
A Translation Framework for Executing the
Sequential Binary Code on CPU/GPU Based

Architectures

Erzhou Zhu, Haibing Guan, Guoxing Dong, Yindong Yang, Hongbo Yang
Department of Computer Science and Engineering & Shanghai Key Laboratory of Scalable Computing and Systems,

Shanghai Jiaotong University, Shanghai, China
Email: {ezzhu, hbguan, idalang, yasaka, yanghongbo819}@sjtu.edu.cn

Abstract—The method of using DBT (dynamic binary
translation) to execute the source ISAs binary code on target
platforms has been perplexed by low overhead for many
years. GPU as a many-core processor has tremendous
computational power. Employing GPU as a coprocessor to
parallel execute the hot spot of binary code hold a great
promise of substantially reduce the overhead of DBT. This
paper presents a novel translation framework for
constructing the virtual execution environment aiming at
accelerating the process of DBT on CPU/GPU based
architectures. With parallelizable parts (hot spots) of binary
code and their related information, the framework converts
the sequential code into PTX form and executes them on
GPUs. Under the framework, we need not to rewrite the
source code, and the binary compatibility issues between
different GPUs are also resolved properly. Experimental
results on several programs from CUDA SDK Code
Samples and Parboil Benchmark Suite show that the
framework can significantly improve the performance,
usually have 10X speedup on average compared to X86
native platforms. Especially, when the scale of input become
larger, the performance becomes even better.

Index Terms—GPU, Virtual Execution Environment,
Parallelization, CUDA, Dynamic Binary Translation, PTX

I. INTRODUCTION

Dynamic binary translation (DBT) is a commonly used
technology in virtualization area. It converts binary code
of one ISA (source binary code) to the binary code of
another ISA (target binary code) during the runtime. And
the target code will be executed right after the conversion.
Performance of DBT system, including the overhead of
translating procedure and the execution of target code,
has perplexed the researchers for many years. Many
optimizations have been used to improve this point, such
as translation block chaining, form large translation
blocks (superblocks), reordering translated instructions to
improve pipeline performance, borrow optimization
techniques from conventional compilers. In fact, most
present DBT systems can reduce translating costs into an
acceptable range. Hence, main attention is laid on
bringing down the executive time of target code.

Purely software optimization technique is not ideal for
improving translation speed, thus software combines
hardware optimization technique is a good choice.
Although using the accelerating hardware outside of the
personal computer could gain good speedup, but modern
people emphasizing portability, they couldn’t tolerate
taking the accelerating hardware all the time. So how to
fully use the inside PC component to accelerate the
translation process is an inevitable trend.

The programmability and large-scale computing ability
of GPU (Graphic Process Unit) has been proved most
useful in computation-intensive applications, and there
has been considerable interest in general purpose
computation on GPUs (GPGPU) [1][2][3]. In many cases,
performing general purpose computation in graphic
hardware can provide a significant advantage over
implementing on traditional CPUs. By this reason,
employing GPU as a coprocessor to parallel execute the
hot spot of binary code hold a great promise of
substantially reduce the overhead of DBT.

There some issues to be resolved on the march of
efficiently using of GPU to accelerate the process of DBT.
First and the most important issue is to detect the hot
spots of the sequential binary code. This issue is a part
work of binary analysis [4][5], and has achieved much
progress by many frameworks, such as Pin [6],
DynamoRIO [7], and Valgrind [8]. One common
example of hot spot is the heavily executed loops in the
sequential binary code. Through binary analysis,
information such as loop body, loop indices, loop bound
and the dependence relationships can be obtained.
Secondly, with the hot spot and its related information,
we must convert the sequential hot spot into parallel
fashion. With the recent decades, the technique of auto-
parallelization has been significant developed. The
strategy of auto-parallelization based on polyhedral
model [9][10] has been successfully adapted by many
projects for its easily transformable and be able to map
the executable codes to multi-core architectures. Thirdly,
since CPU/GPU based architectures are heterogeneous
platforms, the problem of coordinating the CPU and GPU
and enabling them to cooperate in harmony need to be
resolved. Fourthly, developers are requested to rewrite
the source code. Since traditional compute-intensive Corresponding author: Haibing Guan (hbguan @sjtu.edu.cn)

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2331

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.12.2331-2340

applications are usually developed by common
programming languages, such C and C++, and are
compiled into binary codes that use different ISAs from
the ones of GPUs. It is obliged to rewrite the hot spot of
source binary code, and convert it to the forms of code
that are appropriate executed in GPU. The last issue is
binary incompatibility [11][12]. It is well known that,
GPU hardware are evolving rapidly, this situation poses
the problem that the codes that developed and tuned for
one generation are not compatible with the next
generation. Furthermore, different kinds of GPUs are also
incompatible. In contrast with source code incompatible,
a much tougher problem is binary incompatibility, which
means that the application statically compiled with
certain compiler may not work on the platform without
the special GPU, let alone another kind of or another
generation of GPU.

In order to deal with these issues, we construct and
implement a virtual execution environment (GXBit we
called) aiming at efficiently executing the sequential
binary code in CPU/GPU based architectures. By
employing the strategy of dynamic binary translation as
well as dynamic-static combined binary analysis, GXBit
enables the CPU and GPU to cooperate naturally and
therefore applications can be efficiently executed on them.
The introduction of GXBit will be described in the follow
section.

