
Distributing Query Plan Operators Using

 Honey-Bees Algorithm

Maryam Kheirkhahzadeh
Islamic Azad university-Ahvaz branch/ Dept. of Computer Engineering, Ahvaz, Iran

Email: kheirkhah@iauahvaz.ac.ir

Mohammad G. Dezfuli
Iran University of Science and Technology, IUST / Dept. of Computer Engineering, Tehran, Iran

Email: mghalambor@iust.ac.ir

Abstract—Data Stream Management Systems (DSMSs) has

the advantage of lightweight repositories so they can

migrate in a network of hosts regarding their stream

resources. We developed a framework (including some

systems) based on agents to let users have their own

customized query engines which can migrate in network to

gain better QoS. Our Data Stream Management Agents

(DSMAs) can distribute their queries and clone themselves

to run different sub-queries on different hosts regarding the

position of related sources. One of the main challenges

toward this goal is distribution algorithm for queries. In this

paper, we proposed a distributor for our agent-based data

stream management framework based on honey-bees

algorithm. We compare our honey-bees algorithm to other

proper heuristics (genetic algorithm and DPSO) through

our experimental evaluations.

Index Terms— Stream, DSMS, SDMS, DSMA, Agent

I. INTRODUCTION

Nowadays, lots of data stream generators are available

and accessible through internet (e.g. sensor networks).

These stream resources present promising retrievable

information for world-wide users (i.e. queriers). What is

missing is an infrastructure to interconnect these

heterogeneous stream generation domains into a

pervasive system that responds to user’s queries. The

transparency of this infrastructure will allow users to

query it as a single unit made of millions of widely

distributed ordinary or even advanced complex sensors

(e.g. from thermometers to video cameras).

To have a better envision, imagine the following

scenario: a biologist wishes to do research on relations

between weather conditions and migrations of zebras in

Kenya. Instead of travelling and living in Kenya, he can

access to sensor network services deployed there and

enjoy an online remote surveillance. In addition, the same

resources could be queried continuously by Kenya

lifeguards to detect migration of zebras toward out of the

Sweetwater reserve.

We call our desired system as Pervasive Stream

Information Retrieval Network (PSIRN). These five key

requirements of a pervasive information retrieval network

play an important role in the design of a PSIRN:

 An easy way to interconnect services and users based

on available bandwidth-limited networks. First and

foremost, we need an infrastructure to interconnect

stream producers (i.e. services) and stream

consumers (i.e. query executors). It should be robust

and reliable despite unreliable low-bandwidth links.

 Finding appropriate services. PSIRN users should be

capable of searching and finding services related to

their queries.

 Heterogeneity of service providers and service

customers. Different service providers/customers

may use different customized softwares.

 Data access and privacy. PSIRN is composed of

many different administration domains with different

access controls and privacy policies. There should be

a data access control in PSIRN that satisfies all of the

domain administrators.

 Information trading and QoS. Service authors should

be allowed to sell their services regarding specific

QoS. In fact, an information-trading contract based

on a detailed complex QoS metric [1] should be

negotiated and signed by two parties.

In this paper we introduce data stream management

agents which are responsible for executing a query in a

data stream processing infrastructure. Each DSMA is

responsible for running a subset of operators of a query

plan in the network. We used JADE middleware to

support relations between multiple FIPA-compliant

agents. This paper is an extended version of our previous

work [2] with a better focus on distribution algorithms. In

this paper we used a honey-bees algorithm for operator

distribution and compared it with genetic algorithm,

binary PSO and centralized algorithm. We show that

honey-bees algorithm performs better and is faster than

other distributor algorithms.

The rest of the paper is organized as follows. First, we

cover the related work in Section II. We introduce our

new infrastructure in Section III. We focus on three query

distribution algorithms in Section IV(honey-bee, DPSO

and genetic algorithm) and demonstrate their

experimental evaluation in Section V.

2464 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.12.2464-2471

II. RELATED WORK

Aurora* [3] is a distributed version of the stream

processing system Aurora [4], which assumes nodes

belonging to a common administrative domain. Medusa

[5] is an infrastructure supporting the federated operation

of several Aurora nodes across administrative boundaries.

After all, Borealis [6] is a second-generation distributed

stream processing engine that inherits core stream

processing functionality from Aurora* and distribution

functionality from Medusa. However, none of these

systems provides a flexible framework for customized

query engines.

