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Abstract—Data Stream Management Systems (DSMSs) has 

the advantage of lightweight repositories so they can 

migrate in a network of hosts regarding their stream 

resources. We developed a framework (including some 

systems) based on agents to let users have their own 

customized query engines which can migrate in network to 

gain better QoS. Our Data Stream Management Agents 

(DSMAs) can distribute their queries and clone themselves 

to run different sub-queries on different hosts regarding the 

position of related sources. One of the main challenges 

toward this goal is distribution algorithm for queries. In this 

paper, we proposed a distributor for our agent-based data 

stream management framework based on honey-bees 

algorithm. We compare our honey-bees algorithm to other 

proper heuristics (genetic algorithm and DPSO) through 

our experimental evaluations.    

 

Index Terms— Stream,  DSMS,  SDMS,  DSMA, Agent 

 

I.  INTRODUCTION 

Nowadays, lots of data stream generators are available 

and accessible through internet (e.g. sensor networks). 

These stream resources present promising retrievable 

information for world-wide users (i.e. queriers). What is 

missing is an infrastructure to interconnect these 

heterogeneous stream generation domains into a 

pervasive system that responds to user’s queries. The 

transparency of this infrastructure will allow users to 

query it as a single unit made of millions of widely 

distributed ordinary or even advanced complex sensors 

(e.g. from thermometers to video cameras).  

To have a better envision, imagine the following 

scenario: a biologist wishes to do research on relations 

between weather conditions and migrations of zebras in 

Kenya. Instead of travelling and living in Kenya, he can 

access to sensor network services deployed there and 

enjoy an online remote surveillance. In addition, the same 

resources could be queried continuously by Kenya 

lifeguards to detect migration of zebras toward out of the 

Sweetwater reserve. 

We call our desired system as Pervasive Stream 

Information Retrieval Network (PSIRN). These five key 

requirements of a pervasive information retrieval network 

play an important role in the design of a PSIRN: 

 An easy way to interconnect services and users based 

on available bandwidth-limited networks. First and 

foremost, we need an infrastructure to interconnect 

stream producers (i.e. services) and stream 

consumers (i.e. query executors). It should be robust 

and reliable despite unreliable low-bandwidth links. 

 Finding appropriate services. PSIRN users should be 

capable of searching and finding services related to 

their queries.  

 Heterogeneity of service providers and service 

customers. Different service providers/customers 

may use different customized softwares.  

 Data access and privacy. PSIRN is composed of 

many different administration domains with different 

access controls and privacy policies. There should be 

a data access control in PSIRN that satisfies all of the 

domain administrators. 

 Information trading and QoS. Service authors should 

be allowed to sell their services regarding specific 

QoS. In fact, an information-trading contract based 

on a detailed complex QoS metric [1] should be 

negotiated and signed by two parties. 

In this paper we introduce data stream management 

agents which are responsible for executing a query in a 

data stream processing infrastructure. Each DSMA is 

responsible for running a subset of operators of a query 

plan in the network. We used JADE middleware to 

support relations between multiple FIPA-compliant 

agents. This paper is an extended version of our previous 

work [2] with a better focus on distribution algorithms. In 

this paper we used a honey-bees algorithm for operator 

distribution and compared it with genetic algorithm, 

binary PSO and centralized algorithm. We show that 

honey-bees algorithm performs better and is faster than 

other distributor algorithms.   

The rest of the paper is organized as follows. First, we 

cover the related work in Section II. We introduce our 

new infrastructure in Section III. We focus on three query 

distribution algorithms in Section IV(honey-bee, DPSO 

and genetic algorithm) and demonstrate their 

experimental evaluation in Section V. 
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II. RELATED WORK 

Aurora* [3] is a distributed version of the stream 

processing system Aurora [4], which assumes nodes 

belonging to a common administrative domain. Medusa 

[5] is an infrastructure supporting the federated operation 

of several Aurora nodes across administrative boundaries. 

After all, Borealis [6] is a second-generation distributed 

stream processing engine that inherits core stream 

processing functionality from Aurora* and distribution 

functionality from Medusa. However, none of these 

systems provides a flexible framework for customized 

query engines. 