In this paper, we specifically introduce the core
component on constructing the GXBit—the translation
framework [29]. The framework first transforms the
nested loops within X86 binaries into PTX [13] code,
then ports the generated PTX code to CUDA [14]. PTX
defines a virtual machine and ISA for general purpose
parallel thread execution and could be translated at install
time to the target hardware instruction set. Speedup can
be achieved via launching GPU to execute PTX code
instead of running the corresponding sequential code on
CPU.

The contributions of this paper can be categorized as
follows:

a) A virtual execution environment (GXBit). GXBit
can automatically execute the sequential binary
code on CPU/GPU architectures.

b) A translation framework for GXBit. The
framework can transform the X86 ISA to PTX ISA,
and can also deal with the transfer issue between
CPU memory and GPU memory.

c) An intermediate representation (GVInst). GVInst
brings the gap between sequential code and
parallel code in the process of translation.

II. OVERVIEW OF GXBIT

Before implementing the translation framework, it is
needed to introduce the virtual execution environment
(GXBit) that the translation framework works for.
Actually, GXBit is a DBT system derives from the multi-
sources and multi-targets DBT—Crossbit [28]. However,
there are at least three main differences between GXBit
and Crossbit. First of all, the execution mode of GXBit is
two-phase. The second difference is the parallel parts.

GXBit first extracts the hot spots from source binary code,
and then converts these spots to the form that can be
recognized and be parallel executed by GPU. Finally, the
execution engine of GXBit is also different from
Crossbit’s, because GXBit needs to execute the paralleled
parts on GPU.

Figure 1 is the workflow of GXBit. As the figure
describes, the purpose of the first phase is to extract hot
spots and their related information from source binary
code. Specifically: a) The static analyzer scans the .text
section of the input binary to find out all nested loops
before the partial execution. These loops are recorded as
candidates of hot spots. b) GXBIT starts a partial run for
source binary. During the runtime, profile collector
inserts additional GVInst after each memory access
operation in the VBlocks (the basic translation unit in
GXBit) of every candidate. When the translated code is
being executed on target, all the accessed memory
address can be monitored. c) Once the outmost-level of
the candidate nested loop has been executed, the dynamic
analyzer uses the monitored information to build a
polyhedral model and determines whether the current
nested loop has memory dependences between iterations.
If there is no dependence, this candidate is regarded as a
hot spot and can be parallelized on GPU. d) The
optimizer performs certain optimizations to the VBlocks
of the hot spots according to specific GPU and dumps all
the profiled information and the optimized VBlocks to
files.

In the second phase, GXBit utilizes the information
collected from the first phase to accelerate the execution
of source binary code by porting the hot spots to GPU.
This process can be described as: a) GXBIT loads the
source binary, profiled information and optimized
VBlocks from files, and gets the entry and exit addresses
of the hot spots. b) GXBIT starts a whole execution
procedure to run the source binary. When the execution
flow gets into a hot spot, the parallel translation engine is

Profile
Collector

Static
analyzer

Dynamic
Analyzer

Optimizer

(a) First Execution
Phase

Parallel Translation
Engine

 Hybrid Binary
(X86 + PTX)

Parallel Execution
Engine

Hot
Spots

Related
Info.

Source
Binary

Related
Info.

Hot
Spots

Source Binary

CPU GPU

(b) Second Execution
Phase

Figure 1. The Workflow of GXBit.

2332 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

triggered to transform the optimized VBlocks to PTX
code. Thus forms a hybrid binary, which contains both
x86 binary and PTX intermediate code. c) The parallel
execution engine will let the hybrid binary run on a
CPU/GPU environment, and handle the memory
coherence on both architecture.

III. INTERMEDIATE REPRESENTATIONS

Since raw binary code cannot directly run on GPU, so
it is urgently need to design an intermediate
representation (IR) that can mask the gap between CPU
binary code and GPU’s code. It is well known that the
code to be executed by GPUs is the kernel function, and
the kernel function can be written by CUDA instruction
set architecture called PTX. As an assembly form, PTX
code can be easily transformed from X86 instructions. On
the other hand, the CUDA driver API provides functions
to support both loading and executing the PTX code on
GPU. So we adopt PTX as the target language of our
translation framework. In order to facilitate transforming
the hot spots of the binary code to PTX code, we
introduce an IR layer (GVInst) to our translation
framework.

GVInst is a RISC-like instruction set that provides type
safety, flexibility, low-level operations and the capability
of representing the critical parts of source binary
executable to be translated to the heterogeneous
architectures as well as all needed information.

A. Register Architecture
GVInst defines a general-purpose register architecture

for virtual machine, it consists of 8 32-bit virtual registers
(s0~s7) standing for the 8 general purpose registers in
X86 architecture, 8 double precision floating virtual
register (f0~f7) corresponding to the floating stack of
X86 and infinite 32-bit virtual registers (v0~vn).

B . Addressing Model
GVInst defines RISC style load (LD)/store (ST)

instructions to access memory, and the only addressing
model it supported is displacement. As we known, an
X86 instruction often involves more than one memory
access operations. After decoding to GVInst, both explicit
and implicit memory operations that represented as
LD/ST instructions can be detected.

C. Instruction Format
The basic form of a GVInst instruction is like this:

Optr [.type] Opnd1, Opnd2, [Opnd3], [Opnd4]
Optr tells the function of this instruction. Opnd2,

[Opnd3], [Opnd4] are the source operation number, and
Opnd1is the destination operation number. In GVInst,
most of instructions must have a type field to tell the
operand’s data type corresponding to type-size specifier
on PTX.

