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Abstract—The method of using DBT (dynamic binary 
translation) to execute the source ISAs binary code on target 
platforms has been perplexed by low overhead for many 
years. GPU as a many-core processor has tremendous 
computational power. Employing GPU as a coprocessor to 
parallel execute the hot spot of binary code hold a great 
promise of substantially reduce the overhead of DBT. This 
paper presents a novel translation framework for 
constructing the virtual execution environment aiming at 
accelerating the process of DBT on CPU/GPU based 
architectures. With parallelizable parts (hot spots) of binary 
code and their related information, the framework converts 
the sequential code into PTX form and executes them on 
GPUs. Under the framework, we need not to rewrite the 
source code, and the binary compatibility issues between 
different GPUs are also resolved properly. Experimental 
results on several programs from CUDA SDK Code 
Samples and Parboil Benchmark Suite show that the 
framework can significantly improve the performance, 
usually have 10X speedup on average compared to X86 
native platforms. Especially, when the scale of input become 
larger, the performance becomes even better. 
 
Index Terms—GPU, Virtual Execution Environment, 
Parallelization, CUDA, Dynamic Binary Translation, PTX 
 

I.  INTRODUCTION 

Dynamic binary translation (DBT) is a commonly used 
technology in virtualization area. It converts binary code 
of one ISA (source binary code) to the binary code of 
another ISA (target binary code) during the runtime. And 
the target code will be executed right after the conversion. 
Performance of DBT system, including the overhead of 
translating procedure and the execution of target code, 
has perplexed the researchers for many years. Many 
optimizations have been used to improve this point, such 
as translation block chaining, form large translation 
blocks (superblocks), reordering translated instructions to 
improve pipeline performance, borrow optimization 
techniques from conventional compilers. In fact, most 
present DBT systems can reduce translating costs into an 
acceptable range. Hence, main attention is laid on 
bringing down the executive time of target code.  

Purely software optimization technique is not ideal for 
improving translation speed, thus software combines 
hardware optimization technique is a good choice. 
Although using the accelerating hardware outside of the 
personal computer could gain good speedup, but modern 
people emphasizing portability, they couldn’t tolerate 
taking the accelerating hardware all the time. So how to 
fully use the inside PC component to accelerate the 
translation process is an inevitable trend.  

The programmability and large-scale computing ability 
of GPU (Graphic Process Unit) has been proved most 
useful in computation-intensive applications, and there 
has been considerable interest in general purpose 
computation on GPUs (GPGPU) [1][2][3]. In many cases, 
performing general purpose computation in graphic 
hardware can provide a significant advantage over 
implementing on traditional CPUs. By this reason, 
employing GPU as a coprocessor to parallel execute the 
hot spot of binary code hold a great promise of 
substantially reduce the overhead of DBT. 

There some issues to be resolved on the march of 
efficiently using of GPU to accelerate the process of DBT. 
First and the most important issue is to detect the hot 
spots of the sequential binary code. This issue is a part 
work of binary analysis [4][5], and has achieved much 
progress by many frameworks, such as Pin [6], 
DynamoRIO [7], and Valgrind [8]. One common 
example of hot spot is the heavily executed loops in the 
sequential binary code. Through binary analysis, 
information such as loop body, loop indices, loop bound 
and the dependence relationships can be obtained. 
Secondly, with the hot spot and its related information, 
we must convert the sequential hot spot into parallel 
fashion. With the recent decades, the technique of auto-
parallelization has been significant developed. The 
strategy of auto-parallelization based on polyhedral 
model [9][10] has been successfully adapted by many 
projects for its easily transformable and be able to map 
the executable codes to multi-core architectures. Thirdly, 
since CPU/GPU based architectures are heterogeneous 
platforms, the problem of coordinating the CPU and GPU 
and enabling them to cooperate in harmony need to be 
resolved. Fourthly, developers are requested to rewrite 
the source code. Since traditional compute-intensive Corresponding author: Haibing Guan (hbguan @sjtu.edu.cn) 
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applications are usually developed by common 
programming languages, such C and C++, and are 
compiled into binary codes that use different ISAs from 
the ones of GPUs. It is obliged to rewrite the hot spot of 
source binary code, and convert it to the forms of code 
that are appropriate executed in GPU. The last issue is 
binary incompatibility [11][12]. It is well known that, 
GPU hardware are evolving rapidly, this situation poses 
the problem that the codes that developed and tuned for 
one generation are not compatible with the next 
generation. Furthermore, different kinds of GPUs are also 
incompatible. In contrast with source code incompatible, 
a much tougher problem is binary incompatibility, which 
means that the application statically compiled with 
certain compiler may not work on the platform without 
the special GPU, let alone another kind of or another 
generation of GPU. 

In order to deal with these issues, we construct and 
implement a virtual execution environment (GXBit we 
called) aiming at efficiently executing the sequential 
binary code in CPU/GPU based architectures. By 
employing the strategy of dynamic binary translation as 
well as dynamic-static combined binary analysis, GXBit 
enables the CPU and GPU to cooperate naturally and 
therefore applications can be efficiently executed on them. 
The introduction of GXBit will be described in the follow 
section.  

In this paper, we specifically introduce the core 
component on constructing the GXBit—the translation 
framework [29]. The framework first transforms the 
nested loops within X86 binaries into PTX [13] code, 
then ports the generated PTX code to CUDA [14]. PTX 
defines a virtual machine and ISA for general purpose 
parallel thread execution and could be translated at install 
time to the target hardware instruction set. Speedup can 
be achieved via launching GPU to execute PTX code 
instead of running the corresponding sequential code on 
CPU.  

The contributions of this paper can be categorized as 
follows: 

a) A virtual execution environment (GXBit). GXBit 
can automatically execute the sequential binary 
code on CPU/GPU architectures. 

b) A translation framework for GXBit. The 
framework can transform the X86 ISA to PTX ISA, 
and can also deal with the transfer issue between 
CPU memory and GPU memory. 

c) An intermediate representation (GVInst). GVInst 
brings the gap between sequential code and 
parallel code in the process of translation.  

II.  OVERVIEW OF GXBIT 

Before implementing the translation framework, it is 
needed to introduce the virtual execution environment 
(GXBit) that the translation framework works for. 
Actually, GXBit is a DBT system derives from the multi-
sources and multi-targets DBT—Crossbit [28]. However, 
there are at least three main differences between GXBit 
and Crossbit. First of all, the execution mode of GXBit is 
two-phase. The second difference is the parallel parts. 

GXBit first extracts the hot spots from source binary code, 
and then converts these spots to the form that can be 
recognized and be parallel executed by GPU. Finally, the 
execution engine of GXBit is also different from 
Crossbit’s, because GXBit needs to execute the paralleled 
parts on GPU. 

Figure 1 is the workflow of GXBit. As the figure 
describes, the purpose of the first phase is to extract hot 
spots and their related information from source binary 
code. Specifically: a) The static analyzer scans the .text 
section of the input binary to find out all nested loops 
before the partial execution. These loops are recorded as 
candidates of hot spots. b) GXBIT starts a partial run for 
source binary. During the runtime, profile collector 
inserts additional GVInst after each memory access 
operation in the VBlocks (the basic translation unit in 
GXBit) of every candidate. When the translated code is 
being executed on target, all the accessed memory 
address can be monitored. c) Once the outmost-level of 
the candidate nested loop has been executed, the dynamic 
analyzer uses the monitored information to build a 
polyhedral model and determines whether the current 
nested loop has memory dependences between iterations. 
If there is no dependence, this candidate is regarded as a 
hot spot and can be parallelized on GPU. d) The 
optimizer performs certain optimizations to the VBlocks 
of the hot spots according to specific GPU and dumps all 
the profiled information and the optimized VBlocks to 
files. 

In the second phase, GXBit utilizes the information 
collected from the first phase to accelerate the execution 
of source binary code by porting the hot spots to GPU. 
This process can be described as: a) GXBIT loads the 
source binary, profiled information and optimized 
VBlocks from files, and gets the entry and exit addresses 
of the hot spots. b) GXBIT starts a whole execution 
procedure to run the source binary. When the execution 
flow gets into a hot spot, the parallel translation engine is 
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Figure 1. The Workflow of GXBit.    
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triggered to transform the optimized VBlocks to PTX 
code. Thus forms a hybrid binary, which contains both 
x86 binary and PTX intermediate code. c) The parallel 
execution engine will let the hybrid binary run on a 
CPU/GPU environment, and handle the memory 
coherence on both architecture. 

III.  INTERMEDIATE REPRESENTATIONS 

Since raw binary code cannot directly run on GPU, so 
it is urgently need to design an intermediate 
representation (IR) that can mask the gap between CPU 
binary code and GPU’s code. It is well known that the 
code to be executed by GPUs is the kernel function, and 
the kernel function can be written by CUDA instruction 
set architecture called PTX. As an assembly form, PTX 
code can be easily transformed from X86 instructions. On 
the other hand, the CUDA driver API provides functions 
to support both loading and executing the PTX code on 
GPU. So we adopt PTX as the target language of our 
translation framework. In order to facilitate transforming 
the hot spots of the binary code to PTX code, we 
introduce an IR layer (GVInst) to our translation 
framework. 

GVInst is a RISC-like instruction set that provides type 
safety, flexibility, low-level operations and the capability 
of representing the critical parts of source binary 
executable to be translated to the heterogeneous 
architectures as well as all needed information.  

A.  Register Architecture 
GVInst defines a general-purpose register architecture 

for virtual machine, it consists of 8 32-bit virtual registers 
(s0~s7) standing for the 8 general purpose registers in 
X86 architecture, 8 double precision floating virtual 
register (f0~f7) corresponding to the floating stack of 
X86 and infinite 32-bit virtual registers (v0~vn). 

B . Addressing Model 
GVInst defines RISC style load (LD)/store (ST) 

instructions to access memory, and the only addressing 
model it supported is displacement. As we known, an 
X86 instruction often involves more than one memory 
access operations. After decoding to GVInst, both explicit 
and implicit memory operations that represented as 
LD/ST instructions can be detected. 

C.  Instruction Format 
The basic form of a GVInst instruction is like this: 

Optr [.type] Opnd1, Opnd2, [Opnd3], [Opnd4] 
Optr tells the function of this instruction. Opnd2, 

[Opnd3], [Opnd4] are the source operation number, and 
Opnd1is the destination operation number. In GVInst, 
most of instructions must have a type field to tell the 
operand’s data type corresponding to type-size specifier 
on PTX. 

As a whole, the instructions in GVInst can be divided 
into six categories: state mapping, memory accessing, 
data moving, computing, control transferring and 
comparing instructions. Table 1 gives the concise 
description of these instructions. 

The GVInst code is organized in basic block. The term 
of basic block here means dynamic basic block, which is 
slightly different from the classic definition in compiler: a 
basic block is determined by the actual flow of a program 
as it is executed. It always begins at the instruction 
executed immediately after a branch of jump, follows the 
sequential instruction stream, and ends with the next 
branch of jump. Since loop test will turn to basic blocks 
containing no statements, extract statements from loop 
body will be done easily. 

IV.  THE IMPLEMENTATION OF THE TRANSLATION 
FRAMEWORK 

As presented in the previous section, in the overall 
architecture of GXBit, the translation framework standing 
at the point of receiving the marked hot spots and their 
related information (written in GVInst), automatically 
translating these hot spots to the form of code written in 
PTX and launching the underlying GPU to execute the 
PTX code. As figure 2 shows, the framework consists of 
two parts: the translation module, which automatically 

TABLE I.   
THE CATEGORIES OF GVINST 

Category Example and its semantics 
State Map 

(GET, PUT) 
GET.type v, s ;Maps a source register (s) 

to a virtual register (v). 

Memory Access 
(LD, ST) 

LD.type v1, (v2.imm) ;Loads the memory 
data (v2.imm) into virtual register (v1). 

Data move 
(MOV, LI) 

LI.type v1, imm ;Stores an immediate 
data (imm) to a virtual register (v1). 

Computation 
(ADD,SUB,MUL, 

NOT,AND, …) 

ADD.type v1, v2, v3 ;Adds two values in 
virtual registers(v2,v3). 

Control Transfer 
(JMP,BRANCH, 

CALL) 

JMP V1, imm ;Directly jumps to a 
memory location (v1, imm ). 

Comparison 
(CMP) 

CMP.type v1,v2,v3,cc ;Compares the two 
values(v2, v3) according to the tag (cc), 

and stores the result (to V1). 
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Figure 2. The Translation Framework. 
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generates PTX file from GVInst; and the GPU driver 
module, which ports the generated PTX file to GPU and 
returns the results. The following of this section will 
describe these components in detail. 

A. Translation Module 
As a common example of hot spot, in this section, we 

choose heavily executed loop as the example to 
demonstrate the procedure of the translation framework. 
Under this situation, the translation module is responsible 
for identifying the parts of nested loops, transforming 
them into PTX code and storing them into a .ptx file. 

A)  Static Analyzer  
The static analyzer first identifies and marks various 

variables that appear in the loop bodies, then, based on 
the marked variables, extracts the parallable parts of loop 
body that really be executed in GPU. 

a) Identify and Mark Out the Hot Spots Related Variables 
It is has to point out that in GVInst only LD and ST 

can access memory. We add a filter which is sensitive to 
LD and ST to monitor the memory access. Once a 
memory access is detected, a variable checking process of 
the filter will be triggered. Our framework employs a 
simple mechanism to name the variables: 1) loop indices 
are marked as i, j, k...; 2) loop bounds are marked using 
“bound” prefix, this type of name has an extra field with 
a numeric character starting with zero. The value is 
incremented each time when a different loop bound is 
allocated; 3) other variables are marked using “var” 
prefix and also have a numeric field as 2). 

Figure 3 shows an example for illustration. As soon as 
the filter detects the LD instruction in line 4 of figure 3(a), 
the checking process will be trigged. Here s5 stands for 
EBP in X86 instruction architecture set. So v29(ox0) is a 
memory address based on EBP with an offset of 
oxfffffff8. Then we look up the offset value of oxfffffff8 
in the variable table, that offered by the input information 
file shown in the figure 2, to determine whether it is a 
variable. If it is, the codes will be converted to line 5 in 
figure 3(b), and the variable is marked as “var1”. 

b) Extracting the Statements 
The most executed parts of code in loop body should 

be extracted and be parallel executed on GPU, we call 
these parts of code as statements. Since for-loop occupy 
most situations of loops, so in the following we take the 
for-loop as the major situation. As described in section 3, 
GVInst employs basic blocks as the basic units to 
organize its instructions. This feature facilitates the 
process of extracting the statements from loop body. 
Under the situation of for-loops, loop tests always appear 
in the first several basic blocks. This information tells us 
that these blocks do not contain statements. Therefore, 
after marking the variables, we regard the basic blocks 
that only contain loop indices and loop bounds as the 
loop test part. Following this, we find loop test parts by 
sequentially examining the basic blocks from the 
beginning until meet the block with statements. On the 
other hand, the instructions behind the last ST instruction 
should be neglected. Considering there is no data 
dependence in loops, so instructions after the final ST 
instruction will not influence the results. Take all the 
situations in to account, the statements can be easily be 
extracted from the loop body. 

B)  Translate GVInst to PTX 
Prior to introduce the detail of the translation 

procedure, it is needed to give an overview of the CUDA 
programming model. It abstracts the thread hierarchy as a 
grid of cooperative thread arrays (CTAs) which 
implement CUDA thread blocks. A CTA is an array of 
threads that execute the same code concurrently in a 
block. The code to be executed by GPUs is the kernel 
function. Threads in a block can efficiently communicate 
with each other through the on-chip shared memory. 
There is a limitation for the number of threads in a CTA. 
CTAs that execute the kernel can be batched together into 
a grid of CTAs. Each thread has a unique thread ID to 
specify its position is a CTA. In a typical 2D/3D 
execution domain, the threads in a block have increasing 
thread IDs along the X direction, and the same thread IDs 
along the Y and Z directions. Like the thread ID in a CTA, 
there are CTA IDs in a grid of CTAs and temporal grid 
IDs in grids as well. 

The instruction translation module in figure 2 is 
responsible for transforming the statements (written in 
GVInst) into PTX code. Since the source to be translated 
is binary code, complex optimizations due to their high 
overhead are unsuitable to our framework. As a 
compromise, we introduce a simple strategy that 
translates each GVInst instruction to one or more PTX 
instructions in the execution sequence. 

The following rules are employed to achieve the goal 
of translation: 

a)  Mapping Loop Indices to Thread IDs 
Taking two nested loops for example, assume that ‘i’ 

and ‘j’ are the loop indices. In the CUDA programming 
model, ‘i’ can be viewed as the absolute thread ID along 
the Y direction, which is equal to 
(blockIdx.y*blockDim.y + threadIdx.y) in the CUDA. 
Correspondingly, ‘j’ is the absolute thread id along the X 

1. GET.s32  
2. LI.s32    
3. ADD.s32 
4. LD.s32   

v6, s5 
v29, oxfffffff8 
v29, v6, v29 
v1, v29 (ox0) 

5. MOV.s32   var1, v1 

(a) Before marking variables. 

(b) After marking variables. 

Figure 3. Marking variables. 
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direction, which equal to (blockIdx.x * blockDim.x + 
threadIdx.x). These values could be presented using 
through predefined, read-only special 
registers %tid, %ntid, %ctaid, %nctaid, and %gridid [13]. 
If there is a three nested loops, we can extend this rule 
into 3D thread hierarchy. 

b) Mapping Mechanism of Virtual Registers and 
Variables 

We create a one to one mapping table for recording the 
register allocation relationship between GVInsts and PTX. 
According to PTX ISA manual, registers in PTX may be 
typed (signed integer, unsigned integer, floating point, 
predicate) or untyped. Register size is also restricted; 
aside from predicate registers which are 1-bit, scalar 
register have a width of 8-, 16-, 32- , or 64-bits. 
Fortunately, our GVInst have defined a field to indicate 
the operands’ type-size specifier. We allocate each 
variable marked in GVInsts with PTX registers as well. 
When translating GVInsts to PTX, we will replace the 
virtual registers and variable with corresponding PTX 
registers in the mapping table. 

c)  Transfer Data Values to GPU Memory 
Except for loop indices, other variables will transfer 

their values by PTX kernel function’s parameters using 
CUDA’s global memory. We load each parameter value 
to its corresponding register recorded in the mapping 
table. In CUDA’s memory hierarchy, the global memory 
is accessible by all threads in a context. It is the 
mechanism by which different CTAs and different grids 
can communicate. Comparing with global memory, 
shared memory is a per-CTA region of memory for 
threads in a CTA to share data. Although shared memory 
is much faster, using shared memory should modify the 
construction of the code which is too complex to handle 
in binary-level. If all threads could be loaded in one block 
(less than 512), we will prefer to choose shared memory. 
To take advantage of shared memory, we should modify 
the PTX code to ensure that each thread is responsible for 
load one element. 

d)  Wrap the Translated Code as a Kernel Function in 
a .ptx File 

The translated code should be completed as a function. 
In other words, we should complement function heading 
for the translated code, including function name and 
parameter list. Furthermore, we need to review the 
mapping table to statics the registers used in PTX code, 
and initialize them at the beginning of the function. 

B.  GPU Driver Module 
The workflow of the translation framework turns to the 

active driver module right after the .ptx file is generated. 
The GPU driver module is responsible for managing the 
execution of ported hot spots on GPU. Since the CUDA 
driver API providers a better interface for handling the 
assembly-like PTX code than GPU runtime API, our 
framework adapts the CUDA driver API to implement 

the GPU driver module. The following steps are used to 
launch GPU: 

A)  Initialize CUDA 
The purpose of the initialization is to provide an 

executable environment for running PTX code. For the 
sake of this purpose, cuInit() and cuCtxCreate() must be 
called at the first time to initialize the GPU and generate 
CUDA context respectively. Then cuModuleLoad() and 
cuModuleGetFunction() are used to load .ptx file and 
return a function handle. At last, calls cuMenAlloc() to 
initialize the memory of GPU, and utilize 
cuMemcpyHtoD() to copy the data from CPU memory to 
GPU memory. The size of GPU memory to be allocated 
can be calculated from the input file of loop information. 
As an example, the memory size to be allocated shown in 
figure 4 is: width*height*sizeof(float). 

B)  Load parameters 
This step loads the values of formal parameters that 

appear in PTX functions. The cuParam*() function family 
is used for loading parameters. In the process of 
parameter loading, we should consider the following 
issues: a) the order of loaded values should be the same 
as the order of the PTX functions’ formal parameters. b) 
The offset of each parameter should be adjusted to meet 
its alignment. c) Since some variables’ value and base 
address are directly stored in general purpose registers of 
X86 architecture after optimization, so the 8 general 
purpose registers should also be loaded as parameters. 

C)  Launch GPU 
At this stage, the first thing is to determine the scale of 

the computation, such as determining the number of 
threads per block and the number of blocks per grid. The 
total number of threads could be calculated by using loop 
indices and loop bounds. As an example, the total number 
of threads of the for-loop in figure 4 is width*height. The 
cuFunSetBlockShape() and cuLaunchGrid() are used to 
distribute the GPU computing resources and launch GPU 

for (i=0; I < height, i++) 
for (j =0; j < width; j++) 
{ 

… 
} 

Figure 4. An example of for-loop. 

cuFuncSetBlockShape ( cuFunction, 16, 16, 1 ); 
cuLaunchGrid ( cuFunction, ( width +dimBlock.x 
 – 1 ) / dimBlock.x, \( height + dimBlock.y – 1 ) / 
dimBlock.y ); 

Figure 5. Example of setting block and grid with CUDA  
driver API. 
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to perform computation respectively. Figure 5 shows the 
example (appeared in figure 4) of using these API to set 
block size and grid size.  

The total number of blocks should be the integer times 
of 16, this because the number of 16 can increase the 
efficiency of GPU memory accessing. Actually, in 
CUDA programming model, there are 16 threads in a 
half-wrap. Under this situation, only one data transfer 
operation is enough to accomplish the task of the 16 
threads of a half-wrap to access memory. However, if the 
number is not the integer time of 16, the threads that have 
been executed will be exceed the number really needed. 
To overcome this shortcoming, we insert two exit 
instructions into the generated .ptx file, as shown in 
figure 6. 

When finished running the kernel function on GPU, we 
call cuMemcpyDtoH() to return the results back to CPU 
memory. 

V.  PERFORMANCE EVALUATION 

This section presents the performance evaluation of the 
translation framework. Table 2 shows the hardware and 
software configurations of our experimental environment. 

We evaluate our translation framework by running 2 
applications from CUDA SDK Sample [16] and 2 test 
case from Parboil Benchmark Suite [17]. As a whole, we 
examine the effectiveness of the translation framework 
from two aspects: a) comparing the kernels’ performance 

under different environments; b) deploying the translation 
framework on a completely virtual execution 
environment---GXBit. 

A.  Evaluating the Performance of Kernels 
This experiment examines the effectiveness of our 

translation framework by comparing kernels performance 
of different programs. We present four experimental 
results, the two programs that have been chosen from 
CUDA SDK Sample are Matrix Multiplication and 
ConvolutionFFT2D, and the other two programs that 
have been chosen from Parboil Benchmark Suite are 
MRI-FHD and MRI-Q.  

   The following tables show the results of running 
CUDA SDK Sample programs. 

Table 3 shows the performance data of running the 
kernel function in Matrix Multiplication with different 
input size: 128*128, 512*512, and 1024*1024. 

Table 4 shows the results of ConvolutionFFT2D’s 
kernel. This application uses Faster Fourier 
Transformation (FFT) algorithm to implement a Fourier-
based general 2D convolution, which is more efficient 
than the straightforward. Similar to Matrix Multiplication, 
we also set three different input data size: 1000*1000, 
2000*2000, and 4000*4000. 

From the experimental data demonstrated in the above 
tables, we can conclude that after transforming the hot 
spots to PTX code by the translation framework: a) The 
kernel functions achieve consistently much better 
performance on GPU than the code directly running on 
CPU (the “native” column in the tables). b) The kernel 
function that runs on GPU also exhibit better 
performance than the ones optimized with –O3 flag (the 
“Native-O3” column in the tables). c) The performance of 
the experiments exhibits better along with the increasing 
input scale of data size. 

In the experiment, we also compare the performance of 
running two different versions of the generated PTX code 
on GPU: the one is generated by our translation 
framework, and the other one is generated by NVCC (the 
“NVCC” column in the tables). With a tinge of regret, 
our translation framework cannot achieve the same 
performance as NVCC did. The code form of the input 

/*********************************** 
*Note: 
*In this example, we assume that: 
* %r2 = blockIdx.y*blockDim.y + threadIdx.y 
* %r3 = blockIdx.x*blockDim.x + threadIdx.x 
* %r13 = height 
* %r14 = width 
***********************************/ 
setp.ge.u32 %p0, %r2, %r13; 
@%p0 exit; 
setp.ge.u32 %p0, %r3, %r14; 
@%p0 exit; 

Figure 6. Instructions Added to avoid redundant threads. 

TABLE II. 
HARDWARE AND SOFTWARE CONFIGURATION DETAILS  

A) HARDWARE CONFIGURE 

CPU 
4 * Intel Xeon 5110 clocked at 

1.60Ghz (1066Mhz FSB), 
4M L2 cache 

RAM 8GB, DDR2-667 

GPU 

NVIDIA GeForce GTX 260, 
896MB DRAM, 

27 multiprocessors, clocked at 
1243MHz 

B) SOFTWARE CONFIGURATION 
OS Linux with kernel 2.6.18 

Compiler GCC3.4.3 
NVCC2.3 

CUDA version 2.3 

 

TABLE III.  
PERFORMANCE COMPARISON OF MATRIX MULTIPLICATION KERNEL 

Matrix Size Native 
(ms) 

Native –O3 
(ms) 

Translation 
Framework 

(ms) 

NVCC 
(ms) 

128*128 31 7 0.44 0.05 
512*512 1960 450 21.45 1.61 

1024*1024 40620 17400 171.02 12.46 
 

TABLE IV.  
PERFORMANCE COMPARISON OF CONVOLUTION FFT2D KERNEL 

Image Size Native 
(ms) 

Native –
O3(ms) 

Translation 
Framework 

(ms) 

NVCC 
(ms) 

1000*1000 1570 290 35.43 1.99 
2000*2000 6312 1180 141.12 7.95 
4000*4000 25240 4690 563.64 33.24 
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may be the major reason behind this phenomenon. The 
input of NVCC is the source code, so the PTX code 
generated by NVCC can efficiently utilize the underlying 
GPU resources. However, the input of our translation is 
binary code. Take this reason in to consideration, we still 
satisfy with the results. 

We also employed our framework to generate kernels 
in Parboil Benchmark Suite: MRI-FHD and MRI-Q. 
Table 5 and table 6 show the experimental results of 
running these programs. From these experiments we 
further prove that the performance our framework works 
better than that of the native platforms. 

Finally, to better understand the achieved performance 
of our translation framework, we present (figure 7) the 
comparison of the performance between “native” and 
“translation framework” that run hot spots (or kernels) 
respectively. The data shown in the figure is derived from 
equation (1). 

In equation (1), the execution time of native platform 
refers to the execution time of hot spots that directly run 
on CPU platform; the execution time of our framework 
refers to the execution time of hot spots (or kernel 
functions written by PTX code) that run on GPU. Since 
our translation framework can fully exploit the large-
scale computing ability of GPU (to parallel execute the 
hot spots), we gain consistently better performance (up to 
hundred times of speed up) over the native platform. 

B.  The Performance of the Framework in Really 
Environment 

In order to demonstrate the feasibility of our 
translation framework, we evaluate the performance of 
deploying the framework on a complete virtual execution 
environment---GXBit. As mention in section 2, GXBit is 
a virtual execution environment based on CPU/GPU 
architectures. It is designed for supporting existed binary 
executable written by sequential language to take 
advantage of GPU to accelerate the execution of hot spots 
automatically. Figure 8 shows the performance of the 
programs running on GXBit over the native ones. The y-
axis represents the times of speedups of the programs 
beyond native. The times of speedups are derived from 
equation (2): 

 
In equation (2), the execution time of native platform 

refers to the execution time of applications that directly 
run on CPU platform; the execution time of programs 
using GXBit refers to the execution time of the 
applications that run on CPU/GPU based platform. By 
employing our translation framework, GXBit can fully 
exploit the large-scale computing ability of GPU. When 
an application runs on GXBit, the regular process is 
performed by CPU, and the execution will transfer to 

TABLE VI.  
PERFORMANCE COMPARISON OF CONVOLUTION MRI-Q KERNEL 

Input Size Native (ms) 
Translation 
Framework     

(ms) 
NVCC (ms) 

32 13078 47.86 3.26 
64 69912 254.73 11.96 

 

TABLE V.  
PERFORMANCE COMPARISON OF CONVOLUTION MRI-FHD KERNEL 

Input Size Native (ms) 
Translation 
Framework     

(ms) 

NVCC 
(ms) 

Small 
(32_32_32_dataset) 13065 47.97 5.27 

Large 
(64_64_64_dataset) 70340 255.17 23.09 
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Figure 7. Performance of  the kernels gained by the     translation 
framework (Compared to Native Platform).
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GPU when a parallel hot spot is detected. The execution 
will turn back to CPU for the following process right 
after the GPU have finished execution the hot spot. 

The performance would be promoted when the number 
of the speedup is greater than one. As the figure shows, 
the performance is improved in most of cases running on 
GXBit, except for the Matrix Multiplication with 
128*128 input data size. In theory, we can gain much 
performance by employing our framework to port the hot 
spots to GPU. However, as a virtual execution 
environment, the binary-level input nature of GXBit is 
one of reason that slows the process of execution. 
Additionally, in order to run the applications on 
CPU/GPU based architectures, GXBit needs extra 
operations to generate hybrid binary code and transfer 
data between CPU memory and GPU memory. Therefore, 
if the performance we gained from GPU cannot 
compensate for the consumed performance of the above 
two situations, the overall performance of GXBit would 
be degraded. This is the direct reason why the speed of 
running Matrix Multiplication with 128*128 input data 
size on GXBit is slower than the one running on the 
native platform.  

Figure 8 also shows that the speedups of running 
ConvolutionFFT2D on GXBit are not ideal even close to 
the performance of native ones. This because the 
improvement gained from GPU is eliminated by the 
overhead of binary translation procedure of GXBit of 
random initializing the input data array. Actually, GXBit 
plays a role of binary translator when executing the 
program except for the parts of kernel functions.  

VI.  RELATED  WORKS 

The powerful computing ability and the explicit 
programming environment of GPU have attracted much 
attention on transforming programs written with other 
languages to CUDA to obtain more performance 
improvements. However, the programming environment 
provided by CUDA is different from the traditional ones. 
In order to employ the powerful GPU, developers are still 
needed to rewrite the source code to bring the gaps 
between the architectures of CPUs and GPUs. For the 
purpose of avoiding rewrite the source code, many works 
have emerged to support the CUDA backend. Baskaran 
[18][25] designed and implemented a transforming 
framework with an aim to automatically transform affine 
C programs into CUDA. Lee [19] also developed a 
compiling framework to complete-automatic transform 
OpenMP to CUDA. Par4all [20] is a new tool that can 
translate C and FORTRAN programs to CUDA to 
accelerate to speed of programs executing. For supporting 
multi-core architectures, Bondhugula [21] implemented a 
framework to automatically generate OpenMP parallel 
code from C programs. However, these works are based 
on source code and the program analysis techniques 
based on source code are so mature that they are easier to 
implement. Considering our translation framework is 
working on binary-level, so there are many differences 
from them.  

It is also needed to pay much attention on resolving the 
asymmetric issues produced by the heterogeneous 
architectures. It is critical to fully utilize the underlying 
hardware resources on the march of achieving high 
performance. There are many researches on avoiding the 
problems caused by asymmetric memory system of the 
heterogeneous platforms. Gelado [22] gave an 
asymmetric distributed share memory model for 
heterogeneous parallel systems. Bratin [23] designed a 
programming model for heterogeneous X86 platforms. 
Nathan [24] and Scott [26] did the similar things to bring 
the gaps of architectures between the accelerators and the 
host CPUs. However, both of their works are based on 
their special designed hardware. These special hardware-
based interfaces between the bus of host-ends and the 
accelerators can avoid the problems brought by the 
heterogeneous memory systems. Yang [27] and Baskaran 
[15] have derived several methods to resolve the issues of 
memory optimizing on CUDA. Most of the above works 
are not limited to CPU/GPU architecture, and the inputs 
of these platforms are also not limited to binary-level. 
However, the ideas and the methods behind them have 
given us much help on designing our translation 
framework. 

VII.  CONCLUSIONS 

In this paper, we presented a novel translation 
framework for constructing the virtual execution 
environment with an aim to accelerate the process of 
DBT on CPU/GPU based architectures. With the input 
information of binary-level hot spots and their related 
information, the translation framework can automatically 
transform the sequential binary code to PTX code, and 
execute them on GPUs. By introducing the intermediate 
representation---GVInst, the issues of rewriting source 
code and the binary compatibility between different 
GPUs were properly resolved. In the process of 
translation, by using the mechanisms of identifying and 
marking variables, our framework efficiently extracted 
the statements from the loop bodies, then translated these 
statements into PTX form, and stored them into a .ptx file. 
In the stage of launching GPU, we employed CUDA 
driver API other than CUDA runtime API on the reason 
that the former offers a better level of controlling the 
assembly-like PTX code. This API also provides us many 
useful functions for resolving the memory management 
issue between CPU and GPU. Experiments for 
benchmark programs have shown that our translation 
framework achieved better performance than the native 
ones. Especially, the larger scale of the input data, the 
higher performance we gained.  

In the future, we will consider the following problems: 
a) the translation mechanisms that affect on the 
performance should be optimized and be further studied. 
b) The issue of GPU memory utilization and computation 
workload distribution should be investigated. c) 
Extending the framework so as to support the AMD/ATI 
stream. Finally, we will improve and perfect the 
framework, and enabling it to support “real-life” 
situations other than only focusing on benchmarks. 
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