsets; [5] focused on mining a stream
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over a flexible sliding window; [20] was a block-based
stream mining algorithm with DSTree structure; [23] used
a verification technique to mine frequent itemsets over a
stream when the sliding window is large; [11] reviewed
the main techniques of frequent itemset mining algorithms
over data streams and classified them into categories
to be separately addressed. Given these algorithms, the
runtime could be reduced, but the mining results were
huge when the minimum support was low; consequently,
the condensed representations of frequent itemsets in-
cluding closed itemsets[25], maximal itemsets[31], free
itemsets[4], approximate k-sets[2], weighted itemsets[28],
and non-derivable itemsets[6] were proposed; in addition,
[26] focused on discovering a minimal set of unexpected
itemsets.

The concept of maximal frequent itemsets(MFI) was
first proposed in 1998, an itemset is maximal frequent
itemset if its support is frequent and it is not covered
by other frequent itemsets, we will discuss the details
in Section 2. Maximal frequent itemsets are one of the
condensed representations, which only store the non-
redundant cover of frequent itemsets, resulting in space
cost reduction.

Many maximal frequent itemset mining algorithms
were proposed to improve the performance. The main
considerations focused on developing new data retriev-
ing methods, new data pruning strategies and new data
structures. Yang used directed graphs in [35] to obtain
maximal frequent itemsets and proved that maximal fre-
quent itemset mining is a ]p problem. The basic maximal
frequent itemset mining method is based on the a pri-
ori property of the itemset. The implementations were
separated into two types: One type is an improvement
of the a priori mining method, a bread first search[32],
with utilizing data pruning, nevertheless, the candidate
results are huge when an itemset is large; a further
optimization was the down-top method, which counted
the weight from the largest itemset to avoid superset
checking, also, the efficiency was low when the threshold
was small. Another one used depth first search[33] to
prune most of the redundant candidate results, which,
generally, is better than the first type. In these algorithms,
many optimized strategies were proposed[34][31]: The
candidate group built a head itemset and a tail itemset,
which can quickly built different candidate itemsets; the
super-itemset pruning could immediately locate the right
frequent itemset; the global itemset pruning deleted all
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the sub-itemsets according to the sorted itemsets; the
item dynamic sort strategy built heuristic rules to directly
obtain the itemsets with high support, which was extended
by a further pruning based on tail itemset; the local check
strategy got the related maximal frequent itemsets with
the current itemset.

Recently, many stream mining algorithms for maxi-
mal frequent itemsets were proposed. [21] proposed an
incremental algorithm estDec+ based on CP-tree struc-
ture, which compressed several itemsets into one node
according to their frequencies; thus, the memory cost
can be flexibly handled by merging or splitting nodes.
Furthermore, employing an isFI-forest data structure to
maintain itemsets, [30] presented DSM-MFI algorithm
to mine maximal frequent itemsets. Moreover, consider-
ing maximal frequent itemset is one of the condensed
representation, [24] proposed INSTANT algorithm, which
stored itemsets with frequencies under a specified abso-
lute minimum support, and compared them to the new
transactions to obtain new itemsets; Plus, [29] presented
an improved method estMax, which predicted the type of
itemsets with their defined maximal life circle, resulting
in advanced pruning.

In this paper, we explore a new stream maximal fre-
quent itemsets mining algorithm named INSTANT+ based
on a stream landmark model. The main contributions are
as follows:

1) First, we design a compact and simple data structure
named FP-FOREST to store the maximal frequent
itemsets and infrequent itemsets. In FP-FOREST,
each tree dynamically maintains the itemsets with
equal support; thus, we can compress the storage
cost, and efficiently compute the support.

2) Second, when new transaction arrives, we present a
simple but efficient algorithm to dynamically main-
tain the FP-FOREST, in which itemsets are pruned
effectively and the maximal frequent itemsets can
be obtained in real time.

3) Finally, we evaluate the INSTANT+ algorithm on
two datasets in comparison to the state-of-the-art
maximal frequent itemset mining method INSTANT.
The experimental results show that INSTANT+ is
effective and efficient.

The rest of this paper is organized as follows: In Section
2 we present the preliminaries of frequent itemsets and
maximal frequent itemsets and define the mining problem.
Section 3 illustrates our data structure and our algorithm.
Section 4 evaluates the performance of INSTANT+ with
experimental results. Finally, Section 5 concludes this
paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

A brief review of frequent itemset and maximal fre-
quent itemset is presented in this section; based on the
concepts, we introduce the problem addressed in this
paper.