As a whole, the instructions in GVInst can be divided
into six categories: state mapping, memory accessing,
data moving, computing, control transferring and
comparing instructions. Table 1 gives the concise
description of these instructions.

The GVInst code is organized in basic block. The term
of basic block here means dynamic basic block, which is
slightly different from the classic definition in compiler: a
basic block is determined by the actual flow of a program
as it is executed. It always begins at the instruction
executed immediately after a branch of jump, follows the
sequential instruction stream, and ends with the next
branch of jump. Since loop test will turn to basic blocks
containing no statements, extract statements from loop
body will be done easily.

IV. THE IMPLEMENTATION OF THE TRANSLATION
FRAMEWORK

As presented in the previous section, in the overall
architecture of GXBit, the translation framework standing
at the point of receiving the marked hot spots and their
related information (written in GVInst), automatically
translating these hot spots to the form of code written in
PTX and launching the underlying GPU to execute the
PTX code. As figure 2 shows, the framework consists of
two parts: the translation module, which automatically

TABLE I.
THE CATEGORIES OF GVINST

Category Example and its semantics
State Map

(GET, PUT)
GET.type v, s ;Maps a source register (s)

to a virtual register (v).

Memory Access
(LD, ST)

LD.type v1, (v2.imm) ;Loads the memory
data (v2.imm) into virtual register (v1).

Data move
(MOV, LI)

LI.type v1, imm ;Stores an immediate
data (imm) to a virtual register (v1).

Computation
(ADD,SUB,MUL,

NOT,AND, …)

ADD.type v1, v2, v3 ;Adds two values in
virtual registers(v2,v3).

Control Transfer
(JMP,BRANCH,

CALL)

JMP V1, imm ;Directly jumps to a
memory location (v1, imm).

Comparison
(CMP)

CMP.type v1,v2,v3,cc ;Compares the two
values(v2, v3) according to the tag (cc),

and stores the result (to V1).

Hot Spots
(GVInst)

Related
Info.

Input File

 Instruction
 Translator

Static
Analyzer

Related
Info.

.ptx File

Initialize
CUDA

Load
Parameters

Launch
GPU

Translation Module GPU Driver Module

Figure 2. The Translation Framework.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2333

© 2011 ACADEMY PUBLISHER

generates PTX file from GVInst; and the GPU driver
module, which ports the generated PTX file to GPU and
returns the results. The following of this section will
describe these components in detail.

A. Translation Module
As a common example of hot spot, in this section, we

choose heavily executed loop as the example to
demonstrate the procedure of the translation framework.
Under this situation, the translation module is responsible
for identifying the parts of nested loops, transforming
them into PTX code and storing them into a .ptx file.

A) Static Analyzer
The static analyzer first identifies and marks various

variables that appear in the loop bodies, then, based on
the marked variables, extracts the parallable parts of loop
body that really be executed in GPU.

a) Identify and Mark Out the Hot Spots Related Variables
It is has to point out that in GVInst only LD and ST

can access memory. We add a filter which is sensitive to
LD and ST to monitor the memory access. Once a
memory access is detected, a variable checking process of
the filter will be triggered. Our framework employs a
simple mechanism to name the variables: 1) loop indices
are marked as i, j, k...; 2) loop bounds are marked using
“bound” prefix, this type of name has an extra field with
a numeric character starting with zero. The value is
incremented each time when a different loop bound is
allocated; 3) other variables are marked using “var”
prefix and also have a numeric field as 2).

Figure 3 shows an example for illustration. As soon as
the filter detects the LD instruction in line 4 of figure 3(a),
the checking process will be trigged. Here s5 stands for
EBP in X86 instruction architecture set. So v29(ox0) is a
memory address based on EBP with an offset of
oxfffffff8. Then we look up the offset value of oxfffffff8
in the variable table, that offered by the input information
file shown in the figure 2, to determine whether it is a
variable. If it is, the codes will be converted to line 5 in
figure 3(b), and the variable is marked as “var1”.

b) Extracting the Statements
The most executed parts of code in loop body should

be extracted and be parallel executed on GPU, we call
these parts of code as statements. Since for-loop occupy
most situations of loops, so in the following we take the
for-loop as the major situation. As described in section 3,
GVInst employs basic blocks as the basic units to
organize its instructions. This feature facilitates the
process of extracting the statements from loop body.
Under the situation of for-loops, loop tests always appear
in the first several basic blocks. This information tells us
that these blocks do not contain statements. Therefore,
after marking the variables, we regard the basic blocks
that only contain loop indices and loop bounds as the
loop test part. Following this, we find loop test parts by
sequentially examining the basic blocks from the
beginning until meet the block with statements. On the
other hand, the instructions behind the last ST instruction
should be neglected. Considering there is no data
dependence in loops, so instructions after the final ST
instruction will not influence the results. Take all the
situations in to account, the statements can be easily be
extracted from the loop body.

B) Translate GVInst to PTX
Prior to introduce the detail of the translation

procedure, it is needed to give an overview of the CUDA
programming model. It abstracts the thread hierarchy as a
grid of cooperative thread arrays (CTAs) which
implement CUDA thread blocks. A CTA is an array of
threads that execute the same code concurrently in a
block. The code to be executed by GPUs is the kernel
function. Threads in a block can efficiently communicate
with each other through the on-chip shared memory.
There is a limitation for the number of threads in a CTA.
CTAs that execute the kernel can be batched together into
a grid of CTAs. Each thread has a unique thread ID to
specify its position is a CTA. In a typical 2D/3D
execution domain, the threads in a block have increasing
thread IDs along the X direction, and the same thread IDs
along the Y and Z directions. Like the thread ID in a CTA,
there are CTA IDs in a grid of CTAs and temporal grid
IDs in grids as well.

