
Unleashing the Potential Impact of Nonessential
Self-contained Software Units and Flexible

Precedence Relations upon the Value of Software
Antonio Juarez Alencar, Rafael Alcemar do Nascimento, Eber Assis Schmitz,

Alexandre Luis Correa, and Angélica F. S. Dias
Email: juarezalencar@nce.ufrj.br, rafael.alcemar@gmail.com, eber@nce.ufrj.br,

alexcorr@yahoo.com, angelica@nce.ufrj.br

Abstract— This paper evaluates the impact of nonessen-
tial minimum marketable features modules (NMMF) and
nonessential architectural elements (NAEs) on software
projects; shows that the value-creation path of these self-
contained software units may be quite different from that
of essential software units; and discusses the impact of early
NMMF and NAE identification on the value of software
projects to business and the deployment of business strategy.
Moreover, the paper demonstrates that the existence of
flexible precedence relations among MMFs and AEs may
also be exploited to further increase the value of software
development initiatives.

Index Terms— Value-based software engineering, nonessen-
tial software units, minimum marketable feature modules,
economics of software engineering.

I. INTRODUCTION

Despite the vital role that IT can play in the business
landscape, funding software development projects in the
highly competitive environment in which companies do
business these days has become a central issue for both
managers and practitioners alike. In many markets stake-
holders and investors are claiming not only for better
financial returns, but also for shorter investment periods,
faster time to market, less risk and improved ability to
adapt to new market conditions quickly and efficiently
[1], [2]. As a consequence, it is becoming increasingly
difficult to get software development projects funded,
unless they provide clearly defined value to business [3].

Consistent with this view many attempts have been
made to bring financial discipline to software develop-
ment [4]. While some proposals are broadly based on
project financial valuation metrics such as net present
value, return on investment and, more recently, real op-
tions theory [5], [6], others take a more holistic view of
software development and advocate the use of value-based
metrics [7]–[9].

Nevertheless, all these attempts fall short of acknowl-
edging that requirement prioritization and modularization
play a crucial role in the business value of software. While
the requirements satisfied by a module are paramount to
determine its value, the order in which these modules
are implemented dictates how soon this value can be
appropriated.

One notable exception is presented by Dennne and
Cleland-Huang [3] who suggest the use of thorough
financial analysis to maximize the value of software
projects composed of minimum marketable feature mod-
ules (MMFs), i.e. modules containing small sets of fea-
tures that have value to business. In their work Dennne
and Cleland-Huang show that the implementation order of
MMFs may change quite substantially the value of such
projects. The ideas of Dennne and Cleland-Huang were
later extended by Alencar et al. [10], who use a branch
& bound technique to overcome some of the limitations
imposed by the method proposed by the former [11].

Nonetheless, both Denne and Cleland-Huang, and
Alencar et al. failed to recognize that (a) it is not always
the case that all modules are essential to the development
of a software project; (b) if a module is nonessential to a
software project, its development may or may not be right-
fully pursued by the project manager during the project
life cycle; (c) the value of nonessential modules may
vary according to the set of modules that have preceded
its development and (d) when implemented, instead of
creating their own cash flow stream, nonessential modules
may contribute to the value of a software just by positively
influencing the value of essential modules.

This paper is a step towards filling this gap by un-
covering the value of nonessential minimum marketable
features modules (NMMFs) and nonessential architec-
tural elements (NAEs), whose value-creation path may
be quite different from those of essential self-contained
software units. Moreover, this paper shows how the early
identification of NMMFs and NAEs during the project
life cycle may affect the final value of software projets,
benefit software development as a whole and help to shape
business strategy. In addition, this paper demonstrates
how the combination of flexible precedence relations and
nonessential self-contained software units may be used to
increase the value of software even further.

The remainder of this paper is organized as follows.
Section II presents a review of the principal concepts and
methods used in this paper. Section III introduces a real-
world inspired example that helps in understanding the
role played by NMMFs, NAEs and flexible precedence
relations in software development. Section IV presents

2500 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.12.2500-2507

the conclusions of this paper.