TABLE I
SIMPLE DATABASE

id itemsets
1 b c d e
2 a b c d e
3 a b
4 a b d e
5 a c e

A. Preliminaries

1) Frequent Itemsets: Given a set of distinct items
Γ = {i1, i2, · · · , in} where |Γ| = n denotes the size
of Γ, a subset X ⊆ Γ is called an itemset; suppose
|X| = k, we call X a k-itemset. A concise expression
of itemset X = {x1, x2, · · · , xm} is x1x2 · · ·xm. A
database D = {T1, T2, · · · , Tv} is a collection wherein
each transaction is a subset of Γ, namely an itemset. Each
transaction Ti(i = 1 · · · v) is related to an id, i.e., the id
of Ti is i. The absolute support (AS) of an itemset α, also
called the weight of α , is the number of transactions
which cover α, denoted Λ(α) = {|T ||T ∈ D ∧ α ⊆ T};
the relative support (RS) of an itemset α is the ratio of
AS with respect to |D|, denoted Λr(α) = Λ(α)

|D| . Given
a absolute minimum support λ, itemset α is frequent if
Λ(α) ≥ λ.

2) Maximal Frequent Itemsets: A maximal itemset is
a largest itemset in a database D, that is, it is not covered
by other itemsets. A maximal frequent itemset is both
maximal and frequent in D.

Definition 1. Given the minimum support λ, an itemset
α is an maximal frequent itemset if it is frequent and it is
not covered by other frequent itemsets, denoted Λ(α) ≥
λ ∧ @β|(β ⊃ α ∧ Λ(β) ≥ λ).

Example 1. Given a simple database
D as shown in Tab.I and the mini-
mum support 2, the frequent itemsets are
{a,b,c,d,e,ab,ac,ad,ae,bc,bd,be,cd,ce,de,ace,bcd,bce,bde,cde,
abde,bcde}, nevertheless, the maximal frequent itemsets
are {ace,abde,bcde}. As can be seen, the maximal
frequent itemsets are much less than the frequent
itemsets.

B. Problem Definition

We choose the landmark model in this paper because
it can reflect the global characteristic of a stream, i.e., the
problem addressed in this paper is to generate maximal
frequent itemsets from the first arrived transaction to the
most recently arrived one. Fig. 1 is an example with
Γ = {a, b, c, d, e}. The initial window includes 1 itemsets,
when transactions arrive, new itemsets are added.

III. INSTANT+

In this section, we will first describe the algorithm
we need to improve, with presenting its drawbacks, we
introduce an efficient data structure to address the problem
and propose our solution with theoretical analysis.
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Fig. 1. A running example of landmark model

A. INSTANT Introduction

INSTANT is a state-of-the-art algorithm for mining
maximal frequent itemsets over stream landmark model,
which used a very simple but effective data structure to
maintain the maximal frequent itemsets and infrequent
itemsets.

INSTANT employs arrays U to store different itemsets
with the equal support, that is, U(i) is used to store the
itemsets with support i; thus, given the minimum support
λ, arrays from U(1) to U(λ) store the itemsets with
support from 1 to λ, in which U(λ) store the maximal
frequent itemsets. When a new transactions T arrives,
INSTANT will compare T to each itemset I in U(i − 1)
and insert the interaction T ∩ I into U(i) if it is not one
of the itemsets in U(i).

As an example, giving the minimum support is λ = 3,
i.e., INSTANT maintains 3 arrays: U(1), U(2) and U(3).
Suppose the new arriving transaction T is abd, and
U(3) = {ac}, U(2) = {abc, acd} and U(1) = {abcd},
the procedure is as follows.

1) First, T compares with each itemset in U(2), which
is {abc, acd}, and obtains the interactions {ab,ad},
and insert them into U(3) since ac do not cover
ab and ad, and ab and ad do not cover ac. Thus,
U(3) = {ac, ab, ad}.

2) Second, T compares with each itemset in U(1),
which is {abcd}, and obtains the interactions {abd},
and insert them into U(2) since abd do not cover
abc and acd, and abc and acd do not cover abd.
Thus, U(3) = {abc, acd, abd}.

3) Finally, the itemsets {ac, ab, ad} in U(3) is output
as the maximal frequent itemsets.

INSTANT is an efficient and effective algorithm, but we
argue that it has drawbacks in two aspects. On the one
hand, even though it only stores the useful itemsets, but
the storage is not optimized, which results in a storage
redundant; in the previous example, when U(3) need to
store {abc, acd, abd}, the a was stored repeatedly. On
the other hand, the itemset comparison is a very regular
operation, whose computation cost has a direct effect on
the final running time cost, but it is also not optimized in
INSTANT.