The instruction translation module in figure 2 is
responsible for transforming the statements (written in
GVInst) into PTX code. Since the source to be translated
is binary code, complex optimizations due to their high
overhead are unsuitable to our framework. As a
compromise, we introduce a simple strategy that
translates each GVInst instruction to one or more PTX
instructions in the execution sequence.

The following rules are employed to achieve the goal
of translation:

a) Mapping Loop Indices to Thread IDs
Taking two nested loops for example, assume that ‘i’

and ‘j’ are the loop indices. In the CUDA programming
model, ‘i’ can be viewed as the absolute thread ID along
the Y direction, which is equal to
(blockIdx.y*blockDim.y + threadIdx.y) in the CUDA.
Correspondingly, ‘j’ is the absolute thread id along the X

1. GET.s32
2. LI.s32
3. ADD.s32
4. LD.s32

v6, s5
v29, oxfffffff8
v29, v6, v29
v1, v29 (ox0)

5. MOV.s32 var1, v1

(a) Before marking variables.

(b) After marking variables.

Figure 3. Marking variables.

2334 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

direction, which equal to (blockIdx.x * blockDim.x +
threadIdx.x). These values could be presented using
through predefined, read-only special
registers %tid, %ntid, %ctaid, %nctaid, and %gridid [13].
If there is a three nested loops, we can extend this rule
into 3D thread hierarchy.

b) Mapping Mechanism of Virtual Registers and
Variables

We create a one to one mapping table for recording the
register allocation relationship between GVInsts and PTX.
According to PTX ISA manual, registers in PTX may be
typed (signed integer, unsigned integer, floating point,
predicate) or untyped. Register size is also restricted;
aside from predicate registers which are 1-bit, scalar
register have a width of 8-, 16-, 32- , or 64-bits.
Fortunately, our GVInst have defined a field to indicate
the operands’ type-size specifier. We allocate each
variable marked in GVInsts with PTX registers as well.
When translating GVInsts to PTX, we will replace the
virtual registers and variable with corresponding PTX
registers in the mapping table.

c) Transfer Data Values to GPU Memory
Except for loop indices, other variables will transfer

their values by PTX kernel function’s parameters using
CUDA’s global memory. We load each parameter value
to its corresponding register recorded in the mapping
table. In CUDA’s memory hierarchy, the global memory
is accessible by all threads in a context. It is the
mechanism by which different CTAs and different grids
can communicate. Comparing with global memory,
shared memory is a per-CTA region of memory for
threads in a CTA to share data. Although shared memory
is much faster, using shared memory should modify the
construction of the code which is too complex to handle
in binary-level. If all threads could be loaded in one block
(less than 512), we will prefer to choose shared memory.
To take advantage of shared memory, we should modify
the PTX code to ensure that each thread is responsible for
load one element.

d) Wrap the Translated Code as a Kernel Function in
a .ptx File

The translated code should be completed as a function.
In other words, we should complement function heading
for the translated code, including function name and
parameter list. Furthermore, we need to review the
mapping table to statics the registers used in PTX code,
and initialize them at the beginning of the function.

B. GPU Driver Module
The workflow of the translation framework turns to the

active driver module right after the .ptx file is generated.
The GPU driver module is responsible for managing the
execution of ported hot spots on GPU. Since the CUDA
driver API providers a better interface for handling the
assembly-like PTX code than GPU runtime API, our
framework adapts the CUDA driver API to implement

the GPU driver module. The following steps are used to
launch GPU:

A) Initialize CUDA
The purpose of the initialization is to provide an

executable environment for running PTX code. For the
sake of this purpose, cuInit() and cuCtxCreate() must be
called at the first time to initialize the GPU and generate
CUDA context respectively. Then cuModuleLoad() and
cuModuleGetFunction() are used to load .ptx file and
return a function handle. At last, calls cuMenAlloc() to
initialize the memory of GPU, and utilize
cuMemcpyHtoD() to copy the data from CPU memory to
GPU memory. The size of GPU memory to be allocated
can be calculated from the input file of loop information.
As an example, the memory size to be allocated shown in
figure 4 is: width*height*sizeof(float).

B) Load parameters
This step loads the values of formal parameters that

appear in PTX functions. The cuParam*() function family
is used for loading parameters. In the process of
parameter loading, we should consider the following
issues: a) the order of loaded values should be the same
as the order of the PTX functions’ formal parameters. b)
The offset of each parameter should be adjusted to meet
its alignment. c) Since some variables’ value and base
address are directly stored in general purpose registers of
X86 architecture after optimization, so the 8 general
purpose registers should also be loaded as parameters.

C) Launch GPU
At this stage, the first thing is to determine the scale of

the computation, such as determining the number of
threads per block and the number of blocks per grid. The
total number of threads could be calculated by using loop
indices and loop bounds. As an example, the total number
of threads of the for-loop in figure 4 is width*height. The
cuFunSetBlockShape() and cuLaunchGrid() are used to
distribute the GPU computing resources and launch GPU

for (i=0; I < height, i++)
for (j =0; j < width; j++)
{

…
}

Figure 4. An example of for-loop.

cuFuncSetBlockShape (cuFunction, 16, 16, 1);
cuLaunchGrid (cuFunction, (width +dimBlock.x
 – 1) / dimBlock.x, \(height + dimBlock.y – 1) /
dimBlock.y);

Figure 5. Example of setting block and grid with CUDA
driver API.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2335

© 2011 ACADEMY PUBLISHER

to perform computation respectively. Figure 5 shows the
example (appeared in figure 4) of using these API to set
block size and grid size.