II. MINIMUM MARKETABLE FEATURES

According to Denne and Cleland-Huang [3] MMFs are
self-contained software units that create value to business
in one or several of the following areas: (a) competitive
differentiation (b) revenue generation (c) cost savings
(d) brand projection and (e) enhanced customer loyalty.
Although an MMF is a self-contained unit, it is often the
case that it can only be developed after other project parts
have been completed. These project parts may be either
other MMFs or the architectural infrastructure, i.e. the set
of basic features that offers no direct value to customers,
but that are required by the MMFs.

The architectural infrastructure itself can usually be
divided into self-contained deliverable elements. These
elements, called architectural elements, or AEs for short,
enable the architecture to be delivered according to de-
mand, further reducing the initial investment needed to
run a project. Moreover, the total value brought to a busi-
ness by a software consisting of several interdependent
MMFs and AEs, each one with its own cash flow stream
and precedence restrictions, is highly dependent on the
development order of these units.

For instance, Figure 1 presents the precedence diagram
of self-contained software units comprising a loan control
system. The meaning of each software unit is described
in Table I. In this particular example SU1, · · ·, SU5

are MMFs and SU6 is an AE. The reasons why these
particular software units are MMFs and AEs is an object
of discussion in Section III.

Figure 1. Loan control software precedence diagram.

In the diagram an arrow going from one MMF or AE to
another, e.g. SU5 → SU6, indicates that the development
of the former (SU5) must precede the development of the
latter (SU6).

Table II indicates all possible development sequences
for the loan control software, considering that (a) it takes
exactly one period to develop each software unit; (b) only
one software unit can be developed per period; (c) the first
software unit is developed in period one and (d) there is
no delay between the completion of a software unit and
the beginning of the development of the next.

Table III shows the undiscounted cash flow elements of
each MMF and AE in the model introduced in Figure 1.
For example, according to the information presented in
Table III, SU1 requires an initial investment of US $50
thousand. Once its development is completed at the end
of the first period, it provides a series of positive returns
until the fifteenth period, when the salary-loan software
becomes obsolete and is replaced by a new and more

advanced tool. Hubbard [12] shows how the cash flow
elements of software projects may be properly estimated.

Because it is improper to perform arithmetic operations
on monetary values without taking into account an interest
rate, in order to compare the business value of different
MMFs and the investment required by AEs one has to
resort to their discounted cash-flow [13]. Table IV shows
the sum of the discounted cash-flow of each software
unit in Figure 1, considering a discount rate of 2% per
period. Such a sum is the net present value (NPV) of
all cash flow elements of the software unit. In order
to make understanding easier, the figures presented in
Table IV have been rounded to the nearest integer value.
The remaining figures presented in this paper follow the
same convention.

For instance, according to the information presented in
Table IV, if SU1 is developed in the first period, it yields
a NPV of US $1,045 thousand i.e.

−50

(1 + 2%)1
+

50

(1 + 2%)2
+

70

(1 + 2%)3
+ · · ·+

50

(1 + 2%)15

On the other hand, if SU1 is developed in the second
period, it yields a NPV of $987 thousand, in the third

TABLE I.
DESCRIPTION OF THE SOFTWARE UNITS COMPRISING THE LOAN

CONTROL SOFTWARE

Software Unit
Id Name Description

SU1 Apply for a
loan

Collects the necessary data to grant a loan
to a customer

SU2 Apply for
refinancing

Collects the data needed to grant the refi-
nancing of an existing loan

SU3 Accept
loan
conditions

Allows customer to accept or decline the
loan conditions proposed by the lender

SU4 Accept
refinancing
conditions

Allows customer to accept or decline the re-
financing conditions proposed by the lender

SU5 Quick
credit
analysis

Figures the likelihood of a customer pay-
ing back a loan in accordance with certain
installment values and dates

SU6 Check for
funding
availability

Checks whether the lender has the necessary
funds to grant a loan to a given customer

TABLE II.
SCHEDULING OPTIONS

Scheduling Period
Options 1 2 3 4 5 6

1 SU1 SU2 SU5 SU6 SU3 SU4

2 SU1 SU2 SU5 SU6 SU4 SU3

3 SU2 SU1 SU5 SU6 SU3 SU4

4 SU2 SU1 SU5 SU6 SU4 SU3

TABLE III.
SOFTWARE-UNIT CASH-FLOW ELEMENTS

Cash Flow Elements (US $1,000)
Id Period

1 2 3 4 to 14 15
SU1 -50 50 70 100 50
SU2 -70 20 28 40 20
SU3 -30 500 700 1,500 1,000
SU4 -40 200 280 600 200
SU5 -80 90 120 180 90
SU6 -10 0 0 0 0