The idea of network-aware operator placement for 

stream processing was considered by Pietzuch et. al. in 

[7]. They describe a stream-based overlay network 

(SBON), a layer between a stream-processing system and 

the physical network that manages operator placement for 

stream-processing systems. SBON architecture uses a 

scalable, decentralized, and adaptive optimization 

technique based on a multi-dimensional metric space 

called a cost space. A cost space is a d-dimensional 

metric space where the Euclidean distance between two 

nodes is an estimate of the cost of routing data between 

those nodes. We used this distance metric and found it 

insufficient. They also introduced Network Usage metric 

and we leveraged their idea to define our Net-cost metric. 

One of the areas of interest in optimization problems is 

swarm intelligence. It is inspired by the social behavior of 

some insects such as ants and bees. Honey-bees mating 

optimization (HBMO) is a swarm intelligence optimizat-

ion algorithm that models the behaviors of bees. Honey-

bees algorithms were used to model agent-base systems 

[8]. We used honey-bees to model our agent based query 

distributor algorithm. In the experimental evaluation 

section we show that this algorithm is better than PSO 

and genetic algorithm on which it is fast and tries to avoid 

local minima. Ref. [9,10] show independently that 

genetic algorithms could be elegantly useful to optimize 

database query plans. Ref. [11] represents a Discrete 

Particle Swarm Optimization (DPSO) approach for grid 

job scheduling. We developed a honey-bees query plan 

distributor and compare it to DPSO and genetic 

algorithm.  

The efficiency and scalability of JADE and its message 

transportation system for large agent-based software 

systems has been tested independently in [12,13] and also 

we found it very efficient in our experiments. 

III. THE INFRASTRUCTURE 

To overcome low bandwidth and unreliable links, we 

used mobile query processors. It means we can get a part 

of query plan to a mobile query processor and then this 

processing unit can go to an optimal position that is the 

nearest position to its needed stream sources. On the 

other hand, mobility is not possible for heavyweight 

DBMSs because of their high volume data but it is good 

for lightweight DSMSs (that contain only queries and 

some data sketches). Thus we need a multi-agent system 

because each service provider or service customer works 

on behalf of its owner. We also need a layer to simplify 

wide access to data stream sources that supports service 

oriented architecture (SOA), compatible with internet, 

supports different kinds of DSMSs and supports mobility 

of DSMAs.  

Our PSIRN is based on agent-oriented java-based 

JADE middleware [14,15]. JADE is a framework to 

develop multi-agent systems in compliance with FIPA 

specifications [16]. JADE could be run on heterogeneous 

platforms from powerful servers to cell phones. It also 

supports mobile agents and yellow pages (to find service 

providers) and facilitate message passing between agents. 

It has an acceptable performance and scalability even 

for heavy loads [12,13]. We have made the simplifying 

assumption that there is only one administration domain 

and we leave the security, QoS and information trading 

for future work. 

A. The Architecture 

Each site runs a middleware whose major components are 

shown in Fig. 1, 2. The architecture is based on four types 

of agents: 

1) Data Stream Management Agents (DSMAs) 

2) Global Service Directory (GSD) 

3) Stream Proxies (SPs) 

4) Topology Explorers (TEs) 

 
Figure 1.  The Topology 

DSMAs are agent-based DSMSs. The DSMA is a 

mobile agent containing a pre-designed and tested DSMS 

engine. 

 

Figure 2.  The Architecture 
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 The GSD is an immobile agent that stores information 

about services. Users can find proper services using GSD. 

One GSD is sufficient for an administration domain. The 

SPs are customized interfaces between stream sources 

and service customers. Each SP is well adapted to a 

stream source and should register its services in the GSD 

and provide service for DSMAs in a standard pre-defined 

manner. In fact, SPs are mobile agents and they travel to 

the best host regarding their stream sources. There is one 

immobile TE for each host. TEs compute the network 

delays between their host and other hosts. TEs help each 

other to make a Virtual Network Model (VNM) based on 

peer to peer network delays. TEs update This VNM 

without any interaction with network layer and it helps 

other components to look at network layer as a black box. 

VNM is essentially needed for optimal query distribution 

in DSMAs. 