The idea of network-aware operator placement for

stream processing was considered by Pietzuch et. al. in

[7]. They describe a stream-based overlay network

(SBON), a layer between a stream-processing system and

the physical network that manages operator placement for

stream-processing systems. SBON architecture uses a

scalable, decentralized, and adaptive optimization

technique based on a multi-dimensional metric space

called a cost space. A cost space is a d-dimensional

metric space where the Euclidean distance between two

nodes is an estimate of the cost of routing data between

those nodes. We used this distance metric and found it

insufficient. They also introduced Network Usage metric

and we leveraged their idea to define our Net-cost metric.

One of the areas of interest in optimization problems is

swarm intelligence. It is inspired by the social behavior of

some insects such as ants and bees. Honey-bees mating

optimization (HBMO) is a swarm intelligence optimizat-

ion algorithm that models the behaviors of bees. Honey-

bees algorithms were used to model agent-base systems

[8]. We used honey-bees to model our agent based query

distributor algorithm. In the experimental evaluation

section we show that this algorithm is better than PSO

and genetic algorithm on which it is fast and tries to avoid

local minima. Ref. [9,10] show independently that

genetic algorithms could be elegantly useful to optimize

database query plans. Ref. [11] represents a Discrete

Particle Swarm Optimization (DPSO) approach for grid

job scheduling. We developed a honey-bees query plan

distributor and compare it to DPSO and genetic

algorithm.

The efficiency and scalability of JADE and its message

transportation system for large agent-based software

systems has been tested independently in [12,13] and also

we found it very efficient in our experiments.

III. THE INFRASTRUCTURE

To overcome low bandwidth and unreliable links, we

used mobile query processors. It means we can get a part

of query plan to a mobile query processor and then this

processing unit can go to an optimal position that is the

nearest position to its needed stream sources. On the

other hand, mobility is not possible for heavyweight

DBMSs because of their high volume data but it is good

for lightweight DSMSs (that contain only queries and

some data sketches). Thus we need a multi-agent system

because each service provider or service customer works

on behalf of its owner. We also need a layer to simplify

wide access to data stream sources that supports service

oriented architecture (SOA), compatible with internet,

supports different kinds of DSMSs and supports mobility

of DSMAs.

Our PSIRN is based on agent-oriented java-based

JADE middleware [14,15]. JADE is a framework to

develop multi-agent systems in compliance with FIPA

specifications [16]. JADE could be run on heterogeneous

platforms from powerful servers to cell phones. It also

supports mobile agents and yellow pages (to find service

providers) and facilitate message passing between agents.

It has an acceptable performance and scalability even

for heavy loads [12,13]. We have made the simplifying

assumption that there is only one administration domain

and we leave the security, QoS and information trading

for future work.

A. The Architecture

Each site runs a middleware whose major components are

shown in Fig. 1, 2. The architecture is based on four types

of agents:

1) Data Stream Management Agents (DSMAs)

2) Global Service Directory (GSD)

3) Stream Proxies (SPs)

4) Topology Explorers (TEs)

Figure 1. The Topology

DSMAs are agent-based DSMSs. The DSMA is a

mobile agent containing a pre-designed and tested DSMS

engine.

Figure 2. The Architecture

Stream

Source

Stream

SourceStream

Source
Query

Engine

Network

GSD

User

ProxyProxy

Query

Engine

User

Proxy

Data Stream Resources

Network

JADE

SPs DSMAsGSD

D
at

a
St

re
am

TE

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2465

© 2011 ACADEMY PUBLISHER

 The GSD is an immobile agent that stores information

about services. Users can find proper services using GSD.

One GSD is sufficient for an administration domain. The

SPs are customized interfaces between stream sources

and service customers. Each SP is well adapted to a

stream source and should register its services in the GSD

and provide service for DSMAs in a standard pre-defined

manner. In fact, SPs are mobile agents and they travel to

the best host regarding their stream sources. There is one

immobile TE for each host. TEs compute the network

delays between their host and other hosts. TEs help each

other to make a Virtual Network Model (VNM) based on

peer to peer network delays. TEs update This VNM

without any interaction with network layer and it helps

other components to look at network layer as a black box.

VNM is essentially needed for optimal query distribution

in DSMAs.