The total number of blocks should be the integer times
of 16, this because the number of 16 can increase the
efficiency of GPU memory accessing. Actually, in
CUDA programming model, there are 16 threads in a
half-wrap. Under this situation, only one data transfer
operation is enough to accomplish the task of the 16
threads of a half-wrap to access memory. However, if the
number is not the integer time of 16, the threads that have
been executed will be exceed the number really needed.
To overcome this shortcoming, we insert two exit
instructions into the generated .ptx file, as shown in
figure 6.

When finished running the kernel function on GPU, we
call cuMemcpyDtoH() to return the results back to CPU
memory.

V. PERFORMANCE EVALUATION

This section presents the performance evaluation of the
translation framework. Table 2 shows the hardware and
software configurations of our experimental environment.

We evaluate our translation framework by running 2
applications from CUDA SDK Sample [16] and 2 test
case from Parboil Benchmark Suite [17]. As a whole, we
examine the effectiveness of the translation framework
from two aspects: a) comparing the kernels’ performance

under different environments; b) deploying the translation
framework on a completely virtual execution
environment---GXBit.

A. Evaluating the Performance of Kernels
This experiment examines the effectiveness of our

translation framework by comparing kernels performance
of different programs. We present four experimental
results, the two programs that have been chosen from
CUDA SDK Sample are Matrix Multiplication and
ConvolutionFFT2D, and the other two programs that
have been chosen from Parboil Benchmark Suite are
MRI-FHD and MRI-Q.

 The following tables show the results of running
CUDA SDK Sample programs.

Table 3 shows the performance data of running the
kernel function in Matrix Multiplication with different
input size: 128*128, 512*512, and 1024*1024.

Table 4 shows the results of ConvolutionFFT2D’s
kernel. This application uses Faster Fourier
Transformation (FFT) algorithm to implement a Fourier-
based general 2D convolution, which is more efficient
than the straightforward. Similar to Matrix Multiplication,
we also set three different input data size: 1000*1000,
2000*2000, and 4000*4000.

From the experimental data demonstrated in the above
tables, we can conclude that after transforming the hot
spots to PTX code by the translation framework: a) The
kernel functions achieve consistently much better
performance on GPU than the code directly running on
CPU (the “native” column in the tables). b) The kernel
function that runs on GPU also exhibit better
performance than the ones optimized with –O3 flag (the
“Native-O3” column in the tables). c) The performance of
the experiments exhibits better along with the increasing
input scale of data size.

In the experiment, we also compare the performance of
running two different versions of the generated PTX code
on GPU: the one is generated by our translation
framework, and the other one is generated by NVCC (the
“NVCC” column in the tables). With a tinge of regret,
our translation framework cannot achieve the same
performance as NVCC did. The code form of the input

/***********************************
*Note:
*In this example, we assume that:
* %r2 = blockIdx.y*blockDim.y + threadIdx.y
* %r3 = blockIdx.x*blockDim.x + threadIdx.x
* %r13 = height
* %r14 = width
***********************************/
setp.ge.u32 %p0, %r2, %r13;
@%p0 exit;
setp.ge.u32 %p0, %r3, %r14;
@%p0 exit;

Figure 6. Instructions Added to avoid redundant threads.

TABLE II.
HARDWARE AND SOFTWARE CONFIGURATION DETAILS

A) HARDWARE CONFIGURE

CPU
4 * Intel Xeon 5110 clocked at

1.60Ghz (1066Mhz FSB),
4M L2 cache

RAM 8GB, DDR2-667

GPU

NVIDIA GeForce GTX 260,
896MB DRAM,

27 multiprocessors, clocked at
1243MHz

B) SOFTWARE CONFIGURATION
OS Linux with kernel 2.6.18

Compiler GCC3.4.3
NVCC2.3

CUDA version 2.3

TABLE III.
PERFORMANCE COMPARISON OF MATRIX MULTIPLICATION KERNEL

Matrix Size Native
(ms)

Native –O3
(ms)

Translation
Framework

(ms)

NVCC
(ms)

128*128 31 7 0.44 0.05
512*512 1960 450 21.45 1.61

1024*1024 40620 17400 171.02 12.46

TABLE IV.
PERFORMANCE COMPARISON OF CONVOLUTION FFT2D KERNEL

Image Size Native
(ms)

Native –
O3(ms)

Translation
Framework

(ms)

NVCC
(ms)

1000*1000 1570 290 35.43 1.99
2000*2000 6312 1180 141.12 7.95
4000*4000 25240 4690 563.64 33.24

2336 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

may be the major reason behind this phenomenon. The
input of NVCC is the source code, so the PTX code
generated by NVCC can efficiently utilize the underlying
GPU resources. However, the input of our translation is
binary code. Take this reason in to consideration, we still
satisfy with the results.

We also employed our framework to generate kernels
in Parboil Benchmark Suite: MRI-FHD and MRI-Q.
Table 5 and table 6 show the experimental results of
running these programs. From these experiments we
further prove that the performance our framework works
better than that of the native platforms.