B. The DSMA Architecture 

The DSMA architecture is illustrated in Fig. 3. Some 

modules like Query Plan Manager, Memory Manager, 

Scheduler, QoS Manager and AAA (Authorization, 

Authentication and Admission Control) are similar to 

their counterparts in DSMSs. The GUI helps user to 

search and find proper data sources and enter queries. It 

also displays the results of the query. The JADE Interface 

Module is an interface between DSMAs, GSD, SPs and 

TEs. It handles the message passing between mentioned 

agents. Input ports of DSMA should be connected to 

JADE interface and output ports could be connected to a 

file, GUI or JADE interface. Query Decomposer is the 

most complex and important module that we added to 

DSMA. Query Decomposer is responsible for decompos-

ing queries using some QoS metrics and network model. 

It requests Migrator to send different cloned DSMAs to 

selected hosts. Migrator is responsible for migration of 

these new generated DSMAs. 

 

Figure 3.  The DSMA Architecture 

C. The Connections between Agents 

We used Internal Message Transport Protocol (IMTP) of 

JADE to interconnect agents. We also used XML instead 

of the JADE’s ontological approach for our messages. 

Agents use yellow pages service of the JADE to find 

basic services like the GSD. 

JADE names each agent with a globally unique identifier. 

It also can automatically handle the mapping between 

name of the agent and its physical address. JADE does 

this mapping using a mapping table in the main container. 

Other containers use cached mapping table to speed up 

the mapping process. It helps to prevent any bottleneck in 

the main container. Agents can communicate directly 

through their containers and without interference of the 

main container. Network layer is responsible for low-

level message routing. 

IV. QUERY DISTRIBUTION 

The most important and complex part is how to 

decompose queries and distribute sub-queries on the 

network. DSMAs distribute query plans regarding VNM 

and the locations of producers and customers. Similar 

cloned DSMAs migrate to selected hosts carrying 

different parts of the decomposed query. There are two 

important objective functions to achieve an optimal query 

distribution: 1) minimizing network usage and 2) 

minimizing response time of queries. 

There are three challenges when facing the query 

distribution problem: 1) modeling topology of the 

network (i.e. VNM), 2) decomposing queries into some 

sub-queries and 3) sub-query placement. The second and 

third challenges are toward an objective function and are 

tightly related so they could be covered by a single 

method (as we did). 

A. Virtual Network Model 

Our infrastructure lies upon the network layer and treat 

it as a black box. This helps having an infrastructure for 

many different interconnected networks and it is 

necessary for internet infrastructures. Because of the 

hidden aspects of the underlying network, we need a 

virtual network model to achieve a near optimal query 

distribution. The VNM should be creatable without any 

help from the network layer. 

We model network as a complete weighted graph. In 

this graph, the communication delays between hosts (i.e. 

vertices) are modeled as weights of the edges (i.e. virtual 

connection links). This model is proper for different 

mentioned cost functions (i.e. two objective functions for 

optimization). In addition, middleware can generate and 

update this model independent of underlying network 

layer. The only drawback of VNM is high cost of 

updating weights of the edges (it has a complexity of 

      where   is the number of hosts). We can improve 

the cost using minimum spanning tree to bring the 

complexity down to     . Inter-domain distribution is 

not allowed (because of the policies of administration 

domains) and sub-queries should be sent to 

administration domains to be distributed by them locally. 

Thus, the current updating cost is acceptable for us. 

TEs are responsible for generating and updating VNM. 

They do it using permanent peer-to-peer messaging. 

DSMAs can get the model from main TE of the 

administration domain and use it to get a near-optimal 

decomposition and distribution. 
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B. Modeling Query Plans 

Query plans could be derived from registered continuous 

queries. They are composed of operators, which perform 

the actual data processing; queues, which buffer data as it 

moves between operators; and synopses, to hold state of 

operators.  

Operators are the basic data processing units in a query 

plan. An operator takes one or more streams as input and 

produces a stream as output. As in a traditional DBMS, a 

plan for a query connects a set of operators in a tree: The 

output of a child operator forms an input of its parent 

operator, the input streams and relations of the query 

form the input of the leaf operators, and the output of the 

root operator forms the output of the entire query. 

Because of the variety of operator types, we model 

operators as black boxes with multiple inputs and outputs.  

For each operator O, D(O) is the processing delay for 

each input tuple and R(O) is the ratio of output to input 

(rate of output generation). 

C. Query Decomposition and Distribution 

Distributing m operators among n hosts is a NP-hard 

problem. We developed our distributor based on honey-

bees, PSO and genetic algorithm and compared them to 

each other. We show that honey-bees is the best one. In 

this section we explain in brief each algorithm and its 

encoding schemes that we used. Encoding is a mapping 

from knowledge domain to the solution space where our 

algorithms can process. The selection of encoding 

scheme is varied with the design decision and also 

depends on the problem to be solved. In all algorithms, 

we model each solution by a     array. n shows the 

number of operators in the query plan. Each cell i of the 

array contains a host number that we assigned ith 

operator to it. 

C.1 discrete PSO 

Particle swarm optimization (PSO) is a population based 

stochastic optimization technique introduced by Kennedy 

and Eberhart [17]. PSO simulates social behavior of bird 

flocking. The algorithm is initialized with a population of 

random solutions. Each solution represents a particle. All 

particles move based on pbest (personal best) and gbest 

(global best) in the search space to find the best location. 

       is the best location that ith particle has 

experienced  so far.  gbest  stands for global best and is 

the best location that  all particles have experienced so 

far. Pbest and gbest should be updated after each iteration 

of the algorithm. The algorithm repeats until a threshold 

is reached or it finds the optimal solution. In fact, after 

each iteration, the position of each particle updates with 

the velocity vector. Velocity vector is calculated based on 

pbest and gbest. 

PSO is applicable in many fields such as function 

optimization, artificial neural network training, fuzzy 

system control. There are two versions of PSO 

algorithms. The basic PSO is suitable to solving 

continuous problems.  The second version named binary 

PSO is capable of solving discrete problems and 

introduced by Kennedy and Eberhart [18]. Similar to the 

work in [18], we used binary PSO to solve our discrete 

optimization problem because our goal is to assign proper 

host numbers to the operator set and the search space of  

our algorithm is discrete instead of continuous (domain of 

host numbers is a discrete set).  We also used DPSO [11] 

algorithm that is a discrete version of PSO and it has a 

high performance.  

C.1.1 Encoding Scheme 

Izakian et. al. proposed an efficient discrete PSO 

algorithm with a direct representation named DPSO [11]. 

We can use two representations for a discrete PSO 

problem to encode each solution: 1) indirect and 2) direct. 

In indirect representation, each particle must be modeled 

by a two dimensional vector    . h shows the number 

of hosts and n is the number of operators. If the operator i 

is assigned to the host number j, the proper cell should be 

one, otherwise zero. That means cells show what operator 

has assigned to which host by the one or zero value.  

However, direct representation uses a     vector for 

each particle which n is the number of operators and each 

cell has an integer value shows the number of host that 

assigned to that operator.  We used efficient direct 

representation DPSO algorithm. We chose global best 

instead of local best to speed up the algorithm. Each 

particle modeled as a     array. Gbest and pbest are 

also     arrays. We modeled velocity vector, with a 

      array. The p parameter is the number of 

particles, h is the number of hosts and n is the number of 

operators in the query plan.  

C.1.2  distribution algorithm  

Fig. 4 shows the discrete PSO distribution algorithm that 

we used. PSO algorithm first generates initial random 

particles and then assigns each particle to its pbest. After 

that, it assigns the best pbest to the gbest. In the while loop 

in step 2, PSO calculates the fitness value of each particle 

and then updates pbest and gbest. Thus, PSO can calculate 

velocity vector of each particle by updated gbest and 

pbest. Note that our velocity updating function is like 

DPSO[11]. Finally, new particles can be generated using 

new velocity vectors. 

 
Initiate random particles and assign 

each particle to its pbest. 

Find initial global best. 

1. 

While have enough time 2. 
 Calculate fitness of particles  2.1. 

  For each particle Update pbest 2.2. 
Update gbest 2.3. 

For each particle do these steps 

with DPSO algorithm 
2.4. 

   Update its velocity vector  2.4.1 
   Update its position 2.4.2 

Return gbest particle as solution 3. 

Figure 4.  Discrete  PSO based distribution algorithm 

C.2 Honey- bees algorithm 

The idea of honey-bees algorithm is to simulate the 

behavior of honey bees. There is a queen in the honey 

bees’ colony. Queen starts a mating flight with an initial 

speed and energy and mates with drones. After each 
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mating flight, the speed and energy of queen will be 

decreased. Queen returns home when its speed or energy 

is near zero or queen’s sperm repository is full.  

Honey-bees algorithm is composed of genetic, simu-

lated annealing and local search algorithms. It uses 

simulated annealing for selecting best chromosomes in 

the selection phase of genetic algorithm.  Using simulated 

annealing in the honey-bees algorithm reinforces it to 

escape from local minima. It is an important charact-

eristic of simulated annealing algorithm because it also 

accepts worse solutions with a probability. We show in 

our experimental evaluation that honey-bees does not  get 

trapped in local optima.  Other benefit of using simulated 

annealing in the selection phase is that only the strongest 

drones will be selected so the number of times the fitness 

function invoked will be decreased. The probability of 

selecting each drone in honey-bees algorithm determined 

by (1). 

 

        
     

         

     
 
  (1) 

 

In the above formula, f is a fitness function. f(Q) is fitness 

value of queen and f(D) is fitness value of drone. The 

speed of queen decreases after each iteration of the 

algorithm so the selection probability for a drone in the 

initial steps is more than next steps. The difference 

between f (Q), and f(D) is another effective factor. In fact, 

the smaller the difference, the more the selection 

probability.   

 

C.2.1  Encoding scheme 

We modeled each drone and each brood by a     array. 

We also defined queen as a     array.  

 

C.2.2 Distribution algorithm  

Fig. 5 shows our honey-bees distribution algorithm. At 

first, initial population generator function gets the hive 

size (the number of initial drones) as the input parameter. 

and generates random initial drones. It also assigns the 

best one to the queen. The number of queens may be more 

than one. However, we decided to have  one queen in our 

algorithm. 

Ref. [19,20], used random initial values for the initial 

speed and initial energy of the queen, in step 2. We set 

the initial speed value to 5e
10

 like [21], because it leads to 

generate better results in our experiments. We used 

random initial value for energy. While energy is more 

than zero, we select a drone and then based on its 

selection probability, which is computable using (1), it 

may be selected and added to the queen’s repository for 

making a brood. After selection step, we should crossover 

each selected drone with the queen to make a new brood. 

Note that queen does not change. The result of our 

crossover algorithm is an     array as a new brood. 

Our crossover algorithm, selects randomly p1 percent of 

operators from selected drone and replaces their host 

numbers with the proper host numbers of the queen. At 

the next step, mutation function works on the new brood. 

The role of mutation is to keep the diversity of 

population. We define two kinds of mutations. First 

mutation algorithm chooses two random operators from 

the new brood and swaps their host numbers with each 

other. Our second mutation algorithm chooses a random 

operator from the new brood and simply assigns another 

random host number to it. We named our first mutation 

function Mutation1 and the second one, Mutation2. We 

tested two types of our mutation functions and found out 

that Mutation2 is more efficient for our honey-bees 

algorithm and we used it. However you can see in the 

next section that Mutation1 is more suitable for our 

genetic based distribution algorithm. 

In step 2.5, if a new generated brood exists that has a 

better fitness than queen, queen must be replaced with it. 

Other broods should be saved for the next generation. 

In the final step, We kill and remove old drones and 

make new ones for next generation. Our new generation 

contains the new broods generated in current iteration plus 

new randomly generated drones like [19]. 

 
Generate initial random drones(Hivesize) 

Assign the best drone to the Queen 
1. 

While have enough time 2. 

Speed=5e
10 2.1. 

Energy=rand[0.5,1]; 2.2. 

While energy>0&& Queen’s Repository 

isn’t full  

2.3. 

  Select next drone and calculate   
  (    =fitness(Queen)-fitness(drone)) 

2.3.1. 

   Generate r=rand(0,1); 2.3.2. 

  If(exp(-     /speed|)>r) 2.3.3. 

    Add current drone to Queen’s    

    Repository  

    Update speed and energy  

  For each drone in Queen’s Repository 2.4. 

    crossover drone with the Queen  

    with p1%relocation to make a brood     

2.4.1. 

    use Mutation1 for new brood. 2.4.2. 
  For each brood do 2.5. 

    If fitness(brood)>fitness(Queen) 

             Queen=new brood 

    else 

             Save the new brood 

 

Generate new drones by new broods 2.6. 
plus randomly generated drones  

Return queen as solution 3. 

Figure 5.  Honey-bees distribution algorithm 

C.3 Genetic algorithm 

Genetic algorithms are stochastic search methods 

based on natural biological evolution and also they are in 

class of global search methods. J. H. Holland in [22] did 

much work to develop genetic algorithms. They have 

been applied to a wide range of optimization problems, 

including well-known NP-complete and NP-hard 

problems, scheduling and routing, configuration, and 

query optimization [9,10].  

In genetic algorithms, each solution is modeled as a 

chromosome and a collection of these chromosomes is 

called a population. They start with a population that 

usually generated randomly or may be heuristically. In 

each iteration, some of the best chromosomes would be 

selected according to their fitness values. Genetic 

algorithms have two operators: crossover and mutation. 
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After the selection phase, the crossover operator tries to 

make better chromosomes out of selected ones. The goal 

of mutation operator is to increasing the diversity by 

applying random changes into the chromosomes.  

C.3.1 Encoding Scheme  

 Encoding scheme will affect the selection of genetic 

operators. Improper encoding scheme will produce 

infeasible chromosomes generated by genetic operators. 

Usually, chromosomes are represented as fixed length 

strings coded with a binary character set. Other types of 

encoding schemes include real number representations 

and permutation representations. We model each 

chromosome by a     array. n is the number of 

operators in query plan and each cell shows the related 

host that operator assigned to it. 

C.3.2  distribution algorithm  

Crossover is the most important operator in genetic 

algorithms. It takes valuable information from both 

parent chromosomes and then combines them to find a 

highly fit chromosome. Our crossover algorithm simply 

selects p3 percent of operators randomly from a 

chromosome and then changes their hosts with the hosts 

in another randomly selected chromosome. 

We used Mutation1 for our mutation function in 

genetic algorithm. As we explained in section C.2.2, it 

chooses two random operators from current chromosome 

and simply swap their host numbers to each other. We 

tested two types of mutation and found out that this type 

of mutation is more efficient for our genetic based 

distribution algorithm. Fig. 6, shows our genetic based 

distribution algorithm. 

 
InitRandomChromosomes (p1 samples) 1. 
While have enough time 2. 

  Calculate fitness of chromosomes  2.1. 
  Sort chromosomes regarding their        2.2. 

  fitness  

  Select p2 number of the best      2.3. 
  chromosomes  

  CrossOver each chromosome with a      2.4. 

  random chromoshome with    

  p3% relocations  

  Mutate each chromosome with   2.5. 
  probability of p4 (Mutation1)  

Return chromosome with best fitness as 

solution 

3. 

Figure 6.  Genetic-based distribution algorithm 

 

C.4 fitness Function 

To evaluate our results we need to determine one or 

more fitness functions. We used two fitness functions: 

ART-Cost and Net_Cost. Fitness function gives each 

solution a fitness value which is a judgment of its 

surviving capability. Choosing and formulating an 

appropriate fitness function is crucial in obtaining 

efficient solution for those problems solved by the  

algorithms.   

ART-Cost is the ratio of the average response time to 

the ideal response time. We compute the ideal response 

time regarding two conditions: 1) operators work 

concurrently with maximum delay, and 2) no delay for 

interconnecting links. For example, ideal response time 

for query plan in Fig. 7, is equal to 22.  

 

Figure 7.  An example for query plan 

Net-Cost is the bandwidth-delay product of the query. 

 Net-Cost captures the idea that the longer the data stays 

in the network, the more likely it is to traverse nodes and 

links that could be used for other queries [7]. The Net-

Cost for a query q, is the amount of data that is in-transit 

for q at a given instant and calculates by (2).  





Ll

lLlBqu )()()(  (2) 

Where L is the set of links used by q, B(l) is the 

bandwidth of link l, and L(l) is the latency. We can 

compute fitness function based on these two cost models 

using approximating (determined statistically) network 

and query parameters. 

V. EXPERIMENTAL EVALUATION 

In this section, experiments are conducted to testify the 

advantages of our proposed approach in terms of Net-cost 

and ART-cost metrics. All algorithms in the experiments 

are implemented with java language. We used two 

simulation-based scenarios to evaluate our distribution 

algorithm. We compared honey-bees, DPSO and genetic 

algorithm with each other and with centralized algorithm 

for each scenario. The centralized method reveals the 

effect of distribution. 

The first scenario is about using high fan-in query 

plans [23]. We used low fan-in query plans (just like 

binary trees) for second scenario.  

First we show how the fitness value of each 

distribution algorithm changes over time and also you can 

see in Fig. 8, that honey-bees algorithm does not get 

trapped in local minima.  

For each operator O, D(O) and R(O) are both equal to 

0.5. For honey-bees algorithm, we defined one queen. We 

selected the initial value of      for speed and a random 

value in range (0.5,1) for energy. Decreasing rate for 

energy and speed is 0.9. To select the size of queen’s 

repository, we tested lower values than 4 and greater 

values than 4 and we found that 4 is the best one. Also 

hive size is set to 20. We set the crossover probability p1 

to 60. In the PSO algorithm, we set c1=c2=2, r1=r2=1, 

      . In addition, in the genetic algorithm p1=100, 

p2= 50, p3=0.6 and p4 is equal to 0.3. The data sources 

and users are hosted by random hosts. 

D=10

D=15
D=5 D=2
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A. Relative changes  in values of fitness over time 

We executed each algorithm 100 times. Fig. 8, represents 

changes in average fitness value over time interval (0,40). 

The Fitness function is Net_cost in high fan-in scenario. 

You can see that PSO and genetic algorithm get trapped 

in local minima and fail to reach the goal but honey-bees 

algorithm performs well because of the benefit of using 

simulated annealing in its selection phase. In fact, 

simulated annealing tries to avoid local minima. In 

addition, Fig. 8, represents that honey-bees algorithm is 

considerably faster than genetic and PSO algorithms. The 

selection phase of honey-bees algorithm speeds up it 

because of selecting strongest drones to mate with queen. 

Therefore, the number of fitness function, crossover and 

mutation invocation will be limited to the size of queen’s 

repository. 

B. First Scenario: High Fan-in Query Plans 

In this scenario, the network model composed of 400 

randomly placed hosts. The query plan is a tree with 

depth of 3 and fan-in of 7 (i.e. each operator has 7 inputs 

and 1 output). So each query plan has 393 connected 

operators.  

The chart in Fig. 9,  shows how Net-cost value changes 

almost linearly as the input stream rate in the system is 

increased. In this experiment, we limit the execution time 

of distributors to 0.8 minute. The effect of changing R 

and D parameters is just like input rate so we ignore it. 

Our query distributors are better than centralized 

algorithm. Honey-bees algorithm is the best distributor 

and it has a lower fitness value in each step than other 

algorithms. The results for PSO and Genetic algorithm 

are almost like each other.  

The obtained results in Fig. 11, show how better our 

honey-bees distributor is in ART-cost metric in respect to 

the other distributors. Centralized algorithm has a bit 

lower fitness than honey-bees algorithm. It is trivial 

because in the centralized algorithm all operators are 

assigned to one host so the cost of network delay and 

bandwidth will be decreased. Note that the values of R 

and input rates are not effective in ART-Cost metric.  

C. Second Scenario: Low Fan-in Query Plans 

In this scenario, we used usual low fan-in query plans 

with depth of 2 and fan-in equals to 2 (i.e. each operator 

has 2 inputs and 1 output). So each query plan has 2 

connected operators. Other parameters are just like the 

previous scenario. 

The charts in Fig. 10, 12, show that all algorithms 

almost operate like each other. Using query plan 

distributors in low fan-in scenario does not lead to better 

Net_cost.  Hence, distribution does not play an important 

role in low fan-in scenario. In high fan-in scenario, the 

centralized algorithm no longer performs well. 

 

 

Figure 8.  The values of fitness at the first 40milisecond 

 

 

Figure 9.  Net-cost for high fan-in queries 

 

 
Figure 10.  Net-cost for low fan-in queries 
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Figure 11.  ART-cost for high fan-in queries 

 

Figure 12.  ART-cost for low fan-in queries 

VI. CONCLUSION 

We introduced a new framework for data stream query 

processing which is based on an Agent-based 

middleware, JADE, and allow users to have agent-based 

query engines which are capable of decomposing their 

queries to sub-queries and clone themselves to distribute 

query processing. This idea helps us to process each sub-

query near its stream sources and leads to less net costs. 

The most challenging and complex module in our 

systems was query distributor. We implemented our 

query distributor system with honey-bees algorithm and 

compared it to DPSO and genetic algorithm. DPSO is the 

binary version of PSO and suitable for discrete domains. 

In the experimental evaluation section we showed that 

our honey-bees based query distributor algorithm is more 

efficient than two other distributors (esp. for high fan-in 

queries) and it increases the network utilization.  
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