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2501

© 2011 ACADEMY PUBLISHER

TABLE IV.
SOFTWARE-UNIT NET-PRESENT VALUE

Net Present Value (US $1,000)
Id Period

1 2 3 4 5 6
SU1 1,045 987 894 802 712 623
SU2 368 346 309 274 239 204
SU3 16,001 14,944 13,537 12,157 10,804 9,478
SU4 6,221 5,950 5,388 4,836 4,296 3,766
SU5 1,885 1,781 1,613 1,447 1,285 1,126
SU6 -10 -10 -10 -9 -9 -9

$894 thousand and so on.
Obviously, not all software units can be developed in

the first period. The precedence diagram presented in Fig-
ure 1 indicates that only SU1 and SU2 can be developed
at that time. Because in this example each software unit
requires exactly one period to be developed, SU5 cannot
be developed until the third period. Furthermore, each
particular sequence of software units yield its own NPV.
For instance, the sequence

SU1 → SU2 → SU5 → SU6 → SU3 → SU4

yields $17,564 thousand, which is the highest NPV among
all possible development sequences.

III. AN EXAMPLE

According to Robert Hall (1764-1831), the British cler-
gyman: “The innocence of the intention abates nothing of
the mischief of the example”. As a result, the discussion
presented in this paper is introduced step-by-step with
the help of a real-world inspired example regarding the
development of a mobile software application1.

Step 1: Context information
“Salary loans” are low-risk low-interest multi-purpose

loans granted to qualified employees of accredited com-
panies, in which payment is made on installments via
salary deduction [14]. In this respect consider an interna-
tional financial institution such as CITIBANK, BARCLAYS,
HSBC, ABN AMRO, UBS and many others that make
salary loans available to their customers. For the purpose
of this paper this organization is named LOANS ”R” US,
or LRU.

As soon as an application for a salary loan is received,
LRU figures the likelihood of the applying customer pay-
ing back the requested loan in accordance with acceptable
installment values and dates. Next, LRU makes sure that
it has enough funds to grant the loan that the customer
is asking for (as by law financial institutions cannot lend
money above a certain limit, so as to preserve its financial
health). Finally, the applying customer is presented with
the conditions under which a salary loan may be granted,
if any. At this point, they have the option of accepting or
declining the loan offer.

1One of the authors of this paper has successfully managed a project
that is very similar to the one described in this section for a major
financial institution in South America, which kindly asked not to have
its name disclosed.

Financial institutions that lend money also tend to offer
refinancing services for existing loan agreements as a way
of relieving the financial pressure on both current and
future customers. LRU is no exception to the rule. As
the refinancing operation may involve a loan agreement
issued by a third party, this operation is frequently referred
to as “debt purchase”.

In order to provide an adequate competitive response
to recent competition moves into its salary-loan market
and further develop its loan business, LRU has decided
to build a new salary-loan mobile web-based software.
The company believes that if it acts fast, this software
may not only improve its turnover considerably, but also
favorably reshape the competitive landscape of the salary-
loan business. Figure 1 introduces a model containing the
software units that comprise the new salary-loan software.

Step 2: Determining how each software unit may
generate revenue

Table I describes the meaning of each software unit
introduced in Figure 1. One should note that the first five
software units listed in that table generate revenue for
LRU in the following manner:

• SU1 and SU2 - every client applying for a salary-loan
is asked whether they agree to receive new product
offers from both LRU and its associated companies
from time to time. Willing customers may then be
targeted by new marketing campaigns, generating
sales opportunities for LRU and revenue in the form
of fees due to the use of LRU’s customer database
by the associated companies;

• SU3 and SU4 - once a client accepts a loan or
refinancing offer, they generate revenue in the form
of due interest and

• SU5 - the results of the “Quick credit analysis”
software unit are used to enrich the LRU’s customer
database. Credit analysis information is particularly
important to marketing campaigns that depend upon
the financial heath of willing customers, especially
those campaigns that allow customers to pay for a
product or service on installments. LRU’s associated
companies are required to pay a premium fee to
access the enriched database.