Finally, to better understand the achieved performance
of our translation framework, we present (figure 7) the
comparison of the performance between “native” and
“translation framework” that run hot spots (or kernels)
respectively. The data shown in the figure is derived from
equation (1).

In equation (1), the execution time of native platform
refers to the execution time of hot spots that directly run
on CPU platform; the execution time of our framework
refers to the execution time of hot spots (or kernel
functions written by PTX code) that run on GPU. Since
our translation framework can fully exploit the large-
scale computing ability of GPU (to parallel execute the
hot spots), we gain consistently better performance (up to
hundred times of speed up) over the native platform.

B. The Performance of the Framework in Really
Environment

In order to demonstrate the feasibility of our
translation framework, we evaluate the performance of
deploying the framework on a complete virtual execution
environment---GXBit. As mention in section 2, GXBit is
a virtual execution environment based on CPU/GPU
architectures. It is designed for supporting existed binary
executable written by sequential language to take
advantage of GPU to accelerate the execution of hot spots
automatically. Figure 8 shows the performance of the
programs running on GXBit over the native ones. The y-
axis represents the times of speedups of the programs
beyond native. The times of speedups are derived from
equation (2):

In equation (2), the execution time of native platform

refers to the execution time of applications that directly
run on CPU platform; the execution time of programs
using GXBit refers to the execution time of the
applications that run on CPU/GPU based platform. By
employing our translation framework, GXBit can fully
exploit the large-scale computing ability of GPU. When
an application runs on GXBit, the regular process is
performed by CPU, and the execution will transfer to

TABLE VI.
PERFORMANCE COMPARISON OF CONVOLUTION MRI-Q KERNEL

Input Size Native (ms)
Translation
Framework

(ms)
NVCC (ms)

32 13078 47.86 3.26
64 69912 254.73 11.96

TABLE V.
PERFORMANCE COMPARISON OF CONVOLUTION MRI-FHD KERNEL

Input Size Native (ms)
Translation
Framework

(ms)

NVCC
(ms)

Small
(32_32_32_dataset) 13065 47.97 5.27

Large
(64_64_64_dataset) 70340 255.17 23.09

71.1

44.32

272.35 273.26

91.61

44.73

275.66
274.46

237.52

44.78

0

50

100

150

200

250

300

Matrix
Multi.

FFT2D MRI-FDH MRI-Q

Matrix Multi. 128*128 512*512 1024*1024
FFT2D

MRI-FDH

MRI-Q 6432

LargeSmall

4000*40001000*1000 2000*200
0

Sp
ee

du
p

of
 K

er
ne

l P
er

fo
rm

an
ce

 (t
im

es
)

Figure 7. Performance of the kernels gained by the translation
framework (Compared to Native Platform).

0.07 1.18

15.52

27.44

2.13 1.56

32.41

85.34

18.67

1.69
0

10

20

30

40

50

60

70

80

90

Matrix
Multi.

FFT2D MRI-FDH MRI-Q

Matrix Multi. 128*128 512*512 1024*1024
FFT2D

MRI-FDH

MRI-Q 6432

LargeSmall

4000*40001000*1000 2000*2000

Sp
ee

du
p

B
ey

on
d

N
at

iv
e

(ti
m

es
)

Figure 8. Performance of the programs running on GXBit compared
with running on Native.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2337

© 2011 ACADEMY PUBLISHER

GPU when a parallel hot spot is detected. The execution
will turn back to CPU for the following process right
after the GPU have finished execution the hot spot.

The performance would be promoted when the number
of the speedup is greater than one. As the figure shows,
the performance is improved in most of cases running on
GXBit, except for the Matrix Multiplication with
128*128 input data size. In theory, we can gain much
performance by employing our framework to port the hot
spots to GPU. However, as a virtual execution
environment, the binary-level input nature of GXBit is
one of reason that slows the process of execution.
Additionally, in order to run the applications on
CPU/GPU based architectures, GXBit needs extra
operations to generate hybrid binary code and transfer
data between CPU memory and GPU memory. Therefore,
if the performance we gained from GPU cannot
compensate for the consumed performance of the above
two situations, the overall performance of GXBit would
be degraded. This is the direct reason why the speed of
running Matrix Multiplication with 128*128 input data
size on GXBit is slower than the one running on the
native platform.

Figure 8 also shows that the speedups of running
ConvolutionFFT2D on GXBit are not ideal even close to
the performance of native ones. This because the
improvement gained from GPU is eliminated by the
overhead of binary translation procedure of GXBit of
random initializing the input data array. Actually, GXBit
plays a role of binary translator when executing the
program except for the parts of kernel functions.

VI. RELATED WORKS

The powerful computing ability and the explicit
programming environment of GPU have attracted much
attention on transforming programs written with other
languages to CUDA to obtain more performance
improvements. However, the programming environment
provided by CUDA is different from the traditional ones.
In order to employ the powerful GPU, developers are still
needed to rewrite the source code to bring the gaps
between the architectures of CPUs and GPUs. For the
purpose of avoiding rewrite the source code, many works
have emerged to support the CUDA backend. Baskaran
[18][25] designed and implemented a transforming
framework with an aim to automatically transform affine
C programs into CUDA. Lee [19] also developed a
compiling framework to complete-automatic transform
OpenMP to CUDA. Par4all [20] is a new tool that can
translate C and FORTRAN programs to CUDA to
accelerate to speed of programs executing. For supporting
multi-core architectures, Bondhugula [21] implemented a
framework to automatically generate OpenMP parallel
code from C programs. However, these works are based
on source code and the program analysis techniques
based on source code are so mature that they are easier to
implement. Considering our translation framework is
working on binary-level, so there are many differences
from them.