B. FP-FOREST
In our algorithm, computing the absolute support of

each itemset is an usual action, we employ a FP-FOREST,
which is actually composed of FP-trees, to store all the
transactions of stream, which can reduce the memory cost
and speedup the support computation. FP-tree[15] is a
tree storing transactions in a root-path manner, that is,
the common prefix of transactions can be stored once, and
its repeated time can be recorded by a counter. As can be
seen from the left image of Fig.2, FP-tree is a compact
data structure, which can reduce the memory cost a lot.

We improved the FP-tree structure for our stream
mining; thus, it has its own characteristics.

First, since each FP-tree stores the itemsets with equal
support, in which the nodes have no item counters; as a
result, our FP-tree can be incrementally maintained, i.e.,
when a new transaction arrives, either new branches are
added, or existing nodes are pruned.

Second, our FP-tree node has no item counter, conse-
quently, each branch is not covered by others; thus, once
a new added itemset I covered by any branch, it will be
pruned no matter where I locates. For example, as shown
in the left image of Fig.2, in traditional FP-tree, ab is an
independent branch, which is covered by abcde, hence, it
is not presented in our first FP-tree.

Third, to recognize the transactions tid, our implemen-
tation is based on an appended tid-set, which stores the
transactions tid, and each tid points the right position of
FP-tree. We can see from the right image of Fig.2 that the
bottom numbers are the tids. Since our FP-tree only stores
the maximal branches, the tids distribute at different FP-
trees. For example, we can find a transaction with tid=2
in our first FP-tree in the right image of Fig.2; thus, we
can retrieve from node a(which is pointed by tid 2) to the
root, and get the corresponding transaction abcde.

C. INSTANT+ Algorithm

Given the absolute minimum support λ, our algorithm
improves INSTANT based on the proposed data structure
FP-FOREST, which is implemented as a series of FP-
trees, denoted FPi(1 ≤ i ≤ λ).

1) INSTANT+ Implementation and Complexity Anal-
ysis: Employing FP-FOREST, our algorithm is a little
different from INSTANT when we compare and update
the itemsets, resulting in a great efficiency improvement.

1) INSTANT need to compare the new arrived trans-
action T to all existing itemsets, that is, given
the itemsets(the number is n) with equal support,
INSTANT will perform n comparisons, i.e., the time
complexity is O(n); if the average size of these n
itemsets is m, then the average time complexity is
O(m); thus, the overall time complexity is O(mn).
Nevertheless, in INSTANT+, the itemsets with equal
support have been compressed in a FP-tree and
indexed, if an itemset has no interaction with T ,
the computation is ignored; suppose the the number
of related itemsets is w(w << n), then the time
complexity is also O(mw).
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2) INSTANT need to add and delete the itemset, which
are based on the itemset comparison, that is, when
adding an itemset, INSTANT will compare it with
all the existing itemsets and insert it if it is not
exist, so is deleting an itemset; thus, even though
their own time complexity is O(1), the overall time
complexity is O(mn). On the other hand, when
adding or deleting an itemset, we will traverse
FP-tree twice, the first time is to deciding the
itemset existence, the second time will add or delete
the itemset; thus, the overall time complexities are
O(mw).

3) INSTANT stores all the individual itemsets, that is,
given the itemsets(the number is n) with equal sup-
port, the space complexity is O(n). Our algorithm
uses FP-FOREST, which can share the items at
the same branch, the space complexity decreases
to O(logn).

2) An Example: We use an example to describe the
mining process in detail. The dataset in Fig.1 is employed
in our example. As can be seen, the transactions are added
one by one, and we will dynamically maintain the FP −
FOREST .

Suppose the absolute minimum support λ = 3, i.e., 3
FP − trees, FP1, FP2 and FP3, are in our structure.
The mining process is as follows.

1) First, as shown in Fig.3, when no transaction ar-
rives, all FP − trees are empty, denoted Φ.

2) Second, as shown in Fig.4, the first transaction bcde
arrives, then FP1 is updated, whereas FP2 and
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Fig. 4. FP-FOREST after adding bcde
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FP3 are still null.
3) Third, as shown int Fig.5, the second transaction

abcde arrives, it compares to bcde in FP1, and
inserts the interaction bcde into FP2; then, bcde is
pruned from FP1 and abcde is inserted into FP1.

4) Fourth, as shown int Fig.6, the third transaction ab
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TABLE II
DATA CHARACTERISTICS

DataSet nr. avg. min. max. nr.
of trans. trans. trans. of

trans. length length length items
T40I10D100K 100 000 39.6 4 77 942
MUSHROOM 8 124 23 23 23 119

arrives, it compares to bcde in FP2, and inserts the
interaction b into FP3; then, ab compares to abcde
in FP1 and inserts the interaction ab into FP2.

5) Fifth, as shown int Fig.7, the fourth transaction abde
arrives, it compares to bcde and ab in FP2, and
inserts the interaction bde and ab into FP3 with b
being pruned from FP3; then, abde compares to
abcde in FP1 and inserts the interaction abde into
FP2 with ab being pruned from FP2.

6) Finally, as shown int Fig.8, the fifth transaction ace
arrives, it compares to bcde and abde in FP2, and
inserts the interaction ce and ae into FP3; then,
ace compares to abcde in FP1 and inserts the
interaction ace into FP2.

As can be seen, the final maximal frequent itemsets
are in FP3, which are ae,ce,ab and bde. The items count
decreases from 25 in INSTANT to 20 in INSTANT+.

IV. EXPERIMENTAL RESULTS

We conducted a series of experiments to evaluate the
performance of INSTANT+. The state-of-the-art mining
algorithm, INSTANT[24], was used as the evaluation
method.

A. Running Environment and Datasets

All experiments were implemented with C], compiled
with Visual Studio 2005 in Windows Server 2003 and
executed on a Xeon 2.0GHz PC with 2GB RAM.

We used 1 synthetic datasets and 1 real-life datasets,
which are well-known benchmarks for frequent itemset
mining. The T40I10D100K dataset is generated with the
IBM synthetic data generator. The MUSHROOM dataset
contains characteristics from different species of mush-
rooms. The data characteristics are summarized in Tab.
2.

B. Running Time Cost Evaluation

We firstly compared the average runtime of these two
algorithms under different data sizes when the minimum
support was fixed. As shown in all of the images in
Fig.9, the running time cost of INSTANT and INSTANT+
increase following the data size; these results verify that
both algorithms are sensitive to data size, which is due to
the using of unchanged absolute minimum support: When
more transactions arrive, more itemsets are generated and
compared to the new itemset, since INSTANT has no
optimized method, the running time cost increase hugely;
on the contrary, INSTANT uses the FP-FOREST as the
index, resulting in the whole running time cost reduction,
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Fig. 9. Runtime Cost

and even though the running time cost increases following
the data size, the increasing scope is small. Also, from
the two figures we can see that the average transaction
size has an significant effect on the running time cost,
since itemset comparisons and interactions are performed
regularly: As can be seen, the running of both algorithms
over MUSHROOM dataset are slower than running over
T40I10D100K dataset, that is, the larger the average
transaction size, the worse the running time cost.

We also compared the average runtime of these two
algorithms under different minimum supports when data
sizes was fixed. As shown in all of the images Fig.10,
the running time cost of INSTANT and INSTANT+ are
almost unchanged when the minimum support become
large; but in comparison, the runtime cost of INSTANT+
is much lower than that of INSTANT. In detail, the running
time of INSTANT always raises, that is because when the
minimum support turns large, INSTANT need to store
more infrequent itemsets; thus, the itemset search and
comparison cost increases. Whereas the runtime cost of
INSTANT+ over MUSHROOM dataset reduces follow-
ing the minimum support, which is due to the dataset
characteristics: When new maximal frequent itemset are
generated, some itemsets will be pruned and the memory
usage is further compacted, resulting in the computation
reduction.

C. Memory Cost Evaluation

To evaluate the memory cost of our algorithm, we com-
pared the count of generated items in INSTANT and IN-
STANT+. As shown in Fig.11, when we fix the minimum
support and increase the data size, the generated items
of both algorithm become more, but the overall items
count of INSTANT+ is less than that of INSTANT since
INSTANT+ uses the FP-FOREST to prune the redundant
items. Furthermore, when the minimum support increases,
the incremental scope of INSTANT+ is much reduced than
that of INSTANT, that is because FP-FOREST will prune
more redundant items when the overall items count is
fixed but the itemsets count increases.

We also compared the items count of these two al-
gorithms under different minimum supports when data

size was fixed. As show in Fig.12, corresponding to
the runtime cost in Fig.10, the items count in INSTANT
is in direct proportion to the minimum support, but in
INSTANT+, the items count may decreases, which is
analyzed in the running time cost comparison.

V. CONCLUSIONS

In this paper we considered a problem that how to
mine maximal frequent itemset over stream landmark
model. We discussed the drawbacks of an state-of-the-
art algorithm INSTANT and introduced a compact data
structure FP-FOREST, which can compress the item-
set storage and optimize itemset computation, based on
which, an improved algorithm INSTANT was developed
and analyzed. Our experimental studies showed that our
algorithm is effective and efficient.
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