
RPPA: A Remote Parallel Program Performance

Analysis Tool

Yunlong Xu, Zeng Zhao, Weiguo Wu
*
, and Yixin Zhao

School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an, China

Email: xjtu.ylxu@gmail.com, wgwu@mail.xjtu.edu.cn

Abstract—Parallel program performance analysis plays an

important role in exploring parallelism and improving

efficiency of parallel programs. To ease the performance

analysis for remote programs, this paper presents a remote

parallel program performance analysis tool, RPPA (Remote

Parallel Performance Analyzer), which is based on dynamic

code instrumentation. A hierarchical structure is adopted by

RPPA which consists of 3 parts: client, server and

computing nodes. Performance analysis tasks are submitted

to the server via the graphical user interface of the client,

and then actual analysis processes are started on the

computing nodes by the server to collect performance data

for visualization in the client. The performance information

gained by RPPA is comprehensive and intuitive, hence it is

quite helpful for users to analyze performance, locate

bottlenecks of programs, and optimize programs.

Index Terms—parallel programming tools, program

performance analysis, dynamic code instrumentation,

performance visualization

I. INTRODUCTION

In the past few years, parallel computers have grown

very fast, while software for parallel computing has

grown comparatively slow. This situation makes the

efficiency of parallel systems relatively low, thus

hardware performance cannot be fully utilized [1].

Therefore software becomes the bottleneck of parallel

computing, and limits the widely use of parallel

computers. For instance, parallel program development is

challenging due to the lack of effective tools for coding,

debugging, performance analyzing and optimizing.

Motivated by the preceding challenge, a remote

visualization parallel program performance analysis tool,

RPPA, which aims to help programmers to optimize

performance of applications and make full use of parallel

computing resources, is designed and developed based on

the survey of existing tools and our former research of a

parallel program integrated development environment

(i.e., IDE). RPPA provides a solution for performance

analysis of MPI [4] applications running on parallel

computers with SMP nodes. To gain comprehensive

performance information of programs, a dynamic

instrumentation based approach, which includes

modifying, deleting, and inserting code to change the

execution behaviors of programs, is applied to the

performance measurement. The framework of RPPA

consists of three parts: client, server and computing nodes.

A performance analysis task is committed to the server

through the client graphical user interface (i.e., GUI); a

server daemon running on the server then starts the

program performance data collection processes on several

computing nodes; later, the server gathers performance

data files from computing nodes, and sends back to the

client for visualization.

The reminder of this article is organized as follows:

First, we consider related work and point out RPPA’s

strength through comparison with existing tools in the

next section. In Section 3, we describe the overall

architecture of RPPA. After that, we present the

methodology applied in the client, the server and the

computing nodes in detail respectively in Section 4. In

Section 5, we present the evaluation of a RPPA prototype.

Section 6 is a discussion. Finally, we consider future

work and conclude the paper.

II. RELATED WORK

Performance analysis is crucial to parallel program

development. This work combines knowledge of various

fields, e.g., parallel computing, computer architecture,

data mining. The related work of program performance

analysis has been carried out by many organizations and

agencies.

MPE [2] is an extension of MPICH [3] which is a

portable implementation of MPI. It consists of a large

number of programming interfaces and examples for

correctness debugging, performance analysis and

visualization. It supports several file formats to log

performance information of programs, which can be

viewed by Upshot, Jumpshot [5], and other visualization

tools.

Paradyn [6], developed by University of Wisconsin, is

a software package which aids in analyzing performance

of large-scale parallel applications. It supports analyzing

MPI and PVM [7] applications. The cause of

performance problems is systematically detected by

inserting and modifying code of programs automatically.

And performance bottlenecks are automatically searched

by means of a W
3
(i.e., When, Where, and Why) model.

TAU [8] is a parallel program performance analysis

system developed by University of Oregon, Juelich

The journal article is based on the conference paper, "Research and
Design of a Remote Visualization Parallel Program Performance
Analysis Tool," which appeared in PAAP’10.

*Corresponding author: Weiguo Wu

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2399

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.12.2399-2406

Research Center, and Los Alamos National Laboratory

together. It focuses on system robustness, flexibility,

portability and integration of other related tools, and

supports multiple programming languages, including

C/C++, Fortran, Java, Python. A MPI wrapper library is

provided to analyze performance of MPI functions, as

well as a log format conversion tool.

VENUS (Visual Environment of Neocomputer Utility

System) [17] is a parallel program performance

visualization environment developed by Xi'an Jiaotong

University. It provides solutions for monitoring,

analyzing and optimizing large-scale PVM parallel

programs based on profiling method. System supports

real-time and post-mortem performance visualization.

Measurement code is automatically inserted into source

code of programs to collect performance data for data

analysis and performance visualization. In this way,

performance analysis helps users to optimize their

programs.

Open|SpeedShop [9], a dynamic binary

instrumentation based performance tool using DPCL

[16]/Dyninst [12], aims to overcome a common limitation

of performance analysis tools: each tool alone is often

limited in scope and comes with widely varying

interfaces and workflow constraints, requiring different

changes in the often complex build and execution

infrastructure of the target application; thus it provides

efficient, easy to apply, and integrated performance

analysis for parallel systems.

HPCToolkit [10], developed by Rice University, is an

integrated suite of tools that supports measurement,

analysis, attribution, and presentation of application

performance for both sequential and parallel programs.

HPCToolkit can pinpoint and quantify scalability

bottlenecks in fully-optimized parallel programs and

multithreaded programs at a low cost. Call path profiles

for fully-optimized codes can also be collected without

compiler support.

The tools enumerated above have a common defect

that performance visualization and data collection are

both carried out on parallel computers or clusters. It is

hard for users who are not familiar with parallel systems

to install and apply these tools. The preceding defect

hinders the widely use of parallel program development

environment and parallel computing resources to some

extent. Therefore, there is an urgent need for a user-

friendly remote parallel program performance analysis

tool. RPPA is to meet this need. Users connect to remote

parallel systems over the internet via RPPA’s client GUI,

which is part of a parallel program IDE built on Eclipse

Plug-in [11] technology. Interactive operations and

performance visualization are both carried out in the

client, while actual operations are executed on remote

clusters which are transparent to common users. RPPA is

easy to use and portable for Windows, Linux and other

operating systems.

III. OVERALL ARCHITECTURE

The RPPA tool adopts a hierarchical structure, through

which users are shielded from the complexity of parallel

Server

Performance

Task

Launching

Module

Command Handling Module

Client

MPI Processes

Performance Data Collector

MPI Communication

Library

Performance Data file

Data Collection Launching

Module
Data File

Gathering

Module
MPI Communication

Library

Performance Analysis Operation GUI

Data

Downloading

Module

Visualization

Controlling

Module

Visualization

Views

Computing Node

Interconnection network

Internet

Connection Manager

MPI Processes

Performance Data Collector

MPI Communication

Library

Performance Data file

Computing Node

MPI Processes

Performance Data Collector

MPI Communication

Library

Performance Data file

Computing Node

Figure 1. Overall architecture of RPPA

systems. The performance information of programs is

presented in RPPA’s GUI in an intuitive way, which is

quite helpful to locate performance bottlenecks and

improve efficiency of programs. A performance analysis

task is committed to the server through the graphical

client; a daemon running on the server starts the program

performance data collection processes, whose core step is

dynamic instrumentation, on several computing nodes;

the server gathers performance data files from the

computing nodes, and sends back to the client for

visualization.

RPPA is customized to the cluster structure. The

overall architecture of RPPA is depicted in Figure 1. The

client connects with the server over the internet, and the

computing nodes connect with the server, which can also

be a computing node, over high-speed interconnection

network. Users control the whole system through a GUI,

which includes two core modules for submitting

performance analysis tasks, downloading and visualizing

performance data. The server-side operation details (e.g.,

how the run-time processes are assigned to the computing

nodes) are transparent to users. As a result, operations are

greatly simplified for users who are not familiar with the

bottom parallel cluster structure. The server, entry node

of a parallel cluster, is responsible for maintaining the

connection between the client and the cluster, accepting

instructions from the client and then starting performance

analysis processes on computing nodes to collect

performance data. Actual performance analysis tasks and

program execution tasks are carried out on the computing

nodes: RPPA creates user program processes, into which

measurement code is inserted, controls its execution,

generates performance data files, integrates and analyzes

the files when analysis processes finish.

IV. DETAILED DESIGN

A. Client

Client provides an interface for users to commit

2400 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

Performance Analysis

Launching Module

Performance Data

Downloading Module

Performance Data

Visualization

Controlling Module

Communication Interface

Performance

Data File

User Command Interface

Performance

Data File

Performance

Data File

File Generate

Command

File Generate

Command
File Generate

Command

Commands

Performance Analysis Command Handling Module

Launch

Command

Visualize

Command

Visualization Views

Visualize

Download

Command

Read

ReadRead

Figure 2. Structure of client

analysis tasks and visualizes performance analysis result.

The GUI implemented with Eclipse Plug-in technology

greatly simplifies users’ operation. Client is composed of

four functional modules: performance analysis command

handling module, performance analysis launching module,

performance data downloading module, and performance

data visualization controlling module. The relationship

between the four modules is shown in Figure 2.

Performance Analysis Command Handling Module

This module implemented by extending Plug-in

extension points of Eclipse platform. Graphical items of

performance analysis (e.g., buttons, menus, pop-up lists

and editors) are added to the original GUI of Eclipse

platform. Each item corresponds to a specific

performance analysis operation. This module supports

interactions between users and RPPA.

Performance Analysis Launching Module

This module sends commands to the server and starts

remote performance analysis task. A customized Eclipse

launching mode is implemented by extending the

launchModes extension point of the original platform,

and the actions carried out while launching are

implemented by extending the launchDelegates extension

point of Eclipse.

Performance Data Downloading Module

Performance data files are distributed among the

computing nodes when analysis task finishes due to the

C/S architecture adopted by RPPA. This module gathers

and integrates the distributed performance data files, and

then transfers the integrated file to the client for

visualization.

Performance Data Visualization Controlling Module

The structure of this module is shown in Figure 3.

Performance information can be viewed in multiple

aspects through various display commands and views

RPPA provides. A command deals with a specific kind of

data set; and a view displays a kind of performance

information. It is worth mentioning that, in accordance

with the characteristics of parallel programs, a view of

Performance Data

File

Performance Data

File

Performance Data

File

Performance Data

Parser Module
Visualize

Read

Visualization Views

Visualization Views

Controller

Data Files Read Controller

Data File Parser

Controller

Performance

Data

Visualization

Controlling

Module

Parser Control

Figure 3. Performance visualization control module of client

performance comparison between multiple processes is

provided.

Performance data visualization is an important means

to help users analyze program performance and pinpoint

performance bottlenecks. Because it is difficult to

measure a program’s performance based directly on large

volume of performance data files of various entries, not

to mention that the data volume grows rapidly as

application scales. Therefore, RPPA offers vivid and

intuitive graphical charts to help users visualize

performance information analyze program performance

and then locate bottlenecks quickly.

B. Server

Server is the communication relay between the client

and the computing nodes: it serves as the entry of a

cluster, which is composed of several computing nodes,

and controls execution of tasks on computing nodes; it

also receives commands from the client and responses to

these commands. The functionalities of the server

include launching performance analysis tasks, gathering

performance data files from computing nodes, and

maintaining communication with the client. The

performance data file gathering module is the core of the

server.

According to when collected data is analyzed and

visualized, program performance analysis falls into two

categories: real-time analysis and post-mortem analysis.

Each mode has its strength: the real-time mode can adjust

data collection during running time of tasks, while the

post-mortem mode introduces minor perturbation into the

original program. As to RPPA, if a real-time mode is

adopted in the C/S structure, the server has to receive

performance analysis instructions frequently, deal with

these instructions, and then transmit them to the

computing nodes on which they are actually executed,

and finally large volume of data is transferred back to the

client while execution. The whole process which is

greatly affected by network would introduce major

perturbation to the original program. Thus the post-

mortem mode is adopted in RPPA.

Unlike the launch process of common MPI parallel

program, the launch process of performance analysis task

has to ensure that all MPI processes running on the

computing nodes are under the control of the program

performance analysis tool, specifically the control of the

performance analysis launching module. In this way,

measurement code is instrumented into user programs,

and then performance data can be collected. The launch

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2401

© 2011 ACADEMY PUBLISHER

performance Data

Collection Module

User hello Process

rsh/sshrs
h/

ss
h

Performance Data

 Collection Processes

User hello Process

Computing Node B

User hello Process

Computing Node C

Computing Node A

Performance Data Collection

Processes

Performance Data

Collection Processes

Communication

Between Processes

Start

Remote Process

Start

Local Process

Figure 4. MPI program starting process under the control of data

collection module

process of MPI parallel program under the control of

launching module is shown in Figure 4. When receiving a

performance analysis launch command, the launching

module of the server (e.g., Node A in Figure 4) analyzes

the parameters of the command, creates a performance

analysis task, sets some parameters (e.g., name and full

path of the user program, number of processes) for the

task, and then starts data collection processes on the

computing nodes. The data collection processes analyze

the parameters and then create hello processes based on

the name of the user processes and the parameters of the

performance analysis task. After that, the hello processes

is considered to be part of the whole task, and managed

by MPI runtime environment.

C. Computing Nodes

The computing nodes, on which MPI runtime

environment is deployed, is the substrate of RPPA. A

bijection is set up between MPI processes and

performance data collection processes on the computing

nodes. Data collection processes start and control MPI

processes. The performance data collection module of

the computing nodes is launched by the performance data

collection launching module of the server. MPI processes

are started by the data collection module according to

some parameters (e.g., the absolute path of the MPI

program). And then the collection module inserts

measurement code into MPI processes, and integrates

generated performance data files when finishes.

The main purpose of performance analysis is to help

users to locate program bottlenecks, i.e., code segments

which account for large portions of running time. Besides

running time, the number of function calls is also

collected to estimate the average running time of each

function. As to MPI parallel program, communication

volume of MPI functions also concerns programmers a

lot. To sum up, three kinds of data, i.e., running time,

number of function calls, communication volume, need to

be collected.

Performance data is collected by means of code

instrumentation [12], which includes modifying, deleting,

and inserting code to change the execution behaviors of

programs. According to the timing of code inserting,

instrumentation can be divided into two categories: static

and dynamic code instrumentation. The static one inserts

code before execution of programs and the dynamic one,

per contra, during execution. The static instrumentation

introduces little perturbation into the original programs,

but the information it collects is not comprehensive;

while the dynamic instrumentation is able to collect

comprehensive performance information at the cost of

major perturbation. Using dynamic instrumentation,

programs are just awakened rather than to be recompiled,

relinked and restarted after instrumentation. Apparently,

the dynamic instrumentation is more complicated to

implement than the static one.

In this paper, we use DynistAPI [12], a dynamic binary

instrumentation interface developed by University of

Maryland, to insert running processes with binary code.

Instrumentation processes (i.e., Mutator) start user

program processes which are to be instrumented (i.e.,

Mutatee), and attaches themselves to the user processes.

Measurement code segments (i.e., Snippet) are inserted

into user processes by instrumentation processes when

user processes are suspended. And performance data is

collected when instrumented code of user processes are

executed.

The process of performance data collection is

described as Algorithm 1. We note that, when no MPI

Algorithm 1: Performance data collection procedure

Input: A, Attributes of user task

Output: PF, an integrated performance data files

define: proc_array, array of MPI process pid
proc_array ← spawn(A)
suspend(proc_array)
foreach i in proc_array

define: node, name of computing node
define: file, path of data file
file ← new(node,i)
define: procImage, image of user process
procImage ← getImage(i)
define: usrModule, image of user process
usrModule ← search(procImage)
define: usrFunc_array, array of user function
func_array ← search(usrModule)
for j in func_array

define: snippet, binary code segment
define: gettimeofday, function to get current time
define: fscanf/fprintf, function to read/write a file

 snippet ← generate(gettimeofday,fopen/fprintf)
insert(j, snippet,file)
if j is a MPI function

 define: commAttr_array, array of communication
attributes, e.g., volume, source, destination

 snippet ← generate(commAttr_array,file)
 insert(j,snippet)

end if
end for
wake(proc_array)
if i finishes
 acknowledge(server,file,i)
end if

end foreach
while(TRUE)

if all processes complete
 define: file_array, array of performance file
 PF ← integrate(file_array)
 return PF
end if

end while

2402 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

communication function is founded, the data collection

process skips the step of collecting MPI communications

information, and goes ahead rather than returns, because

the program being analyzed could be a serial program,

which can also be executed by mpiexec command in MPI

runtime environments.

V. EVALUATION

This section describes the evaluation of a RPPA

prototype in two aspects: functional evaluation and

perturbation evaluation. Pros and cons of RPPA are also

presented at the basis of the evaluations.

A. Test Environment and Test Case

In this paper, the evaluations are carried out on a

parallel computing system, a Dawning 4000L cluster,

which composed of 18 nodes. Each node is equipped with:

Intel (R) Xeon (TM) CPU (3.00 GHz × 2), 2G memory,

Broadcom BCM5721 1000Base-T LAN, Linux 2.4

operating system, and OpenMPI [14] 1.2.3 parallel

computing environment. The test case is an MPI parallel

program solving ocean circulation problem by using two-

dimensional stommel model developed by Timothy H.

Kaise.

B. Functional Evaluation of Performance Visualization

Users can check performance information in 7

different views, including: function running time of

single process, function call numbers of single process,

communication volume of single process, function

running time comparison of multi-processes, function call

number comparison of multi-processes, communication

volume comparison of multi-processes, and space-time

diagram of all processes. In this evaluation, the test

program is composed of 5 performance data collection

processes, each of which creates a stommel process on 2

computing nodes separately. Data files are downloaded

and performance information is visualized when data

collection task finishes. Function running time of one

process is shown in Figure 5; function running time

comparison of multi-processes is shown in Figure 6; and

space-time diagram of all processes is shown in Figure 7.

Functional evaluation shows that the performance data

collected by RPPA which is based on dynamic

instrumentation is comprehensive, because performance

data of all kinds of functions (i.e., user-defined functions,

external library functions, standard MPI communication

functions) can be collected through dynamic

instrumentation. This evaluation also shows that, RPPA

meets the requirement of program performance analysis,

and brings great convenience to programmers by

providing a user-friendly GUI.

C. Perturbation Evaluation

The perturbation introduced into the original programs

by an analysis tool is an important metric to measure the

performance of the analysis tool itself [15]. The

perturbation can be reflected by the running time of

programs. And the degree of perturbation can be

estimated by comparing the running time of a program

with measurement code inserted and the running time of

the original program.

What concerns us most is the difference of running

time between the original program and the program with

code inserted. The running process of parallel programs is

affected by many factors. And in this paper, perturbation

evaluation is influenced mainly by network status and

system background workload status. Thus a single node,

on which there is no process running besides Linux

system processes, is used to run the evaluation programs.

In this way, the network and system load factors are ruled

out.

The Paradyn performance analysis tool, which also

uses the Dyninst tool for dynamic instrumentation, is

selected to compare with RPPA. To make the evaluation

data more representative, we carry out 3 kinds of tests

using the stommel program, including running program

without interference of any performance analysis tools,

with interference of RPPA, and with interference of the

Paradyn tool. 10 groups of these 3 kinds of tests are

conducted. The test results are shown in Figure 8. Test

type 1 represents running time without interference of

any analysis tools, type 2 represents running time with

RPPA, and type 3 represents the Paradyn tool.

It can be seen that, under the same conditions (i.e., the

same running environment, and the same types of

performance data to be collected), the running time of the

stommel program with interference of RPPA is closer to

the running time without any tools than to the running

time with Paradyn. From this perspect ive, RPPA

surpasses the Paradyn program performance analysis tool.

However, Figure 8 also shows that both RPPA and

Paradyn introduce major perturbations into the original

programs. The primary cause is that they both build on

dynamic instrumentation which intrudes the original

programs frequently by coping, modifying, transferring,

and inserting code during runtime of programs. But for

the same reason, the performance data collected by the

analysis tools based on dynamic instrumentation is

comprehensive, because performance information about

all kinds of functions can be gained. Obviously, major

perturbation is the price of comprehensive performance

information.

VI. DISCUSSION

In this section, we discuss some new ideas and

methods to improve RPPA. As mentioned in the previous

section, dynamic instrumentation based performance

analysis tool introduces major perturbation into the

original programs. Hence we seek a novel approach to

collect performance data on the server and computing

nodes. A multi-level instrumentation based data

collection approach is proposed in our recent research.

The implementation of this approach is part of our recent

and future work, and is planned to be presented in follow-

up work. In this section, we first discuss why this

approach would reduce the perturbation, and how it

works.

As analysis in section 7 says, dynamic instrumentation

co l lec t s co mprehens ive program per formance

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2403

© 2011 ACADEMY PUBLISHER

Figure 5. Function running time of one process

Figure 6. Function running time comparison of multi-processes

Figure 7. Space-time diagram of all processes

2404 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

0

0.5

1

1.5

2

2.5

3

3.5

R
u

n
n

in
g

 T
im

e
(S

e
c
o

n
d

s)

Test Type 1

Test Type 2

Test Type 3

Figure 8. Running time comparison of stommel program interfered by different analysis tool

information at the cost of major perturbation. Therefore

we propose the multi-level instrumentation based

approach, through which the comprehensiveness of

performance information would not be compromised. The

essential of this approach is to collect different kinds of

information in distinctive proper ways; and only do

dynamic instrumentation when really necessary. We

separate the functions, whose performance information

concerns programmers most, into three categories: user-

defined function, standard MPI function, external library

function. Performance information of user-defined

function is collected through a source-level

instrumentation [8] based method. As to standard MPI

functions, we adopt PMPI [4], the MPI standard profiling

interface, to collect its performance information. And for

external library function, to the best of our knowledge,

the dynamic instrumentation is the best method to collect

its performance information. We note that the source-

level instrumentation could be replaced by the dynamic

one when there are no other files than the binary ones for

some reasons. We also note that dynamic instrumentation

could be skipped if the external library functions’

performance information is not a concern or little

perturbation can be tolerated by users. And still there is

plenty of performance information presented to

programmers even if the external library functions are

ignored.

By using this multi-level based approach, the

perturbation introduced into the original programs would

surely be at a lower level, and comprehensiveness of

performance information would also not be compromised.

Firstly, the source-level based instrumentation introduces

little perturbation into the original programs because only

a few measurement code is inserted into the source files

at the entry and exit point separately when compilation.

And all the information that the dynamic approach

collects can also be collected by this source-level one.

Secondly, when using PMPI profiling to collect standard

MPI function’s performance information, there is no need

to copy, modify, transfer, and insert code during runtime

of programs. Because all MPI_ prefix functions are

substituted by equivalent PMPI_ ones in which some

additional measurement code is added. Thus less

perturbation is introduced. And also the

comprehensiveness of performance information would

not be compromised.

The philosophy of this tool resembles SaaS (i.e.,

Software-as-a-Service) in cloud computing which

emerges and then receives significant attention in the

media recently. The cloud conceals the complexity of the

infrastructures from common users through internet.

Cloud computing partly refers to the software delivered

as services over the internet. Users could shift computing

power away from local servers, across the network cloud,

and into large clusters of machines hosted by companies

such as Amazon, Google, IBM, Microsoft, Yahoo! and so

on. We plan to transplant our parallel program IDE’s

client, which include RPPA’s client, into the internet

environment by rewriting its GUI with some web

programming Languages. Then the Eclipse platform

would be replaced by an internet explorer. And with the

support of a daemon running on the server node of a

remote cluster, users could develop parallel programs

remotely over the internet on laptop rather than on

parallel cluster. In this way, great convenience would be

brought to programmers, while excellent portability of

this tool would also be achieved.

VII. CONCLUSION AND FUTURE WORK

A remote parallel program performance analysis tool,

RPPA, is designed based on the research of the existing

program performance analysis tools, most of which are

not user-friendly. RPPA meets the urgent need of parallel

program performance analysis as mentioned in Section 1.

The workflow of RPPA is as follows: performances

analyses tasks are submitted to the server through the

client; then performance data collection processes are

started on the computing nodes by the server to collect

performance data; at last, program performance

information is visualized in the client. RPPA is user-

friendly, easy to use, and the collected performance

information is comprehensive, so it is quite helpful for

users to analyze performance, locate bottlenecks of

programs, and optimize programs.

However, there is a common shortcoming of dynamic

instrumentation based performance analysis tools: major

perturbation would be introduced into the original

programs. So research on multi-level instrumentation

based performance analysis tool which brings minor

perturbation is a part of our future work. Our future work

also includes providing supports for variety kinds of

parallel programming models and heterogeneous high

performance computing systems.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2405

© 2011 ACADEMY PUBLISHER

ACKNOWLEDGMENT

This work was supported by the National High-Tech

Research and Development Plan of China under Grant

No. 2009AA01A131 and No. 2009AA01A135; the

Chinese Ministry of Science and Technology under Grant

No. 2009DFA12110.

We would like to thank all the people who give helpful

suggestions to our work, especially the reviewers of

PAAP’10 for their comments on the original conference

paper [18]. And we also would like to thank all the

members of the integration and application of

heterogeneous resources service project team, department

of computer science and technology, Xi’an Jiaotong

University, for their supports to our work.

REFERENCES

[1] C.C. Chen and M.X. Chen, "A generic parallel computing
model for the distributed environment," Proc. 2006 7th
International Conference on Parallel and Distributed
Computing, Applications and Technologies, pp. 4-7,
December 2006.

[2] A. Chan, W. Gropp, and E. Lusk, "User’s guide for MPE:
extensions for MPI programs," Technical Report, MCS-
TM-ANL-98, Argonne National Laboratory, 1998.

[3] W. Gropp, "MPICH2: A new start for MPI
implementations," Lecture Notes in Computer Science,
Springer Berlin/Heidelberg, vol. 2474, pp. 37-42, 2002.

[4] Message Passing Interface Forum, "MPI: A message-
passing interface standard," Technical Report, University
of Tennessee, 1994.

[5] O. Zaki, E. Lusk, W. Gropp, and D. Swider, "Toward
scalable performance visualization with Jumpshot,"
International Journal of High Performance Computing
Applications, vol. 13, pp. 277-288, 1999.

[6] B.P. Miller, M. Callaghan, G. Cargille, J.K. Hollingsworth,
R.B. Irvin, K.L. Karavanic, et al, "The Paradyn parallel
performance measurement tool," Computer, vol. 28, pp.
37-46, November 1995.

[7] W. Gropp and E. Lusk, "Goals guiding design: PVM and
MPI," Proc. IEEE International Conference on Cluster
Computing, pp. 257-265, 2002.

[8] S. Shende and A.D. Malony, "The TAU parallel
performance system," International Journal of High
Performance Computing Applications, vol. 20, pp. 287-311,
2006.

[9] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D.
Montoya and S. Cranford, "Open|SpeedShop: An open
source infrastructure for parallel performance analysis,"
Scientific Programming, vol. 16, pp. 105-121, April 2008.

[10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent, "HPCTOOLKIT:
Tools for performance analysis of optimized parallel
programs," Concurrency and Computation: Practice &
Experience, vol. 22, pp. 1-7, April 2010.

[11] E. Clayberg and D. Rubel, "Eclipse Plug-Ins," Addison-
Wesley Professional, 2008.

[12] B. Buck and J.K. Hollingsworth, "An API for runtime code
patching," International Journal of High Performance
Computing Applications, vol. 14, pp. 317-329, 2000.

[13] G. Ravipati, A. Bernat, N. Rosenblum, B.P. Miller, J.K.
Hollingsworth, "Towards the deconstruction of Dyninst,"
Technical Report, University of Maryland, 2007.

[14] E. Gebrial, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra,
J. Squyres, et al, "Open MPI: goals, concept, and design of
a next generation MPI implementation," Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, vol. 3241,
pp. 97-104, 2004.

[15] J. Liu, M.M. Shen, and W.M. Zheng, "Research on
perturbation imposed on parallel programs by debugger,"
Chinese Journal of Computer, vol. 25, No. 2, pp. 122-127,
2002.

[16] L. DeRose, T. Hoover and J. Hollingsworth, "The dynamic
probe class library — an infrastructure for developing
instrumentation for performance tools," Proc. of the 15th
International Parallel and Distributed Processing
Symposium, Apr. 2001.

[17] X.H. Shi, Y.L. Zhao, S.Q. Zheng, and D.P. Qian, “VENUS:
A general parallel performance visualization environment,”
Mini-micro Systems, vol. 19, pp. 1-7, 1998.

[18] Y.L. Xu, Z. Zhao, W.G. Wu, and Y.X. Zhao, " Research
and Design of a Remote Visualization Parallel Program
Performance Analysis Tool," Proc. of the Third
International Symposium on Parallel Architectures,
Algorithms and Programming, pp. 214-220, Dec. 2010.

Yunlong Xu, born in Sichuan, China, 1987. He is currently a

Ph.D. candidate at School of Electronic and Information

Engineering, Xi’an Jiao tong University, China. His research

interests include parallel computing, and cloud computing.

Zeng Zhao received his master degree in School of Electronic

and Information Engineering, Xi’an Jiao tong University, China,

in 2010. Zhao is currently a member of Tencent, Inc., China.

Weiguo Wu, born in 1963, is Professor, Ph.D. supervisor, of

School of Electronic and Information Engineering, Xi’an Jiao

tong University, China. He received his master and Ph.D.

degree in Xi’an Jiaotong University. His research interests

include high-performance computer architecture, massive

storage system, computer networks, and embedded systems.

Yixin Zhao received his master degree in School of Electronic

and Information Engineering, Xi’an Jiao tong University, China,

in 2009.

2406 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