It is also needed to pay much attention on resolving the
asymmetric issues produced by the heterogeneous
architectures. It is critical to fully utilize the underlying
hardware resources on the march of achieving high
performance. There are many researches on avoiding the
problems caused by asymmetric memory system of the
heterogeneous platforms. Gelado [22] gave an
asymmetric distributed share memory model for
heterogeneous parallel systems. Bratin [23] designed a
programming model for heterogeneous X86 platforms.
Nathan [24] and Scott [26] did the similar things to bring
the gaps of architectures between the accelerators and the
host CPUs. However, both of their works are based on
their special designed hardware. These special hardware-
based interfaces between the bus of host-ends and the
accelerators can avoid the problems brought by the
heterogeneous memory systems. Yang [27] and Baskaran
[15] have derived several methods to resolve the issues of
memory optimizing on CUDA. Most of the above works
are not limited to CPU/GPU architecture, and the inputs
of these platforms are also not limited to binary-level.
However, the ideas and the methods behind them have
given us much help on designing our translation
framework.

VII. CONCLUSIONS

In this paper, we presented a novel translation
framework for constructing the virtual execution
environment with an aim to accelerate the process of
DBT on CPU/GPU based architectures. With the input
information of binary-level hot spots and their related
information, the translation framework can automatically
transform the sequential binary code to PTX code, and
execute them on GPUs. By introducing the intermediate
representation---GVInst, the issues of rewriting source
code and the binary compatibility between different
GPUs were properly resolved. In the process of
translation, by using the mechanisms of identifying and
marking variables, our framework efficiently extracted
the statements from the loop bodies, then translated these
statements into PTX form, and stored them into a .ptx file.
In the stage of launching GPU, we employed CUDA
driver API other than CUDA runtime API on the reason
that the former offers a better level of controlling the
assembly-like PTX code. This API also provides us many
useful functions for resolving the memory management
issue between CPU and GPU. Experiments for
benchmark programs have shown that our translation
framework achieved better performance than the native
ones. Especially, the larger scale of the input data, the
higher performance we gained.

In the future, we will consider the following problems:
a) the translation mechanisms that affect on the
performance should be optimized and be further studied.
b) The issue of GPU memory utilization and computation
workload distribution should be investigated. c)
Extending the framework so as to support the AMD/ATI
stream. Finally, we will improve and perfect the
framework, and enabling it to support “real-life”
situations other than only focusing on benchmarks.

2338 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

ACKNOWLEDGMENT

This work was supported by The National Natural
Science Foundation of China (Grant No. 60970108,
60970107), The Science and Technology Commission of
Shanghai Municipality (Grant No. 09510701600,
10ZR1416400, 10DZ1500200, 10511500102), IBM SUR
Funding and IBM Research-China JP Funding.

REFERENCES

[1] K.Fatahalian, J.Sugerman, and P.Hanrahan,
“Understanding the efficiency of GPU algorithms for
matrix-matrix multiplication”, Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, 2004, pp.133-137.

[2] N.K.Govindaraju, S.Larsen, J.Gray, and D.Manocha, “A
memory model for scientific algorithms on graphics
processors”, Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, 2006.

[3] General-Purpose Computation Using Graphics Hardware.
http://www.gpgpu.org/.

[4] Cristina Cifuentes and K. John Gough, “Decompilation of
Binary Programs”, SOFTWARE: PRACTICE AND
EXPERIENCE, VOL. 25(7), 1995, pp.811-829.

[5] Tipp Moseley, Daniel A. Connors, Dirk Grunwald,
Ramesh Peri, “Identifying potential parallelism via loop-
centric profiling”, Proceedings of the 2007 International
Conference on Computing Frontiers, 2007, pp.143-152.

[6] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, Vijay Janapa Reddi and K.
Hazelwood, “Pin: building customized program analysis
tools with dynamic instrumentation”, Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2005, pp.190-200.

[7] Nicholas Nethercote and Julian Seward, “Valgrind: A
Framework for Heavyweight Dynamic Binary
Instrumentation”, Proceedings of ACM SIGPLAN 2007
Conference on Programming Language Design and
Implementation, 2007, pp.89-100.

[8] Derek Bruening, Timothy Garnett, Saman Amarasinghe,
“An Infrastructure for Adaptive Dynamic Optimization”,
International Symposium on Code Generation and
Optimization, 2003, pp. 265-275.

[9] C. Ancourt and F.Irigoin, “Scanning polyhedral with do
loops”, Symposium on Principles and Practice of Parallel
Programming, 1991, pp.39-50.

[10] U. Bondhugula, A. Hartono, J. Ramanujan, and P.
Sadayappan, “Apractical automatic polyhedral parallelizer
and locality optimizer”, Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design
and implementation, 2008, pp.101-113.

[11] Nathan Clark, “Why Should I Rewrite My Software When
Dynamic Compilation Can Be Good Enough”, Workshop
on Software Tools for Multi-Core Systems, 2008.

[12] Nathan Clark, Jason Bolme, Micheal Chu, Scott Mahlke,
Stuart Biles, and Krisztian Flautner, “An Architecture
Framework for Transparent Instruction Set Customization
in Embedded Processors”, International Symposium on
Computer Architecture, 2005, pp. 272-283.