B. The DSMA Architecture

The DSMA architecture is illustrated in Fig. 3. Some

modules like Query Plan Manager, Memory Manager,

Scheduler, QoS Manager and AAA (Authorization,

Authentication and Admission Control) are similar to

their counterparts in DSMSs. The GUI helps user to

search and find proper data sources and enter queries. It

also displays the results of the query. The JADE Interface

Module is an interface between DSMAs, GSD, SPs and

TEs. It handles the message passing between mentioned

agents. Input ports of DSMA should be connected to

JADE interface and output ports could be connected to a

file, GUI or JADE interface. Query Decomposer is the

most complex and important module that we added to

DSMA. Query Decomposer is responsible for decompos-

ing queries using some QoS metrics and network model.

It requests Migrator to send different cloned DSMAs to

selected hosts. Migrator is responsible for migration of

these new generated DSMAs.

Figure 3. The DSMA Architecture

C. The Connections between Agents

We used Internal Message Transport Protocol (IMTP) of

JADE to interconnect agents. We also used XML instead

of the JADE’s ontological approach for our messages.

Agents use yellow pages service of the JADE to find

basic services like the GSD.

JADE names each agent with a globally unique identifier.

It also can automatically handle the mapping between

name of the agent and its physical address. JADE does

this mapping using a mapping table in the main container.

Other containers use cached mapping table to speed up

the mapping process. It helps to prevent any bottleneck in

the main container. Agents can communicate directly

through their containers and without interference of the

main container. Network layer is responsible for low-

level message routing.

IV. QUERY DISTRIBUTION

The most important and complex part is how to

decompose queries and distribute sub-queries on the

network. DSMAs distribute query plans regarding VNM

and the locations of producers and customers. Similar

cloned DSMAs migrate to selected hosts carrying

different parts of the decomposed query. There are two

important objective functions to achieve an optimal query

distribution: 1) minimizing network usage and 2)

minimizing response time of queries.

There are three challenges when facing the query

distribution problem: 1) modeling topology of the

network (i.e. VNM), 2) decomposing queries into some

sub-queries and 3) sub-query placement. The second and

third challenges are toward an objective function and are

tightly related so they could be covered by a single

method (as we did).

A. Virtual Network Model

Our infrastructure lies upon the network layer and treat

it as a black box. This helps having an infrastructure for

many different interconnected networks and it is

necessary for internet infrastructures. Because of the

hidden aspects of the underlying network, we need a

virtual network model to achieve a near optimal query

distribution. The VNM should be creatable without any

help from the network layer.

We model network as a complete weighted graph. In

this graph, the communication delays between hosts (i.e.

vertices) are modeled as weights of the edges (i.e. virtual

connection links). This model is proper for different

mentioned cost functions (i.e. two objective functions for

optimization). In addition, middleware can generate and

update this model independent of underlying network

layer. The only drawback of VNM is high cost of

updating weights of the edges (it has a complexity of

 where is the number of hosts). We can improve

the cost using minimum spanning tree to bring the

complexity down to . Inter-domain distribution is

not allowed (because of the policies of administration

domains) and sub-queries should be sent to

administration domains to be distributed by them locally.

Thus, the current updating cost is acceptable for us.

TEs are responsible for generating and updating VNM.

They do it using permanent peer-to-peer messaging.

DSMAs can get the model from main TE of the

administration domain and use it to get a near-optimal

decomposition and distribution.

Query Plan Manager

In
 P

o
rt

s

O
u

t
P

o
rt

s

Memory

Manager
Scheduler

QoS

Manager

Query

Decomposer
MobilizerAAA

GUI
JADE

Interface

Interface

2466 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

B. Modeling Query Plans

Query plans could be derived from registered continuous

queries. They are composed of operators, which perform

the actual data processing; queues, which buffer data as it

moves between operators; and synopses, to hold state of

operators.

Operators are the basic data processing units in a query

plan. An operator takes one or more streams as input and

produces a stream as output. As in a traditional DBMS, a

plan for a query connects a set of operators in a tree: The

output of a child operator forms an input of its parent

operator, the input streams and relations of the query

form the input of the leaf operators, and the output of the

root operator forms the output of the entire query.

Because of the variety of operator types, we model

operators as black boxes with multiple inputs and outputs.

For each operator O, D(O) is the processing delay for

each input tuple and R(O) is the ratio of output to input

(rate of output generation).

C. Query Decomposition and Distribution

Distributing m operators among n hosts is a NP-hard

problem. We developed our distributor based on honey-

bees, PSO and genetic algorithm and compared them to

each other. We show that honey-bees is the best one. In

this section we explain in brief each algorithm and its

encoding schemes that we used. Encoding is a mapping

from knowledge domain to the solution space where our

algorithms can process. The selection of encoding

scheme is varied with the design decision and also

depends on the problem to be solved. In all algorithms,

we model each solution by a array. n shows the

number of operators in the query plan. Each cell i of the

array contains a host number that we assigned ith

operator to it.

C.1 discrete PSO

Particle swarm optimization (PSO) is a population based

stochastic optimization technique introduced by Kennedy

and Eberhart [17]. PSO simulates social behavior of bird

flocking. The algorithm is initialized with a population of

random solutions. Each solution represents a particle. All

particles move based on pbest (personal best) and gbest

(global best) in the search space to find the best location.

 is the best location that ith particle has

experienced so far. gbest stands for global best and is

the best location that all particles have experienced so

far. Pbest and gbest should be updated after each iteration

of the algorithm. The algorithm repeats until a threshold

is reached or it finds the optimal solution. In fact, after

each iteration, the position of each particle updates with

the velocity vector. Velocity vector is calculated based on

pbest and gbest.

PSO is applicable in many fields such as function

optimization, artificial neural network training, fuzzy

system control. There are two versions of PSO

algorithms. The basic PSO is suitable to solving

continuous problems. The second version named binary

PSO is capable of solving discrete problems and

introduced by Kennedy and Eberhart [18]. Similar to the

work in [18], we used binary PSO to solve our discrete

optimization problem because our goal is to assign proper

host numbers to the operator set and the search space of

our algorithm is discrete instead of continuous (domain of

host numbers is a discrete set). We also used DPSO [11]

algorithm that is a discrete version of PSO and it has a

high performance.

C.1.1 Encoding Scheme

Izakian et. al. proposed an efficient discrete PSO

algorithm with a direct representation named DPSO [11].

We can use two representations for a discrete PSO

problem to encode each solution: 1) indirect and 2) direct.

In indirect representation, each particle must be modeled

by a two dimensional vector . h shows the number

of hosts and n is the number of operators. If the operator i

is assigned to the host number j, the proper cell should be

one, otherwise zero. That means cells show what operator

has assigned to which host by the one or zero value.

However, direct representation uses a vector for

each particle which n is the number of operators and each

cell has an integer value shows the number of host that

assigned to that operator. We used efficient direct

representation DPSO algorithm. We chose global best

instead of local best to speed up the algorithm. Each

particle modeled as a array. Gbest and pbest are

also arrays. We modeled velocity vector, with a

 array. The p parameter is the number of

particles, h is the number of hosts and n is the number of

operators in the query plan.

C.1.2 distribution algorithm

Fig. 4 shows the discrete PSO distribution algorithm that

we used. PSO algorithm first generates initial random

particles and then assigns each particle to its pbest. After

that, it assigns the best pbest to the gbest. In the while loop

in step 2, PSO calculates the fitness value of each particle

and then updates pbest and gbest. Thus, PSO can calculate

velocity vector of each particle by updated gbest and

pbest. Note that our velocity updating function is like

DPSO[11]. Finally, new particles can be generated using

new velocity vectors.

Initiate random particles and assign

each particle to its pbest.

Find initial global best.

1.

While have enough time 2.
 Calculate fitness of particles 2.1.

 For each particle Update pbest 2.2.
Update gbest 2.3.

For each particle do these steps

with DPSO algorithm
2.4.

 Update its velocity vector 2.4.1
 Update its position 2.4.2

Return gbest particle as solution 3.

Figure 4. Discrete PSO based distribution algorithm

C.2 Honey- bees algorithm

The idea of honey-bees algorithm is to simulate the

behavior of honey bees. There is a queen in the honey

bees’ colony. Queen starts a mating flight with an initial

speed and energy and mates with drones. After each

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2467

© 2011 ACADEMY PUBLISHER

mating flight, the speed and energy of queen will be

decreased. Queen returns home when its speed or energy

is near zero or queen’s sperm repository is full.

Honey-bees algorithm is composed of genetic, simu-

lated annealing and local search algorithms. It uses

simulated annealing for selecting best chromosomes in

the selection phase of genetic algorithm. Using simulated

annealing in the honey-bees algorithm reinforces it to

escape from local minima. It is an important charact-

eristic of simulated annealing algorithm because it also

accepts worse solutions with a probability. We show in

our experimental evaluation that honey-bees does not get

trapped in local optima. Other benefit of using simulated

annealing in the selection phase is that only the strongest

drones will be selected so the number of times the fitness

function invoked will be decreased. The probability of

selecting each drone in honey-bees algorithm determined

by (1).

 (1)

In the above formula, f is a fitness function. f(Q) is fitness

value of queen and f(D) is fitness value of drone. The

speed of queen decreases after each iteration of the

algorithm so the selection probability for a drone in the

initial steps is more than next steps. The difference

between f (Q), and f(D) is another effective factor. In fact,

the smaller the difference, the more the selection

probability.

C.2.1 Encoding scheme

We modeled each drone and each brood by a array.

We also defined queen as a array.

C.2.2 Distribution algorithm

Fig. 5 shows our honey-bees distribution algorithm. At

first, initial population generator function gets the hive

size (the number of initial drones) as the input parameter.

and generates random initial drones. It also assigns the

best one to the queen. The number of queens may be more

than one. However, we decided to have one queen in our

algorithm.

Ref. [19,20], used random initial values for the initial

speed and initial energy of the queen, in step 2. We set

the initial speed value to 5e
10

 like [21], because it leads to

generate better results in our experiments. We used

random initial value for energy. While energy is more

than zero, we select a drone and then based on its

selection probability, which is computable using (1), it

may be selected and added to the queen’s repository for

making a brood. After selection step, we should crossover

each selected drone with the queen to make a new brood.

Note that queen does not change. The result of our

crossover algorithm is an array as a new brood.

Our crossover algorithm, selects randomly p1 percent of

operators from selected drone and replaces their host

numbers with the proper host numbers of the queen. At

the next step, mutation function works on the new brood.

The role of mutation is to keep the diversity of

population. We define two kinds of mutations. First

mutation algorithm chooses two random operators from

the new brood and swaps their host numbers with each

other. Our second mutation algorithm chooses a random

operator from the new brood and simply assigns another

random host number to it. We named our first mutation

function Mutation1 and the second one, Mutation2. We

tested two types of our mutation functions and found out

that Mutation2 is more efficient for our honey-bees

algorithm and we used it. However you can see in the

next section that Mutation1 is more suitable for our

genetic based distribution algorithm.

In step 2.5, if a new generated brood exists that has a

better fitness than queen, queen must be replaced with it.

Other broods should be saved for the next generation.

In the final step, We kill and remove old drones and

make new ones for next generation. Our new generation

contains the new broods generated in current iteration plus

new randomly generated drones like [19].

Generate initial random drones(Hivesize)

Assign the best drone to the Queen
1.

While have enough time 2.

Speed=5e
10 2.1.

Energy=rand[0.5,1]; 2.2.

While energy>0&& Queen’s Repository

isn’t full

2.3.

 Select next drone and calculate
 (=fitness(Queen)-fitness(drone))

2.3.1.

 Generate r=rand(0,1); 2.3.2.

 If(exp(- /speed|)>r) 2.3.3.

 Add current drone to Queen’s

 Repository

 Update speed and energy

 For each drone in Queen’s Repository 2.4.

 crossover drone with the Queen

 with p1%relocation to make a brood

2.4.1.

 use Mutation1 for new brood. 2.4.2.
 For each brood do 2.5.

 If fitness(brood)>fitness(Queen)

 Queen=new brood

 else

 Save the new brood

Generate new drones by new broods 2.6.
plus randomly generated drones

Return queen as solution 3.

Figure 5. Honey-bees distribution algorithm

C.3 Genetic algorithm

Genetic algorithms are stochastic search methods

based on natural biological evolution and also they are in

class of global search methods. J. H. Holland in [22] did

much work to develop genetic algorithms. They have

been applied to a wide range of optimization problems,

including well-known NP-complete and NP-hard

problems, scheduling and routing, configuration, and

query optimization [9,10].

In genetic algorithms, each solution is modeled as a

chromosome and a collection of these chromosomes is

called a population. They start with a population that

usually generated randomly or may be heuristically. In

each iteration, some of the best chromosomes would be

selected according to their fitness values. Genetic

algorithms have two operators: crossover and mutation.

2468 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

After the selection phase, the crossover operator tries to

make better chromosomes out of selected ones. The goal

of mutation operator is to increasing the diversity by

applying random changes into the chromosomes.

C.3.1 Encoding Scheme

 Encoding scheme will affect the selection of genetic

operators. Improper encoding scheme will produce

infeasible chromosomes generated by genetic operators.

Usually, chromosomes are represented as fixed length

strings coded with a binary character set. Other types of

encoding schemes include real number representations

and permutation representations. We model each

chromosome by a array. n is the number of

operators in query plan and each cell shows the related

host that operator assigned to it.

C.3.2 distribution algorithm

Crossover is the most important operator in genetic

algorithms. It takes valuable information from both

parent chromosomes and then combines them to find a

highly fit chromosome. Our crossover algorithm simply

selects p3 percent of operators randomly from a

chromosome and then changes their hosts with the hosts

in another randomly selected chromosome.

We used Mutation1 for our mutation function in

genetic algorithm. As we explained in section C.2.2, it

chooses two random operators from current chromosome

and simply swap their host numbers to each other. We

tested two types of mutation and found out that this type

of mutation is more efficient for our genetic based

distribution algorithm. Fig. 6, shows our genetic based

distribution algorithm.

InitRandomChromosomes (p1 samples) 1.
While have enough time 2.

 Calculate fitness of chromosomes 2.1.
 Sort chromosomes regarding their 2.2.

 fitness

 Select p2 number of the best 2.3.
 chromosomes

 CrossOver each chromosome with a 2.4.

 random chromoshome with

 p3% relocations

 Mutate each chromosome with 2.5.
 probability of p4 (Mutation1)

Return chromosome with best fitness as

solution

3.

Figure 6. Genetic-based distribution algorithm

C.4 fitness Function

To evaluate our results we need to determine one or

more fitness functions. We used two fitness functions:

ART-Cost and Net_Cost. Fitness function gives each

solution a fitness value which is a judgment of its

surviving capability. Choosing and formulating an

appropriate fitness function is crucial in obtaining

efficient solution for those problems solved by the

algorithms.

ART-Cost is the ratio of the average response time to

the ideal response time. We compute the ideal response

time regarding two conditions: 1) operators work

concurrently with maximum delay, and 2) no delay for

interconnecting links. For example, ideal response time

for query plan in Fig. 7, is equal to 22.

Figure 7. An example for query plan

Net-Cost is the bandwidth-delay product of the query.

 Net-Cost captures the idea that the longer the data stays

in the network, the more likely it is to traverse nodes and

links that could be used for other queries [7]. The Net-

Cost for a query q, is the amount of data that is in-transit

for q at a given instant and calculates by (2).

Ll

lLlBqu)()()((2)

Where L is the set of links used by q, B(l) is the

bandwidth of link l, and L(l) is the latency. We can

compute fitness function based on these two cost models

using approximating (determined statistically) network

and query parameters.

V. EXPERIMENTAL EVALUATION

In this section, experiments are conducted to testify the

advantages of our proposed approach in terms of Net-cost

and ART-cost metrics. All algorithms in the experiments

are implemented with java language. We used two

simulation-based scenarios to evaluate our distribution

algorithm. We compared honey-bees, DPSO and genetic

algorithm with each other and with centralized algorithm

for each scenario. The centralized method reveals the

effect of distribution.

The first scenario is about using high fan-in query

plans [23]. We used low fan-in query plans (just like

binary trees) for second scenario.

First we show how the fitness value of each

distribution algorithm changes over time and also you can

see in Fig. 8, that honey-bees algorithm does not get

trapped in local minima.

For each operator O, D(O) and R(O) are both equal to

0.5. For honey-bees algorithm, we defined one queen. We

selected the initial value of for speed and a random

value in range (0.5,1) for energy. Decreasing rate for

energy and speed is 0.9. To select the size of queen’s

repository, we tested lower values than 4 and greater

values than 4 and we found that 4 is the best one. Also

hive size is set to 20. We set the crossover probability p1

to 60. In the PSO algorithm, we set c1=c2=2, r1=r2=1,

 . In addition, in the genetic algorithm p1=100,

p2= 50, p3=0.6 and p4 is equal to 0.3. The data sources

and users are hosted by random hosts.

D=10

D=15
D=5 D=2

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2469

© 2011 ACADEMY PUBLISHER

A. Relative changes in values of fitness over time

We executed each algorithm 100 times. Fig. 8, represents

changes in average fitness value over time interval (0,40).

The Fitness function is Net_cost in high fan-in scenario.

You can see that PSO and genetic algorithm get trapped

in local minima and fail to reach the goal but honey-bees

algorithm performs well because of the benefit of using

simulated annealing in its selection phase. In fact,

simulated annealing tries to avoid local minima. In

addition, Fig. 8, represents that honey-bees algorithm is

considerably faster than genetic and PSO algorithms. The

selection phase of honey-bees algorithm speeds up it

because of selecting strongest drones to mate with queen.

Therefore, the number of fitness function, crossover and

mutation invocation will be limited to the size of queen’s

repository.

B. First Scenario: High Fan-in Query Plans

In this scenario, the network model composed of 400

randomly placed hosts. The query plan is a tree with

depth of 3 and fan-in of 7 (i.e. each operator has 7 inputs

and 1 output). So each query plan has 393 connected

operators.

The chart in Fig. 9, shows how Net-cost value changes

almost linearly as the input stream rate in the system is

increased. In this experiment, we limit the execution time

of distributors to 0.8 minute. The effect of changing R

and D parameters is just like input rate so we ignore it.

Our query distributors are better than centralized

algorithm. Honey-bees algorithm is the best distributor

and it has a lower fitness value in each step than other

algorithms. The results for PSO and Genetic algorithm

are almost like each other.

The obtained results in Fig. 11, show how better our

honey-bees distributor is in ART-cost metric in respect to

the other distributors. Centralized algorithm has a bit

lower fitness than honey-bees algorithm. It is trivial

because in the centralized algorithm all operators are

assigned to one host so the cost of network delay and

bandwidth will be decreased. Note that the values of R

and input rates are not effective in ART-Cost metric.

C. Second Scenario: Low Fan-in Query Plans

In this scenario, we used usual low fan-in query plans

with depth of 2 and fan-in equals to 2 (i.e. each operator

has 2 inputs and 1 output). So each query plan has 2

connected operators. Other parameters are just like the

previous scenario.

The charts in Fig. 10, 12, show that all algorithms

almost operate like each other. Using query plan

distributors in low fan-in scenario does not lead to better

Net_cost. Hence, distribution does not play an important

role in low fan-in scenario. In high fan-in scenario, the

centralized algorithm no longer performs well.

Figure 8. The values of fitness at the first 40milisecond

Figure 9. Net-cost for high fan-in queries

Figure 10. Net-cost for low fan-in queries

2470 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

Figure 11. ART-cost for high fan-in queries

Figure 12. ART-cost for low fan-in queries

VI. CONCLUSION

We introduced a new framework for data stream query

processing which is based on an Agent-based

middleware, JADE, and allow users to have agent-based

query engines which are capable of decomposing their

queries to sub-queries and clone themselves to distribute

query processing. This idea helps us to process each sub-

query near its stream sources and leads to less net costs.

The most challenging and complex module in our

systems was query distributor. We implemented our

query distributor system with honey-bees algorithm and

compared it to DPSO and genetic algorithm. DPSO is the

binary version of PSO and suitable for discrete domains.

In the experimental evaluation section we showed that

our honey-bees based query distributor algorithm is more

efficient than two other distributors (esp. for high fan-in

queries) and it increases the network utilization.

REFERENCES

[1] M. Ghalambor, A.A. Safaeei, and M.A. Azgomi, ―DSMS

scheduling regarding complex QoS metrics‖, IEEE/ACS
International Conference on Computer Systems and Applications
(AICCSA), 10-13 May 2009.

[2] M. Kheirkhahzadeh and M. G. Dezfuli, ―Agent-based pervasive
stream information retrieval‖, In proc. Of the IASTED Int. Conf.
on Artificial Applications, AIA 2011, pp.171-176, Innsbruck,
Austria, Feb 14-16, 2011.

[3] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.
Cetintemel, et al., ―Scalable distributed stream processing‖, In
Proc. of the 1st Biennial Conference on Innovative Data Systems
Research (CIDR), CA, January, 2003.

[4] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
et al., ―Aurora: a new model and architecture for data stream
management‖, The VLDB Journal The International Journal on
Very Large Data Bases, Vol. 12, No. 2, pp. 120-139, 2003.

[5] M. Balazinska, H. Balakrishnan, and M. Stonebraker, ―Load
management and high availability in the Medusa distributed
stream processing system‖, In Proceedings of the ACM SIGMOD
international conference on Management of data, NY, USA, 2004.

[6] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M.
Cherniack, et al., ―The design of the Borealis stream processing
engine‖, In Proc. of the 2nd Biennial Conference on Innovative
Data Systems Research

(CIDR), Asilomar, CA, January, 2005.

[7] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,
et al., ―Network-aware operator placement for stream-processing
systems‖, In Proc. of ICDE, April, 2006.

[8] A. Pérez-Uribe and B. Hirsbrunner,―Learning and foraging in
robot-bees‖, in Meyer, Berthoz, Floreano, Roitblat andWilson
(eds.)’, SAB2000 Proceedings Supplement Book, Intermit. Soc.
For Adaptive Behavior, Honolulu, Hawaii, pp. 185–194.

[9] M. Stillger, and M. Spiliopoulou, ―Genetic programming in
database query optimization‖, In Proc. of the Genetic
Programming Conference, pp. 388-393, July 1996.

[10] K. Bennett, M.C. Ferris, and Y.E. Ioannidis, ―A genetic algorithm
for database query optimization‖, In Proc. of the 4th International
Conference on Genetic Algorithms, 400-407, 1991.

[11] H. Izakian , B. Tork Ladani, A. Abraham, V. Snasel, ‖A discrete
particle swarm optimization approach for grid job scheduling‖.
International Journal of Innovative Computing, Information and
Control vol .6, No. 9, September 2010.

[12] E. Cortese, F. Quarta, G. Vitaglione, and P. Vrba, ―Scalability and
performance of JADE message transport system‖, Journal of
Analysis of Suitability for Holonic Manufacturing Systems, Vol.
3, No. 3, pp. 52-65, 2002.

[13] K. Chmiel, ―Efficiency of JADE agent platform‖, Scientific
Programming Journal, Vol. 13, No. 2, pp. 159-172, 2005.

[14] F. Bellifemine, A. Poggi, and G. Rimassa, ―JADE--a FIPA-
compliant agent framework‖, Proceedings of PAAM, Vol. 99, pp.
97-108, 1999.

[15] JADE Official Website, http://jade.tilab.com.

[16] P.D. O'Brien, and R.C. Nicol, ―FIPA — towards a standard for
software agents‖, BT Technology Journal, Vol. 16, No. 3, pp. 51-
59, Jul 1998.

[17] J. Kennedy and R. C. Eberhart, ―Particle swarm optimization‖,
Proc. of the IEEE International Conference on Neural Networks,
pp.1942-1948, 1995.

[18] J. Kennedy and R. C. Eberhart, ―A discrete binary version of the
particle swarm algorithm‖, IEEE International Conference on
Systems, Man, and Cybernetics, Orlando, FL, vol.5, pp.4104-
4108, 1997.

[19] N. R. Sabar, M. Ayob, G .Kendall,‖Solving Examination
Timetabling Problems using Honey-bee Mating Optimization
(ETP-HBMO)‖, (MISTA 2009), August2009.

[20] O. B. Haddad, A. Afshar and M. A. Marino, ―Honey-Bees Mating
Optimization (HBMO) Algorithm:A New Heuristic Approach for
Water Resources Optimization‖, Water Resources Management
(2006) 20: 661–680,DOI: 10.1007/s11269-005-9001-3.

[21] O. B.Haddad, M. Mirmomeni,M. Z. Mehrizi,M.A.Mariño
,―Finding the shortest path with honey-bee mating optimization
algorithm in project management problems with
constrained/unconstrained resources‖, Published in Journal of
Computational Optimization and Applications, Volume 47, Issue
1, September 2010.

[22] J. H. Holland. ―Adaptation in natural and artificial systems‖, Ann
Arbor:University of Michigan Press, 1975.

[23] M.J. Franklin, S.R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi,
et al., ―Design considerations for high fan-in systems: the HiFi
approach‖, In Proc. Of the CIDR Conf., Jan. 2005.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2471

© 2011 ACADEMY PUBLISHER

http://jade.tilab.com/