Therefore SU1, SU2, · · ·, SU5 are all minimum mar-
ketable features modules, or MMFs. On the other hand,
SU6, “Check for funding availability”, also describes a
self-contained software unit, which provides an essential
service to the intended behavior of the software, but
neither LRU’s customers nor associated companies are
willing to pay for the service it provides. Therefore, SU6

describes an architectural element (AE).

Step 3: Planning the software implementation
Although the project team assembled by LRU to run

the salary-loan software project has initially considered
adopting the software units described in Table I together
with the precedence diagram presented in Figure 1, they
soon realized that the behavior of SU5 does not actually
depend on whether the salary loan under consideration is

2502 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

the result of a new application or a request for refinancing.
Therefore, the development of SU5 may start when the
development of either SU1 or SU2 is completed, or even
when the development of both of them are completed.
Note that this new perspective on the dependencies re-
quired by SU5 is actually a real option, and options may
quite substantially change the value of software projects
[15]. Hence the LRU’s project team decided to amend
the precedence diagram presented in Figure 1. Figure 2
shows the updated precedence diagram for the salary-loan
software project.

Figure 2. Salary-loan project precedence diagram.

One should note that SU5’s flexible precedence re-
quirement is properly signaled by the presence of the
“+” symbol (inclusive or) in the diagram. It is also
important to note that the modules presented in Figure 2
comprise the set of modules that are essential to the
development of the salary-loan software, as (according to
current markets conditions) this is the smallest set of self-
contained modules that bears a fair chance of providing
long-term lawful return on the investment to be made
by LRU in their development [16]. Table V indicates
all possible development sequences for the salary-loan
software. There are fourteen possibilities altogether. It is
important to mention that as modules SU1, SU2, · · ·, SU6

are all essential to the intended behavior of the software,
therefore all of them have to be developed eventually.

TABLE V.
SCHEDULING OPTIONS

Scheduling Period
Options 1 2 3 4 5 6

1 SU1 SU2 SU5 SU6 SU3 SU4

...
...

...
...

...
...

...
7 SU1 SU5 SU6 SU3 SU2 SU4

...
...

...
...

...
...

...
14 SU2 SU5 SU6 SU4 SU1 SU3

Step 4: Evaluating the different scheduling options
Table VI shows the undiscounted cash flow elements of

each MMF and AE in the model introduced in Figure 2
as estimated by LRU’s project team.

Because SU5 generates revenue according to the num-
ber of customers in the LRU’s customer database (see
Step 3), its cash flow elements vary according to the
context in which SU5 is developed. The greater the
number of customers in the database, the higher the
revenue generated by SU5. Therefore

• If SU1 precedes the development of SU5, which is
indicated by SU1 → SU5 in Table VI, then SU5

yields US $60 thousand in the second period, US

TABLE VI.
SOFTWARE-UNIT UNDISCOUNTED CASH-FLOW ELEMENTS

Cash Flow Elements (US $ 1,000)
Id Period

1 2 3 4 to 14 15
SU1 -50 50 70 100 50
SU2 -70 20 28 40 20
SU3 -30 500 700 1,500 1,000
SU4 -40 200 280 600 200

SU1→SU5 -80 60 90 130 60
SU2→SU5 -80 20 30 50 20

(SU1,SU2)→SU5 -80 90 120 180 90
SU6 -10 0 0 0 0

$90 thousand in the third period, US $130 in the
fourth period and so on;

• If it is SU2 that precedes the development of SU5,
i.e. SU2 → SU5, then SU5 yields smaller values each
period. It yields US $ 20 thousand in the second
period, US $ 30 thousand in the third period, US $
50 in the fourth period and so on;

• However, if both SU1 and SU2 precede the develop-
ment of SU5, i.e. (SU1,SU2) → SU5, then the value
yielded by SU5 in each period reaches its highest
values. SU5 yields US $ 90 thousand in the second
period, US $ 120 thousand in the third period, US $
180 in the forth period and so on.

In all circumstances the investment required by SU5

remains the same, i.e. US $ 80 thousand. Table VII
shows the net present value (NPV) of each MMF and AE
presented in Figure 2 according to the period in which
their development starts, considering an interest rate of
2% per period and that, due to shortage of funds, only
one development team has been allocated to work in the
project.

TABLE VII.
SOFTWARE-UNIT NET PRESENT VALUE

Net Present Value (US $ 1,000)
Id Period

1 2 · · · 6
SU1 1,045 987 · · · 623
SU2 368 346 · · · 204
SU3 16,001 14,944 · · · 9,478
SU4 6,221 5,950 · · · 3,766

SU1→SU5 1,334 1,263 · · · 792
SU2→SU5 454 430 · · · 253

(SU1,SU2)→SU5 1,885 1,781 · · · 1,126
SU6 -10 -10 · · · -9

Table VIII relates the scheduling options introduced
in Table V to their respective NPV. For example, in the
seventh option SU1 is developed first. Next, SU5, SU6,
SU3, SU2 and SU4 are developed in the second, third,
forth, fifth and sixth periods respectively, yielding an NPV
of $18,460 thousand, which the highest NPV among all
scheduling options and, as a result, the logical choice for
the LRU’s project team.

Obviously this NPV can only be reached because LRU
is a well established company that runs its loan business
with the support of trustworthy business processes, which
can be temporarily used to support the development of the
salary-loan software. For example, when the development

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2503

© 2011 ACADEMY PUBLISHER

of SU1 or SU2 is completed, applying customers do
not need to wait for the development of the remaining
modules to be informed of the conditions in which they
may be granted a loan. At this point LRU’s loan processes
take over and provide the adequate answer. This holds true
for any combination of previously developed modules.
Step 5: Dealing with the nonessential software units

Common sense and experience has shown that there are
two major ways of loosing money in the loan business:
lending money to those who will not pay back their loans
and failing to lend money to those who will [17]. There-
fore, before committing to a particular scheduling option
based upon a model that only considers essential software
units, the LRU’s project team decided to examine the
effect of nonessential software units that deal with these
two different aspects of the loan business on the returns
yielded by the salary-loan software. Table IX describes
the nonessential software units conceived by the project
team.

There is only one nonessential minimum-marketable-
feature module (NMMF) among the nonessential software
units, i.e, SU7, “Thorough credit analysis”, which further
enriches the LRU’s customer database with information
that opens opportunities for new marketing campaigns
from both LRU’s and its associated companies.

As the revenue generated by SU7 depends upon the
number of trustworthy customers it is able to identify,
the more customers who have their credit extensively
analyzed, the better. Hence the revenue generated by SU7

is influenced by the development of both SU1,“Apply for a
loan”, and SU2, “Apply for refinancing”, in the same way

TABLE VIII.
SCHEDULING OPTION NPV

Scheduling NPV
Option (US $ 1,000)

1 17,564
2 16,769
...

...
7 18,460
...

...
14 15,814

TABLE IX.
NONESSENTIAL SOFTWARE UNIT DESCRIPTIONS

Software Units
Id Name Description

SU7 Thorough
credit
analysis

Performs a more detailed credit analysis on
applications that have been turned down by
the ”Quick credit analysis” software unit, with
the intention of granting a loan to applying
customers, if this turns out to be possible

SU8 Contract
life
insurance

With the intention of granting loans, include
the cost of life insurance in loan applications
turned down by the “Quick credit analysis”
software unit due to the short life expectance
of loan applicants

SU9 Handle
approved
loans

Determines the earliest possible date on which
LRU can grant a loan or a refinancing request
that has been turned down by the ”Check for
funding availability” due to temporary lack of
funds

that SU5, “Quick credit analysis”, is. Table X presents the
cash flow elements of SU7. The revenue generated by this
particular software unit stems from the premium fee paid
by LRU’s associated companies to access the enrichment
customer database.

Surprisingly, this is not the only way in which SU7

contributes to the value of the salary-loan project. If im-
plemented, “Thorough credit analysis” increases the num-
ber of approved loans and refinancing applications. The
more loans and refinancing applications are approved, the
higher the returns yielded by “Accept loan conditions” and
“Accept refinancing conditions”. Therefore, “Thorough
credit analysis” also helps to increase the revenue gen-
erated by these two MMFs.

TABLE X.
SU7 CASH-FLOW ELEMENTS

Cash Flow Elements (US $ 1,000)
Id Period

1 2 3 4 to 9 10
SU1→SU7 -90 65 75 90 65
SU2→SU7 -90 25 30 35 25

(SU1,SU2)→SU7 -90 90 100 130 90

On the other hand, “Handle approved loans” and
“Contract life insurance” are self-contained units whose
services neither customers nor associated companies are
willing to pay for. Therefore, they are indeed nonessential
architectural elements, or NAEs for short. Even though
these two software units are unable to generate revenue
on their own, they do contribute to the value of the salary-
loan software by influencing the revenue generated by
other MMFs.

In a similar fashion to “Thorough credit analysis”, both
“Handle approved loans” and “Contract life insurance”
increase the number of approved loans and refinancing
applications. As a result, they further improve the revenue
generated by both ”Accept loan conditions” and “Accept
refinancing conditions”. Table XI presents the estimated
impact of the development of nonessential software units
on the revenue generated by essential software units.

TABLE XI.
THE ESTIMATED FINANCIAL IMPACT OF NONESSENTIAL SOFTWARE

UNITS.

Essential Software Units
SU3 (Acpt.
loan cond.)

SU4 (Acpt. refi-
nancing cond.)

Non-essential SU7 (Thor-
ough credit
analysis)

+20% +15%

Software Units SU8

(Contract
life
insurance)

+15% +10%

SU9

(Handle
approved
loans)

+25% +20%

For example, according to the information displayed in
Table XI, from the moment “Thorough credit analysis”
is implemented the revenue generated by “Accept loan

2504 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

conditions” and “Accept refinancing conditions” increase
20% and 15% respectively.
Step 6: Replanning the software implementation

Figure 3 introduces the new precedence diagram for
the salary-loan software. This diagram takes into consid-
eration the existence of both essential and nonessential
software units. A gray background with a dashed-line
frame around a software unit identification tag such as
SU7 nor SU8 indicates a nonessential software unit, which
may or may not be developed.

Figure 3. A precedence diagram containing both essential and nonessen-
tial software units.

However, if a nonessential software unit is developed,
than the dependencies that it creates must be complied
with. For example, if neither SU7 nor SU8 are developed,
than the development of SU6 can start right after the
development of SU5 is completed. Nevertheless, if SU7

is developed and SU8 is not, then the development of
SU6 can only start when the development of both SU5

and SU7 are completed, and so on. Table XII presents
the scheduling options for the salary-loan software con-
sidering the existence of both essential and nonessential
software units. There are 144 different scheduling options
altogether.

TABLE XII.
NEW SCHEDULING OPTIONS

Period
1 2 3 4 5 6 7 8 9

1 SU1 SU2 SU5 SU6 SU3 SU4

...
...

...
...

...
...

...
...

...
...

81 SU2 SU1 SU5 SU7 SU8 SU6 SU3 SU4

...
...

...
...

...
...

...
...

...
...

144 SU2 SU5 SU7 SU9 SU6 SU1 SU8 SU4 SU3

Step 7: Which scheduling option does provide the
highest NPV?

Table XIII shows the undiscounted cash flow elements
of each MMF, AE, NMMF and NAE introduced in
Figure 3, as estimated by LRU’s project team.

Table XIV shows the net present value (NPV) of
each MMF, AE, NMMF and NAE presented in Figure 3
according to the period in which their development starts,
considering an interest rate of 2% per period. It should
be noted that the number of periods that takes to develop
the whole software has potentially increased from six
to nine periods, because of the possible introduction of
nonessential MMFs and AEs (check Table XII).

TABLE XIII.
NEW SOFTWARE-UNIT CASH-FLOW ELEMENTS

New Cash Flow-Elements (US $ 1,000)
Software Unit Id Period

1 2 3 4 to 14 15
SU1 -50 50 70 100 50
SU2 -70 20 28 40 20
SU3 -30 500 700 1,500 1,000

SU7→SU3 -30 600 840 1,800 1,200
SU8→SU3 -30 625 875 1,875 1,250
SU9→SU3 -30 575 805 1,725 1,150

(SU7,SU8)→SU3 -30 725 1,015 2,175 1,450
...

...
...

...
...

...
SU9 -10 0 0 0 0

TABLE XIV.
ESSENTIAL AND NONESSENTIAL SOFTWARE UNIT NPV

Net Present Value (US $ 1,000)
Software Unit Id Period

1 2 · · · 15
SU1 1,045 987 · · · 369
SU2 368 346 · · · 105
SU3 16,001 14,944 · · · 5,653

SU7 → SU3 19,207 17,939 · · · 6,788
SU8 → SU3 20,009 18,688 · · · 7,072
SU9 → SU3 18,406 17,190 · · · 6,504

(SU7,SU8) → SU3 23,215 21,683 · · · 8,208
...

...
...

...
...

SU9 -10 -10
... -9

Among all the scheduling options introduced in Table
XII, the most logical option for LRU is to develop the
software units comprising the salary-loan software in the
following order:

SU2 → SU1 → SU5 → SU7 → SU8 → SU6 → SU3 → SU4,

which yields an NPV of US $ 19,651. One should note
that this scheduling option does not contemplate the
development of SU9, “Handle approved loan”. According
to the estimates generated by LRU’s project team, the
cost of developing SU9 is not compensated by its positive
impact on the revenue generated by SU3 and SU4.

IV. CONCLUSIONS

Table XV compares the value of the different alterna-
tives considered by LRU’s project team for the develop-
ment of the salary-loan software.

Observe that, by and large, what nonessential self-
contained software units and flexible precedence relations
do is to allow project managers to postpone the develop-
ment of less valuable software units until this becomes
imperative. As a result, the value of the more profitable
developments paths may be pursued and appropriated
earlier.

For example, in the salary-loan software project the
precedence relations of “Quick credit analysis” is flexible
in the sense that the development of this software unit may
start when the development of either “Apply for a loan”
or “Apply for refinancing” is completed, or even when
the development of both are completed. This flexibility

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2505

© 2011 ACADEMY PUBLISHER

alone increases the value of the salary-loan software from
US $17,564 to US $18,460 thousand at no extra cost.
Subsequently, with the introduction of more flexibility in
the form of the nonessential MMFs and AEs the project
value jumps to US $19,651 thousand.

All of this supports the claim that the introduction
of flexible precedence relations as well as the presence
of NMMFs and NAEs among essential software units is
likely to increase the business value of software projects.

Identifying nonessential software units is not as hard
as it may seem at first sight. If one has specific goals to
be reached by a software project that are clearly stated,
non essential software units are fundamentally those that
can be taken away from the project without hindering the
likelihood of it fulfilling its stated goal [18], [19].

However, despite the considerable body of research that
is available in the literature on the impact of flexibility
upon the valuation, selection and management of software
projects [5], [15], [20], the introduction of flexibility via
nonessential self-contained software units and flexible
precedence relations has remained largely unexplored.

This paper goes forward in filling this gap by help-
ing organizations to get the most out of their software
projects, and, as a result, to increase their level of ef-
ficiency in the use of information technology. By being
conscious of the potential value brought by nonessential
self-contained software units and flexible dependency re-
lations, companies can develop larger and more complex
projects from a relatively smaller investment.

REFERENCES

[1] W. R. Priya Kurien and V. S. Purushottam, “The case
for re-examining IT effectiveness,” Journal of Business
Strategy, vol. 25, no. 2, pp. 29–36, 2004.

[2] M. A. Cusumano, The Business of Software. Free Press,
2004.

[3] M. Denne and J. Cleland-Huang, “Financially informed
requirements prioritization,” in Proceedings of the 27th

International Conference on Software Engineering (ICSE).
St. Louis, MO, USA: ACM Press, 15-21 May, 2005, pp.
710–711.

[4] W. V. Grembergen, Information Technology Evaluation
Methods and Management. Idea Group Publishing, 2001.

[5] M. Benaroch, S. Shah, and M. Jeffery, “On the valuation of
multistage information technology investments embedding
nested real options,” Journal of Management Information
Systems, vol. 23, no. 1, pp. 239–261, Summer 2006.

TABLE XV.
ALTERNATIVES CONSIDERED BY THE DEVELOPMENT TEAM OF THE

SALARY-LOAN SOFTWARE

Preced. Flexibility Logical
Diag. Choice

NPV
($1,000)

1 Fig. 1 None $17,564
2 Fig. 2 The precedence dependency relation

between SU1, SU2 and SU5 is ac-
knowledged to be flexible

$18,460

3 Fig. 3 The precedence dependency rela-
tion between SU1, SU2 and SU5

is acknowledged to be flexible, and
NMMFs and NAEs are introduced

$19,651

[6] S. Dekleva, “Justifying investments in IT,” Journal of
Information Technology Management, vol. XVI, no. 3, pp.
1–8, 2005.

[7] R. J. Benson, T. Bugnitz, and B. Walton, From Business
Strategy to IT Action: Right Decisions for a Better Bottom
Line. Wiley, 2004.

[8] K. Milis and R. Mercken, “The use of the balanced score-
card for the evaluation of information and communica-
tion technology projects,” International Journal of Project
Management, vol. 22, no. 2, pp. 87–97, February 2004.

[9] K. M. Rosacker and D. L. Olson, “An empirical assessment
of IT project selection and evaluation methods in state
government,” PM Journal, vol. 29, no. 1, pp. 49–58,
February 2008.

[10] A. J. Alencar, E. A. Schmitz, and E. P. de Abreu, “Maxi-
mizing the business value of software projects,” in 10th

Inter. Conf. on Enterprise Info. Systems., vol. ISAS-2.
Barcelona, Spain: INSTICC, June 12-16, 2008, pp. 162–
169.

[11] M. Denne and J. Cleland-Huang, “The incremental fund-
ing method: Data-driven software development,” Software,
IEEE, vol. 21, no. 3, pp. 39– 47, 2004.

[12] D. W. Hubbard, How to Measure Anything. Wiley, 2007.
[13] A. A. Groppelli and E. Nikbakht, Finance, 5th ed. Bar-

ron’s, 2006.
[14] C. L. Peterson, “Usury law, payday loans, and statutory

sleight of hand,” Minnesota Law Review, vol. 92, no. 4,
April 2008.

[15] R. G. Fichman, M. Keil, and A. Tiwana, “Beyond val-
uation: Real options thinking in IT project management,”
California Management Review, vol. 47, no. 2, pp. 74–100,
2005.

[16] C. Hibbs, S. Jewett, and M. Sullivan, The Art of Lean Soft-
ware Development: A Practical and Incremental Approach.
O’Reilly Media, 2009.

[17] N. Siddiqi, Credit Risk Scorecards. Wiley, October 2005.
[18] K. Pohl, G. Bckle, and F. J. van der Linden, Software

Product Line Engineering: Foundations, Principles and
Techniques. NY, USA: Springer, November 2010.

[19] P. Valente, Goals Software Construction Process. VDM,
2009.

[20] L.-C. Wu and C.-S. Ong, “Management of information
technology investment: A framework based on a real
options and mean–variance theory perspective,” Techno-
vation, vol. 28, no. 3, pp. 122–134, 2008.

Antonio J. Alencar is a researcher with the Federal University
of Rio de Janeiro (UFRJ), Brazil. He received his B.Sc. in
Mathematics and M.Sc. in System Engineering and Computer
Science from UFRJ. He holds a D.Phil. in Computer Science
from Oxford University, England. His research interests include
economics of software engineering, IT strategy and risk analysis.

Rafael A. Nascimento is an M.Sc. student with the Federal
University of Rio de Janeiro, Brazil. His research interests
include software development methodologies and economics of
software engineering.

Eber A. Schmitz is a Professor of Computer Science with
the Federal University of Rio de Janeiro. He holds a B.Sc.
in Electrical Engineering from the Federal University of Rio
Grande do Sul, an M.Sc. in Electrical Engineering from the
Federal University of Rio de Janeiro and a Ph.D. in Computer
Science and Control from the Imperial College of Science,
Technology and Medicice, England. His research interests in-
clude software modeling tools, business process modeling and
stochastic modeling.

2506 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

Alexandre L. Correa is a Professor of Computer Science with
the Federal University of the State of Rio de Janeiro. He holds
a B.Sc. in Mathematics and an M.Sc. and a Ph.D. in System
Engineering and Computer Science from the Federal University
of Rio de Janeiro. His research interests include reverse engi-
neering, system validation and software development tools.

Angélica F. S. Dias is Ph.D. candidate with the Federal Univer-
sity of Rio de Janeiro (UFRJ). She holds a M.Sc. in Computer
Science from UFRJ. Her research interests include human-
computer interaction and the social impact of new technologies.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2507

© 2011 ACADEMY PUBLISHER