[13] “PTX: Parallel Thread Execution ISA”, Version 2.1, 2010.
[14] “NVIDIA CUDA Programming Guide”, Version 3.1,

2010.
[15] Muthu Manikandan Baskaran, J. Ramanujan, Sriram

Krishnamoorthy, “Automatic Data Movement and
Computation Mapping for Multi-level Parallel

Architectures with Explicitly Managed Memories”,
Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, 2008,
pp.1-10.

[16] Victor Podlozhnyuk, “FFT-based 2D convolution”,
NVIDIA CUDA Sample Documentation, 2007.

[17] “Parboil benchmarkSuite”,
http://impact.crhc.illinois.edu/parboil.php.

[18] Muthu Manikandan Baskaran, J. Ramanujan, “A
Compiler Framework for Optimization of Affine Loop
Nests for GPGPUs”, Proceedings of the 22nd annual
international conference on Supercomputing, 2008,
pp.225-234.

[19] Seyong Lee, Seung-Jai Min, Rudolf Eigenmann,
“OpenMP to GPGPU: a compiler framework for
automatic translation and optimization”, Proceedings of
the 14th ACM SIGPLAN symposium on Principles and
practice of parallel programming, 2009, pp.101-110.

[20] Par4All, http://www.par4all.org/
[21] Uday Bondhugula, J.Ramanujam, P.Sadayappan, “PLuTo:

A polyhedral automatic parallelizer and locality optimizer
for multicores”, http://pluto-compiler.sourceforge.net.

[22] Isaac Gelado, Javier Cabezas, John Stone, Sanjay Patel,
Nacho Navarro and Wen-mei Hwu, “An Asymmetric
Distributed Shared Memory Model for Heterogeneous
Parallel Systems”, Proceedings of the fifteenth edition of
ASPLOS on Architectural support for programming
languages and operating systems, 2010, pp.347-358.

[23] Bratin Saha, Xiaocheng Zhou, Hu Chen, Ying Gao,
Shoumeng Yan, Mohan Rajagopalan, Jesse Fang, Peinan
Zhang, Ronny Ronen, Avi Mendelson, “Programming
Model for a Heterogeneoous x86 Platform”, Proceedings
of the 2009 ACM SIGPLAN conference on Programming
language design and implementation, 2009, pp.431-440.

[24] Nathan Clark, Amir Hormati, and Scott Mahlke, “VEAL:
Virtualized Execution Accelerator for Loops”, 35th
International Symposium on Computer Architecture
(ISCA), 2008, pp.389-400.

[25] Muthu Manikandan Baskaran, J. Ramanujan and P.
Sadayappan, “Automatic C-to-CUDA Code Generation
for Affine Programs”, 19th International Conference on
Compiler Construction, 2010, pp.244-263.

[26] Hyunchul Park, Yongjun Park, and Scott Mahlke,
“Polymorphic Pipeline Array: A Flexible Multicore
Accelerator with Virtuzlied Execution for Mobile
Multimedia Applications”, Procedings 42nd International
Symposium on Micro architecture, 2009, pp.370-380.

[27] Yi Yang, Ping Xiang, “A GPGPU Compiler for Memory
Optimization an Parallelism Management”, Proceedings
of the 2010 ACM SIGPLAN conference on Programming
language design and implementation, 2010, pp.86-97.

[28] Yindong Yang, Haibing Guan, Erzhou Zhu, Hongbo Yang,
Bo Liu, “CrossBit: A Multi-Sources and Multi-Targets
DBT”, The First International Conference on Cloud
Computing, GRIDs, and Virtualization, 2010, pp.41-47.

[29] Guoxing Dong, Kai Chen, Erzhou Zhu, Yichao Zhang,
Zhengwei Qi and Haibing Guan, “A Translation
Framework for Virtual Execution Environment on
CPU/GPU Architecture”, the Third International
Symposium on Parallel Architectures, Algorithms and
Programming, 2010, pp.130-137.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2339

© 2011 ACADEMY PUBLISHER

Erzhou Zhu is currently a Ph.D student at Shanghai Jiao Tong
University, China. He received the M.S. degree and B.S. degree
in Computer Science and Technology in Anhui University,
Anhui, China, in 2004 and 2008 respectively. His research
interests include virtual machine, binary translation and
computer architecture.

Haibing Guan received his Ph.D. degree in computer science
from the TongJi University (China), in 1999. He is currently a
professor with the Faculty of Computer Science, Shanghai Jiao
Tong University (Shanghai, China). His current research
interests include, but are not limited to, computer architecture,
compiling, virtualization and hardware/software co-design.

Guoxing Dong is currently a Master Degree Candidate student
at Shanghai Jiao Tong University, China. He received the B.S.
degree at Shanghai University in 2008, China. His main

research interests are in binary translation and CPU-GPU Co-
Processing.

Yindong Yang is currently a Ph.D student at Shanghai Jiao
Tong University, China. He received the M.S. degree at School
of Computer, Electronics and Information from Guangxi
University in 2007, China. In 2004 he received his BS degree at
School of Information and Technology from Jiangnan
University, China. His main research interests are in virtual
machines, computer architecture and compiling.

Hongbo Yang is currently a Ph.D. student at Shanghai Jiao
Tong University, China. He received the M.S. degree in 1995
and received his B.S. degree in 1998 at Institute of Airforce
Meteorologyity, China. His main research interests are in virtual
machines, computer architecture and compiling.

2340 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

http://192.168.1.254:8080/index.php/Team_GPU�
http://192.168.1.254:8080/index.php/Team_GPU�

