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Abstract— Performance problems, which may stem from
different system components, such as network, memory,
and storage devices, are difficult to diagnose and isolate
in distributed storage systems. In this paper, we present a
performance anomaly detector which is able to efficiently
detect performance anomaly and accurately identify the
faulty sources in a system node of a distributed storage
system. Our method exploits the stable relationship between
workloads and system resource statistics to detect the per-
formance anomaly and identify faulty sources which cause
the performance anomaly in the system. Our experimental
results demonstrate the efficiency and accuracy of the
proposed performance anomaly detector.

Index Terms— performance anomaly detector, distributed
storage systems, parallel file systems

I. INTRODUCTION

Performance is critical in the study of distributed stor-
age systems. Synthetic workloads or file system bench-
marks are created to examine the behaviors of storage
systems. Although they are very useful in the initial stage
of the design and development of storage systems, it is
insufficient for using them to analyze or resolve one com-
mon problem called performance anomaly in these sys-
tems [1], [2]. By performance anomaly it means that the
observed system behaviors are not expected according to
the observed system workload. For example, I/O through-
put has a significant degradation given a moderate amount
of I/O requests. Performance anomaly is closely related
to either some resource-intensive processes that demand
large portion of system resources (CPU or memory) or
some unexpected software and hardware behaviors like
software bugs (memory leaking) and hardware faults (bad
hard drive sectors), and it is common in storage systems.
However, it remains a challenging task to efficiently detect
performance anomaly and accurately identify the faulty
sources, particularly in distributed storage systems.

Distributed storage systems usually consist of a large
amount of commodity computer nodes which may have
different processing capabilities. However, the overall per-
formance of such systems is not determined by the fastest
computer nodes of the systems, instead, the performance
is often limited by the capability of the slowest ones [2],
[3]. So, if there exists performance anomaly in some

node of a distributed storage system, it is highly possible
that the overall system performance will suffer negative
effects, and such effects may be accumulated and magni-
fied due to long-running and large-scale computations [2],
which directly hurts the reliability and availability of the
system. Therefore, it is necessary and crucial to equip
distributed storage systems with a tool which is able
to efficiently detect performance anomaly and accurately
identify the faulty sources.

As compared to the fail-stop failures [4], it is more
difficult to detect the existence of performance anomaly,
and even more difficult to identify the source of the
anomaly, because both dynamic workload change and
many uncertain factors such as caching and scheduling
can perplex people’s ability to understand the system
behaviors. Currently, some anomaly detecting approaches
are threshold-based, which set thresholds for observed
system metrics and raise signals when the thresholds are
violated [5], [6]. However, it is difficult to choose appro-
priate thresholds for a variety of workloads and computer
nodes with different capabilities. Some approaches are
model-based, which indicate performance anomaly by
comparing the observed system measurements and the
model estimations [2], [7], [8], however, their usages are
limited to the generality of the models.

This work targets the runtime diagnosis of performance
anomaly in distributed storage systems which may con-
sist of heterogeneous computer nodes and experience
dynamic changed workloads. The proposed approach is
self-diagnosis based, which exploits some invariants that
exist in a computer node of a distributed storage system
to detect the performance anomaly and identify faulty
sources of that node. Such invariants refer to the stable re-
lations between workloads and system resource statistics
in faulty-free situations.

The rest of the paper is organized as follows: Section II
gives a brief discussion on related work. In section III,
we describe our methodology for performance anomaly
detection and identification, and present the design of our
performance anomaly detector in section IV. Section V
describes our experiments and lists experimental results.
Finally, we conclude the paper in section VI.
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II. RELATED WORK

For large-scale systems like cluster file systems, it is a
major challenge to understand system behaviors, partic-
ularly unexpected behaviors. Numerous techniques have
been proposed for detecting system anomalies. Among
them, the simplest ones are the threshold-based techniques
which are a form of service level agreements (SLAs).
They are very useful on the condition that their users
clearly know the key metric to monitor and the best
value of the thresholds in different scenarios [5], [6].
Unfortunately, it is very difficult, even for an expert, to
correctly choose the necessary metrics to monitor and set
the right values of the thresholds for different scenarios
in the context of today’s complex and dynamic computer
systems.

Recently, statistical learning or data mining techniques
are widely employed to construct probability models
for detecting various anomalies in large-scale systems
based on some heuristics and assumptions, although these
heuristics and assumptions may only hold in some par-
ticular systems or scenarios.

Kasick et al [2] developed a statistical peer-comparison
diagnosis approach to identify a faulty node in a cluster
file system. The rationale of their approach is based on
the observation that there is an obvious difference between
the behaviors of fault-free and faulty nodes. Kavulya et
al [9] and Lan et al [8] proposed the similar approaches
to detect performance problems in replicated file systems
and a cluster system, respectively. However, the validation
of these approaches is based on a strong assumption of
homogeneous hardware and workloads, which may only
hold in a few cases.

Besides the probability models for system metrics such
as throughput, response time, etc, various relationships
and correlations among system inputs and measurements
are also explored and modeled to detect anomalies in
large-scale computer systems. Chen et al [7] developed
a new technique, the principal canonical correlation anal-
ysis (PCCA), to perform failure detection in large-scale
computer systems which provide online Internet services.
The key idea of their approach is to capture the contextual
relationships between the system inputs and their internal
measurements which hold in fault-free scenarios, and
are broken in faulty scenarios. However, it is required
for applying their technique that there exists a linear
relationship between the system inputs and their internal
measurements.

Guo et al [10] and Gao et al [11] investigated the prob-
abilistic correlation between flow-intensities measured at
different points and the one between different system
measurements, respectively. In this work, we also exploit
the correlation among system measurements, however, we
not only use them to detect the existence of performance
anomaly in a cluster file system, but also pinpoint the
source of the performance anomaly.

III. PERFORMANCE ANOMALY DETECTION AND
IDENTIFICATION

Given the scale and heterogeneity of distributed storage
systems, it is usually difficult to perform peer comparison
to distinguish faulty nodes from fault-free nodes, because
the behaviors of nodes in these systems may not be
comparable. In this work, a self-diagnosis based approach
is adopted to detect the existence of performance anomaly
and identify the faulty resources. The major advantage
of the approach is its independence of the scale and
heterogeneity of distributed storage systems.

The feasibility of the approach is based on two observa-
tions. First, resource overuse (CPU and memory) and hard
disk faults are very common in today’s distributed storage
systems according to the recent studies [12]–[19]. They
manifest themselves at least on a computer node. Thus,
if it is able to identify the system abnormal behaviors
originated from them by analyzing system measurements
collected on a computer node, it is not necessary to
adopt centralized or peer comparison based performance
anomaly detectors, which are expensive and not practical
for heterogeneous computer systems.

Second, there exist some relations among the system
measurements of a computer node in distributed storage
systems, which can be regarded as invariants when the
node works properly; but, one or more of such invariants
does not hold once the system experiences performance
anomaly [10], [20]. Such observation lays a strong foun-
dation for performing self-diagnosis based performance
anomaly detection and faulty resource identification, be-
cause performance anomaly can be detected and faulty
sources can be identified by simply checking whether
some invariants hold or not. Therefore, the main task is
to figure out the invariants of distributed storage systems
which can work as an indicator of performance anomaly.

A. Relation among Computer Nodes in Distributed Stor-
age Systems

Before exploring the invariants of distributed storage
systems, it is necessary to understand the relation among
computer nodes in these systems. These distributed stor-
age systems typically consist of three main components:
clients, a metadata server or a server cluster (MDS), and
a cluster of I/O servers or object storage devices (OSDs).
They provide an inexpensive alternative utilizing Com-
modity Off The Shelf (COTS) products allowing large
I/O intensive applications to be run on high performance
clusters [21]. Figure 1 presents a general architecture of
such systems. In this architecture, metadata operations are
separated from I/O operations, and there exist two types
of relations among system nodes: the relation between a
metadata server and multiple I/O servers and the relation
among a set of I/O servers.

The first type of relation reveals a single point of
failure in these storage systems. Because metadata servers
are always accessed before actual data transferring, once
metadata servers are down, clients cannot initiate any I/O
operations. On the other side, metadata severs do not
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Figure 1: The general architecture of distributed storage
systems.

intervene the actual I/O processing between clients and
I/O servers. Even if a metadata sever is down during
an I/O operation, the I/O operation can still be com-
pleted [22]. In this work, because the concentration is I/O
performance of a distributed storage system, the relation
between a metadata server and multiple I/O servers is not
considered. The main focus is on studying the relation
among a set of I/O servers which is more relevant to
system I/O performance.

In a distributed storage system which deploys file
systems like PVFS [23] and Lustre [24], data are usually
distributed among a set of I/O servers. An I/O request
from a client normally consists of several sub-I/O requests
corresponding to different I/O servers. When a client
processes such an I/O request, it is blocked on some
syscall until it properly receives all I/O server responses,
and then it can process next I/O request. Figure 2 presents
an example of an I/O request sequence from a client. In
this example, there are total three I/O requests, and each
I/O request contains three sub-I/O requests. For example,
sub-I/O request 1, 2, and 3 are of the first I/O request from
the client, and they are issued to I/O server 1, 2, and 3,
respectively. Let s1, s2, and s3 denote the request sending
rate of the client to I/O server 1, 2, and 3 respectively,
and they are calculated by Formula 1.

s1 = I/O request 1 + I/O request 4 + I/O request 7
t3 − t0

s2 = I/O request 2 + I/O request 5 + I/O request 8
t3 − t0

s3 = I/O request 3 + I/O request 6 + I/O request 9
t3 − t0

(1)

Thus, when an I/O server experiences a performance
problem, it definitely increases the client’s response time

0 1 2 3

Figure 2: An I/O request sequence from a client.

(service time + waiting time), and as a result, s1, s2, and
s3 will decrease due to the increase of t3−t0. Because the
request receiving rate of an I/O server is proportional to
the sending rate of a client, an important relation among a
set of I/O servers can be concluded that once an I/O server
experiences a performance problem (e.g., I/O performance
decrease), it receives fewer requests per time unit from
clients, so do other I/O servers.

Figure 3 shows I/O request receiving rates of a normal
node and faulty node in the presence of a performance
anomaly. It is clear that when a performance problem
occurs at a computer node, the problem not only reduces
the amount of received request per second at the faulty
node, but also manifests similar symptom at other nodes
which work properly.

Figure 3: I/O request receiving rate during a sequential
write. At the 41st second, disk delay faults were injected
in a computer node, which produced a performance
anomaly.

B. Invariants

Various relations among system measurements exist
in a computer node of a distributed storage system.
Here, invariants refer to those stable relations when a
system properly works. Because I/O performance is very
important in distributed storage systems, in this work, the
focus is on how to discover and utilize invariants in a
computer node to detect and pinpoint I/O performance
problems.

Because any performance problem at a computer node
manifest symptoms of unexpected certain resource usage,
because system resources are always limited, once one
or more processes occupies too many resources and does
not release them, the executions of other processes are
negatively impacted, as the OS kernel forces the processes
sleep until the required resources are ready [25]. Mean-
while, if a resource request from a process cannot be satis-
fied immediately, the kernel also forces the process sleep.
Thus, one option of utilizing invariants in a computer node
to detect performance anomaly is to explore the relations
between workloads and system resource statistics.

To facilitate the discussion, how a computer node
handles the I/O requests from clients is first studied.
Figure 4 depicts an I/O request flow in a computer node.
External I/O requests are first processed by the process
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Figure 4: An I/O request flows in a computer node.

of a distributed file system on the node, then the process
sends the I/O requests to a hard disk, and the hard disk
finally completes those I/O requests. According to the
location of I/O requests, the flow can be divided into two
phases: P1 and P2. The former indicates the phase where
I/O requests are processed by the distributed file system,
and the latter represents the phase where I/O requests are
in a hard disk.

In the two phases, different resources are required for
processing incoming I/O requests. CPU and memory are
two major required resources in P1, as in that phase, a
distributed file system transforms the I/O requests from
network into the ones for the local disk. I/O requests are
finally stratified in P2, the local disk is the major required
resource in that phase. Thus, the concentration is of ana-
lyzing the relations between workloads and the statistics
of the resources listed above to look for the invariants
which can be used to detect and pinpoint performance
problems. By studying the trace data collected from the
previous studies on distributed storage systems [3], [22],
three invariants are concluded as follows based on the
statistics listed in Table I.

Invariant for memory. If the process of a distributed
file system at a computer node works properly, without
intervention of other processes, the total size of I/O
requests over network per second is proportional to the
amount of the allocated memory per second.

Memory is allocated to hold data either after the arrival
of write requests from clients or before sending back the
satisfied read requests to clients. Thus, if a computer node
has sufficient free memory and there are no other memory
intensive processes running on the node, the total size
of I/O requests over network per second is proportional
to the amount of the allocated memory per second. The
invariant is used to identify the performance problems
originated from memory. Figure 5 gives an example of
the invariant.

Invariant for CPU. If the process of a distributed
file system at a computer node works properly, without
intervention of other processes, the total size of I/O
requests over network per second is proportional to the
number of interrupts per second.

Interrupts are generated during the processing of I/O
requests. For example, a network interface card raises
hardware interrupt to CPU after the arrival of I/O re-
quests from clients; disk interrupts are triggered when
I/O requests are issued to a hard disk drive. If more I/O
requests arrive at a computer node, more interrupts are
generated, and vice versa. Meanwhile, the generation rate
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Figure 5: The relation between the total size of I/O
requests over network per second and the amount of
allocated memory per second. Data is from a trace of
40 seconds I/O activities in a computer node.
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Figure 6: The relation between the total size of I/O
requests over network per second and the number of
interrupts per second. Data is from a trace of 40 seconds
I/O activities in a computer node.

of interrupts is closely related to the CPU time of the
corresponding process, as it requires a significant amount
of CPU time to process I/O related interrupts [26]. Once
the CPU resource is insufficient for the distributed file
system process, fewer I/O related interrupts are generated,
and the proportional relation between I/O request arrival
rate and interrupt generating rate does not hold. The
invariant is used to identify the performance problems
originated from CPU. Figure 6 gives an example of the
invariant.

Invariant for disks. If a hard disk works properly and
has continued I/O requests, the average I/O request size
is proportional to the average I/O request service time.

I/O requests issued to a hard disk usually have different
sizes. It is intuitive that larger requests require more ser-
vice time than smaller requests. However, when hard disks
process discontinued I/O requests, small requests may
require more service time than large requests, because the
disk seek time dominates the total request service time.
Thus, when a hard disk works properly and has continued
I/O requests, the average I/O request size is proportional
to the average I/O request service time. The invariant is
used to identify the performance problems originated from
hard disks. Figure 7 gives an example of the invariant. In
the figure, the proportional relation is maintained among
I/O requests with large size, but if I/O request size is very

2382 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER



TABLE I.: Workload and System Resource Statistics.

Source Metric Description

Workloads
net req the total size of I/O requests over network per second.
avgrq-sz The average size (in sectors) of the requests that are issued to a disk drive.

System resource

free mem The amount of idle memory.
in The number of interrupts per second, including the clock.
svctm The average service time (in milliseconds) for I/O requests that are issued to

a disk drive.

small, the proportional relation rarely holds.

C. Indicators

According to the relation among I/O servers concluded
in Section III-A, once an I/O server has a performance
problem, the problem will be also observed at other I/O
servers. Such a relation makes it difficult to accurately lo-
cate the faulty server. Furthermore, dynamically changing
workloads perplex people’s ability to determine appropri-
ate thresholds to identify performance anomaly [1]. It is
necessary to find indicators which are highly sensitive to
performance anomalies but less sensitive to other factors.
In this work, the invariants discussed in the previous
section are leveraged to develop such indicators.

1) Indicators of Performance Anomalies: Although
one or more of the above invariants does not hold when
an I/O server experiences performance problem, it is still
insufficient to only depend on them to detect the existence
of performance anomaly on the server, because even if
when an I/O server works properly, these invariants may
still not hold, for example, marginal memory allocation
by other processes may break the invariant for memory
but does not negatively impact the running of the process
of a distributed file system on the server.

To compensate the drawback of the invariants, an
indicator Ireq(n) is adopted to detect the performance
anomaly on an I/O server at the nth sampling period.
Formula 2 gives the definition of Ireq(n), where reqn−1

denotes the average total size of I/O requests at the
(n − 1)th sampling period, reqn denotes the average
total size of I/O requests at the nth sampling period, and
α denotes a threshold of the degradation ratio between
reqn−1 and reqn. If the ratio is greater than or equal
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Figure 7: The relation between average I/O request size
and average service time per I/O request. Data is from a
trace of 250 seconds I/O activities on a computer node.

to α, Ireq(n) generates a TRUE value, which suggests
a performance problem, otherwise not. Similarly, Ireq(n)
cannot be used alone to detect performance anomaly on
an I/O server, because non-faulty I/O servers also observer
the degradation of receiving request rate. Ireq(n) should
be combined with the indicators of the invariants to detect
performance anomaly.

Ireq(n) =


FALSE, if reqn−1−reqn

reqn < α, reqn 6= 0
FALSE, reqn = 0
TRUE, if reqn−1−reqn

reqn ≥ α, reqn 6= 0
(2)

2) Indicators of Faulty Sources: Because the invariants
discussed above refer to a proportional relation between
two metrics, in order to use them in practice, such a
proportional relation needs to be quantified. The corre-
lation corr(x, y) is a good measurement for quantifying
a proportional relation between two variables: x and y.
Formula 3 gives a formal definition of corr(x, y), where
σx,y denotes the covariance of x and y; σx and σy denote
the variance of x and y, respectively; µx and µy represent
the mean value of x and y, respectively; E(x) calculates
the expectation of variable x. The sign of corr(x, y) is
more meaningful than its absolute value: once correlation
is positive, it indicates x increases as the increase of y;
otherwise, it indicates x is not proportional to y.

corr(x, y) =
σx,y

σxσy
=

E[(x− µx)(y − µy)]√
E(x− µx)2

√
E(y − µy)2

(3)

Thus, based on Formula 3, three indicators Imem, Icpu,
and Idisk are defined to test the invariants by Formula 4, 5,
and 6, respectively. If an indicator has a boolean value of
TRUE, the corresponding invariant holds, otherwise, the
invariant does not hold, which suggests the performance
problem originates from the corresponding resource. Ta-
ble II lists the parameters used in these formulas.

TABLE II.: Symbols in Formulas 4, 5, and 6.

Parameter Description
req the total size of incoming I/O requests per second.
interrupt the number of generated interrupts per second.
mem the amount of allocated memory per second.
iosize the average I/O request size to a hard disk per second.
svctm the average I/O request service time per second.
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TABLE III.: An Example of a Probability Distribution
Table of P (iosize|svctm). Data is from a trace of 250
seconds I/O activities in a computer node.

Average service time: ms
I/O request size: KB [0, 8) [8, 12) [12, )
[0, 150) 100% 0 0
[150, ) 85% 10% 4%

Icpu =
{

FALSE, if corr(req, interrupt) < 0
TRUE, if corr(req, interrupt) ≥ 0 (4)

Imem =
{

FALSE, if corr(req,mem) < 0
TRUE, if corr(req,mem) ≥ 0 (5)

Idisk =
{

FALSE, if corr(iosize, svctm) < 0
TRUE, if corr(iosize, svctm) ≥ 0 (6)

Because Idisk does not work well in the case of
discontinued I/O requests, in order to compensate the
drawback of Idisk, the conditional probability distribution
P (iosize|svctm) is checked to confirm the value gen-
erated by Idisk; as if a hard disk works stable, a stable
probability distribution has to be observed. Table III gives
an example of the probability distribution. For example,
if a sequence of {(80KB, 3ms), (81KB, 2ms), (82KB,
4ms), (83KB, 2ms)} is observed, although Idisk generates
a FALSE value, the P (iosize|svctm)s of all pairs in
the sequence are 100% according to Table III, thus, the
FALSE value of Idisk is not confirmed and a TRUE
value is generated. In this work, once Idisk generates a
FALSE value, and the corresponding P (iosize|svctm) is
less than 10%, the FALSE value of Idisk is confirmed,
otherwise, Idisk generates a TRUE value.

Although higher accuracy can be achieved by checking
P (iosize|svctm) for identifying disk problems than only
looking at the proportional relation between iosize and
svctm, the major drawback of the method is the long
training time which is required for collecting sufficient
data to calculate a dependable probability distribution. So,
Idisk serves as the major indicator of disk problems in the
absence of a dependable P (iosize|svctm).

As compared to the performance problems originated
from memory, CPU, and hard disks, the problems from
network are more difficult to diagnose, as they usually
manifest themselves as a symptom of workload change,
and it is difficult to only use the local information of
an I/O server to identify them. An indicator Inetwork is
defined by Formula 7, which combines the local infor-
mation of an I/O server and the information from other
related I/O servers to identify the network problems. In
Formula 7, In

network is a local indicator of network on
an I/O server n, its TRUE value suggests there may
have some network problem which causes the perfor-
mance anomaly, but the value should be confirmed by
the external information from other I/O servers; I ′network

finally determines whether the network is a faulty source
or not, if a TRUE value is generated by it, the source of

performance anomaly can be pinpointed to the network.{
In
network = In

disk ∧ In
mem ∧ In

cpu ∧ In
req, n ∈ N

I ′network = I1
network ∧ I2

network ∧ · · · ∧ In
network, n ∈ N

(7)

IV. THE DESIGN OF THE ONLINE PERFORMANCE
ANOMALY DETECTOR

The online performance anomaly detector is imple-
mented as a daemon process which runs at each computer
node of a cluster file system. The detector sends alarms
to clients or administration nodes, when performance
anomaly is detected at a computer node. It is worth
pointing out that once performance anomaly is detected
on a computer node, it is most likely that the other
computer nodes generate alarms soon, and those alarms
may mark other resource as faulty, meanwhile, one or
more of our invariants on the computer node may not
hold any more until the performance anomaly is fixed.
Thus, the alarms raised after the first alarm in a short
period are ignored.

Figure 8 shows the working flow of our performance
anomaly detector. The detection process is triggered when
there is a significant degradation of req, then all indica-
tors are evaluated accordingly to identify which system
component is the faulty source, finally an alarm is raised
if the performance anomaly is detected.

req

disk mem cpu

FALSE
TRUE

AND

TRUE

FALSE

network

network

AND

TRUE
FALSE

Suggests the faulty source is 
network.

Suggests the faulty source is 
either disk, memory, or CPU. 

Figure 8: The working flow of the online performance
anomaly detector.

V. EXPERIMENTS

To demonstrate the efficiency of our performance de-
tector, we constructed a testbed which consisted of four
computer nodes (1 metadata server, 3 I/O servers). These
servers have different computation and I/O capabilities,
as shown in table IV. Our detector was evaluated with
synthetic workloads on a parallel file system, PVFS. Four
faults were injected to produce faulty situation during the
evaluation: disk delay faults, network delay faults, CPU
overuse faults, and memory overuse faults. disk delay
faults introduce extra I/O request processing time in a
hard disk driver; network delay faults add extra delay at
an I/O server for sending every request over the network;
CPU and memory overuse faults limit the available CPU
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and memory resource at a low level, respectively. In
our experiments, we adopted a sampling period of four
seconds according to our prior experience, in which four
samples were taken, one per second, and all indicators
were evaluated at the end of the period; we set α to 50%
for Ireq .

In order to measure the efficiency and accuracy of our
detector, two metrics are defined: the detection latency
and the true positive rate. The former measures how
long our detector may take to detect the existence of
performance anomaly after the injection of performance
faults, and the latter measures the accuracy of our detector
in terms of the percentage of correct alarms. Formula 8
and 9 give the definitions of the two metrics, where ∆
denotes the detection latency, Td represents the time point
at which performance anomaly is detected, Ti denotes the
fault injection time point, Atd denotes the true positive
rate, Ntd and Nfd represent the number of true and false
detections, respectively.

∆ = Td − Ti (8)

Atd =
Ntd

Ntd +Nfd
(9)

In this section, the behaviors of our performance
anomaly detector are examined with synthetic workloads
in different faulty situations. Before the discussion of our
detector in faulty situations, the system behaviors in fault-
free situation are studied first; we focus on examining
whether our invariants hold or not, which is of ultra
importance for the correctness of our detector.

Figure 9 shows the results of 1GB sequential write
tests on PVFS in fault-free situation. In the these figures,
our three invariants perfectly hold in the presence of a
significant fluctuations of external I/O request rate for
both file systems, as the values of three correlations along
the time axis are almost positive. The only exception is
in figure 9d, the correlation of iosizen and svctmn is
negative at the second sampling period. However, it is
reasonable, as in the period, I/O servers just started to
process I/O requests, hard disks may take relative long
service time for processing the first incoming I/O requests
with moderate sizes, which breaks the third invariant.

The results of 1GB sequential read tests on PVFS in
fault-free situation are shown in figure 10. As similar as in
figure 9, the invariants for memory and CPU hold through
the tests, but the invariant for disk does not always hold,
as there is no data caching for PVFS, which results in
discontinuous I/O requests. Because there is no significant
drop of req in figure 10, even if the invariant is broken,
no alarm is raised by our detector in practice.

Due to the space limit, we only discussed the results
of write tests of the following experiments, and gave a
summary of both write and read tests in section V-F.

A. Disk delay faults

This set of experiments evaluated our performance
anomaly detector in the case of disk delay faults which
do not fail any I/O request but introduce extra I/O request
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Figure 9: 1GB sequential write on PVFS.
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Figure 10: 1GB sequential read on PVFS.

processing time in a hard disk driver. The delay was set
to 50 ms for the following experiments. Figure 11 shows
the results of 1GB sequential write test on PVFS where
the disk delay faults were introduced at the 4th sampling
period (13rd – 16th second) at IO2.

In figure 11, although the invariants for memory and
CPU of IO3 do not hold at the 3rd sampling period,
req of IO3 does not have a significant drop during such
the period which is between the 9th and 12rd second in
figure 11a, thus, there was no alarm raised. In the 13rd
second, disk delay faults were introduced at IO2, we not
only observed a sharp drop of req but also saw the FALSE
value generated by Idisk of IO2 in the 4th sampling period
which includes the 13rd second time point, meanwhile, at
the same sampling period, no other invariant was broke.
Thus, the performance anomaly was detected, and the
faulty source was pinpointed to the hard disk on IO2.
Because each indicator generates a boolean value at the
end of a sampling period, for this experiment, the latency
was ∆ = 4× 4− 13 = 3 seconds, and Atd was 100%, as
there was no false detection.
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TABLE IV.: Testbed Information.

Server
name

Type CPU Memory HDD Network Card

MDS Metadata
server

P4 CPU 2.53GHz 500MB FUJITSU IDE 8GB
5400rpm

1Gbps

IO1 IO server P4 CPU 2.40GHz 2026MB SEAGATE SCSI 18.3GB
15000 rpm

1Gbps

IO2 IO server P4 CPU 2.40GHz 1264MB WDC IDE 40GB
7200rpm

1Gbps

IO3 IO server P4 CPU 2.80GHz 1010MB WDC SATA 250G
7200rpm

1Gbps
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Figure 11: Disk delay faults were injected at the 13rd
second, and the workload was 1GB sequential write on
PVFS.

B. Network delay faults

This set of experiments evaluated our performance
anomaly detector in the presence of network delay faults
which added extra delay at an I/O server for sending every
request over the network. The delay was set to 50 ms in
the following experiments. Figure 12 shows the results of
1GB sequential write tests on PVFS where the network
delay faults were introduced at IO2.

In figure 12, network delay faults were injected at
the 15th second at IO2. Our detector correctly detected
the performance problem caused by the faults at the
5th sampling period. For this experiment, the detection
latency was ∆ = 5 × 4 − 15 = 5 seconds, and the true
positive rate was Atd = 4

4+1 = 0.8, as the performance
anomaly was not detected at the 4th sampling period.

C. CPU overuse

This set of experiments evaluated our performance
anomaly detector in the case of CPU overuse faults which
make the available CPU resource at a low level. In the
set of experiments, our fault injector occupied nearly 90%
CPU resource in terms of the percentage of CPU time.

Figure 13 shows the results of the results of 1GB
sequential write test on PVFS where CPU overuse faults
were injected at the 19th second at IO2. Because Ireq of
IO2 generated a FALSE value at the 5th sampling period,
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Figure 12: Network delay faults were injected at 15th
second, and the workload was 1GB sequential write on
PVFS.

our detector did not raise an alarm. However, our detector
raised an alarm at the next sampling period, and correctly
pinpointed CPU as the faulty source, as only the invariant
for CPU of IO2 was broken. For this experiment, the
detection latency was ∆ = 6× 4− 19 = 5 seconds, and
the true positive rate was Atd = 5

5+1 ≈ 0.83.
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Figure 13: CPU overuse faults were injected at 19th
second, and the workload was 1GB sequential write on
PVFS.

2386 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER



D. Memory overuse

This set of experiments evaluated our performance
anomaly detector in the case of memory overuse faults
which make the available memory resource at a low level.
In the set of experiments, our fault injector occupied up
to 90% memory resource.

Figure 14 shows the results of the results of 1GB
sequential write test on PVFS where memory overuse
faults were injected at the 12nd second at IO2. At the 7th
sampling period, Ireq of IO2 generated a TRUE value,
and the invariant for memory of IO2 was broken, an
alarm was raised. Because we gradually occupied system
memory, every 100MB per second, it is reasonable that
the negative impact of memory overuse faults cannot
observed immediately. For this experiment, the detection
latency was ∆ = 7× 4− 12 = 16 seconds, and the true
positive rate was Atd = 3

3+4 ≈ 0.43.
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Figure 14: Memory overuse faults were injected at 12nd
second, the workload was 1GB sequential write on PVFS.

E. Benchmark Workload

The efficiency and accuracy of the detector have been
demonstrated with synthetic workloads in different faulty
situations; however, it is still necessary to examine the
behaviors of the detector with realistic workloads to
comprehensively evaluate it. In this section, a parallel I/O
benchmark, BTIO, was adopted to evaluate the detector.
BTIO is a tool contained in the NAS Parallel Benchmarks
(NPB), and it is used to test the output capabilities
of high-performance computing systems, especially dis-
tributed storage systems [27]. In our experiments, BTIO
was complied with four processes, these processes work
cooperatively to perform I/O operations on a dedicated
storage system.

Figures 15 shows the results of BTIO test on PVFS
in fault-free situation. For the test on PVFS, the invari-
ants for memory and disk held at most time through
the experiment; however, the invariant for CPU of all
I/O servers did not hold well, especially, the invariant
was frequently broken after the 115 sampling period in

Figure 15c, meanwhile, a significant drop of req was
also observed at the same time in Figure 15a. It is
because BTIO performed read operations which requires
frequently synchronization among all processes after the
sampling period that more CPU time was occupied for
synchronization. It is necessary to point out that there
was no value generated by Imem after the 116th sampling
period, as there was few memory allocations after that.
Because no fault was injected for the test, any alarm
generated by the detector was marked as false detection.
In the Figure 15e, there were a total of 12 alarms raised
through the test, thus, the true positive rate was Atd =

126
126+12 = 0.91.
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Figure 15: BTIO on PVFS.

1) Disk Delay Faults: This set of experiments evalu-
ated the detector in the case of disk delay faults. The delay
was set to 50 ms for the following experiments. Figures 16
shows the results of BTIO test on PVFS where the disk
delay faults were introduced at IO2.

In Figure 16, disk delay faults were injected at the
410th second at IO2. The detector correctly detected the
performance problem caused by the faults at the 109th
sampling period. The detection latency was ∆ = 109 ×
4−410 = 26 seconds. The big latency was largely due to
the discontinuous workloads generated by BTIO, as there
was few incoming requests on IO3 between the 103rd and
109th sampling period. In Figure 16e, the detector raised
four false alarms before the correct one, thus, the true
positive rate was Atd = 111

111+4 ≈ 0.97.
2) Network Delay Faults: This set of experiments

evaluated the detector in the case of network delay faults.
The delay was set to 50 ms for the following experiments.
Figure 17 shows the results of BTIO test on PVFS where
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Figure 16: PVFS: Disk delay faults were injected at the
410th second at IO2.

the disk delay faults were introduced at IO2.
In Figure 17, network delay faults were injected at the

411th second at IO2. The detector correctly detected the
performance problem caused by the faults at the 110th
sampling period. The detection latency was ∆ = 110 ×
4 − 411 = 29 seconds. The big latency was largely due
to the discontinuous workloads generated by BTIO, as
there was no incoming requests on IO3 between the 100th
and 108th sampling period. Meanwhile, the invariant for
CPU of all I/O servers were more frequently broken after
the 100th sampling period than the normal case, which
can be regarded as a side effect of disk delay faults. In
Figure 17e, the detector raised three false alarms before
the correct one, thus, the true positive rate was Atd =

117
117+3 ≈ 0.98.

F. Summary

Table V gives a summary of experiments with syn-
thetic and BTIO workloads. For synthetic workloads, the
detection latency is limited to two sampling periods (8
seconds), the average true positive rate is 84%, and there
are no more than two false detections for most tests except
the ones of memory overuse. The main reason for the poor
performance of our detector in the experiments of memory
overuse is that we gradually occupied system memory,
our detector was insensitive to the small memory leak, as
system performance was not significantly affected until a
large portion of memory resource was leaked, thus our
detector cannot detect immediately the faults of memory
overuse.
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Figure 17: PVFS: Network delay faults were injected at
the 411th second at IO2.

Because the workloads generated by BTIO were not
continuous, the average detection latency in the experi-
ments with BTIO is larger than the one in the experiments
with synthetic workloads. However, the average accuracy
of 94% can be achieved by the detector for BTIO work-
loads.

VI. CONCLUSION

In this work, we presented a performance anomaly
detector which is used to detect performance anomaly
and accurately identify the faulty sources in an I/O server
of cluster file systems. We concluded three invariants of
an I/O server, which referred to the stable relationships
between server workloads and resource statistics when
the server works properly. By utilizing these invariants, a
performance detector was developed, and the detector was
evaluated with synthetic and BTIO workloads on PVFS
file system in the presence of four different faulty situa-
tions. Our preliminary results demonstrated the efficiency
and accuracy of the detector.
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TABLE V.: A Summary of Experiments with Synthetic Workloads.

Filesystem Workload Fault Detection Latency True positive rate # of false de-
tection

PVFS

1GB write

Disk delay 3 seconds 100% 0
CPU overuse 5 seconds 83% 1

Memory overuse 17 seconds 43% 4
Network delay 5 seconds 80% 1

1GB read

Disk delay 7 seconds 67% 2
CPU overuse 7 seconds 80% 1

Memory overuse 17 seconds 43% 4
Network delay 6 seconds 80% 1

BTIO Disk delay 26 sec 97% 4
Network delay 29 sec 98% 3
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