
Automatic Detection to the Behavioral Conflict in
AOP Application Based on Design by Contract

Chengwan He 1, 2

1 Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology
2 School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China

Email: hechengwan@hotmail.com

Zheng Li
School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China

Email:lzjsj2008@163.com

Abstract—Behavioral conflict is one of the key issues in the
practical application of AOP (Aspect-Oriented
Programming) technology. Based on the ideas of design by
contract and behavioral subtyping, we propose an approach
that detects the behavioral conflict automatically at runtime.
Use Java annotation to describe the contracts of the base
program and aspect code, then extract these contracts
through the contract transformation program, and convert
them to the assertion verification program, consequently it
achieves automatic detection to the behavioral conflict at
runtime.

Index Terms—AOP (Aspect-Oriented Programming),
behavioral conflict, design by contract, behavioral
subtyping, assertion verification

I. INTRODUCTION

Aspect-Oriented Programming [1][2] approach makes
many different concerns independent mutually, such as
functional and non-functional requirements of the
software system, platform performance and so on,
achieving a better modularization. It is considered as a
necessary complementarity to the Object-Oriented
technology. Generally speaking, the Aspect-Oriented
software is composed of two parts: base program to
implement the system’s functions and aspect to
implement the cross-cutting concerns. An aspect also
consists of two parts: pointcut and advice. A pointcut is a
set of join points where an advice should be executed. An
advice is code that is executed when a join point is
reached. AspectJ [3] and Aspectwerkz [4] are AOP
languages used widely now.

At present, the Aspect-Oriented technology is well
along toward the practicality. However, it faces a key
issue in the practical application: behavioral conflict.
Behavioral conflict is also known as the semantic conflict
of aspect composition [5][6]. Such conflicts may occur at
the following cases: i) Originally, the program is able to
run correctly, but it won’t run properly after weaving the
aspects; ii) Multiple aspects are woven into a shared join
point in different orders, it may give rise to a conflict; iii)
It is a mutex relationship between two aspects, which can
not be woven into the base program at the same time, and

so on. Behavioral conflict of aspect composition may
occur between aspect and base program, or between two
aspects.

Although the behavioral conflict can be detected, to
some extent, in the testing phase of software, testing can
detect errors in the program only, however, it can not
guarantee that there are no errors existed. That is,
software testing cannot detect all of the behavioral
conflicts. Moreover, the error locating of the software
testing becomes very complicated, due to the separation
and encapsulation of the cross-cutting concerns in the
AOP system. Therefore, we believe that although
software testing is an effective means to guarantee that
the program satisfies the user's requirements, it is not
entirely suitable for detection to the behavioral conflicts
among aspects.

With the expansion of the software’s scale, as well as
the increase in the number of aspects, using manual
methods to control the right composition between the
aspect and base program produces errors easily, or even
impossible. Thus, methods and tools are needed urgently
to detect such conflicts automatically.

Design By Contract [7][8][9] is used in a very wide
range in the field of the Object-Oriented applications,
which guarantees the correctness of a method’s behavior
by specifying the pre-condition, post-condition and
invariants. At the same time, it can accurately specify
where the program violates the contracts.

Behavioral Subtyping [10][11] presents a subtyping
relationship, it takes such relationship into consideration
not only from structure but from behavior. For example,
Class C1 includes the method A, and C2 inherits C1, if
the instance of C1 can be replaced by C2’s, thus C2 is
called as behavioral subtyping of C1. In other words,
assuming that R1 and E1 respectively represent the pre-
condition and post-condition of method A in the super
Class C1, while R2 and E2 respectively represent the pre-
condition and post-condition of method A in the sub-
Class C2, so they meet the logical relationship as follows:
(R1→R2)∧(R1→ (E2→ E1)).That is, the pre-condition
of the method A in the sub-class C2 becomes weaker,
while the post-condition becomes stronger.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2255

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.11.2255-2262

This paper presents an approach, based on design by
contract and behavioral subtyping, to detect behavioral
conflicts. It uses Java annotation [12] to describe the
contracts, then extracts these contracts through the
contract transformation program, and converts them to
the assertion verification program, consequently
achieving automatic detection to the behavioral conflict at
runtime.

This paper first introduces the behavioral conflict as
well as the related work, and then it elaborates the
automatic detection approach based on design by contract
and behavioral subtyping and its implementation
algorithm. Finally, it explains effectiveness of the
approach through an example.

II. DESCRIPTION OF THE PROBLEM AND RELATED WORK

A. Description of The Problem
Behavioral conflict is also known as the semantic

conflict of aspect composition. It mainly represents that
the program is able to run correctly, but it won’t run
properly after weaving the aspects. Next, we cite the
example (Fig. 1) in reference [6] to illustrate this problem.

Fig. 1 represents a jukebox system, if a song is selected

in the JukeboxUI, the method play is called in the
Jukebox, then this method calls the play method in Player
which is connected to the audio subsystem. Now we add
a new requirement to this system which states that check
whether the user has enough credits before calling the
play method. If there are enough credits, withdraw one
credit for calling the play method each time.

In Fig. 2, the left shows the base program while the

right shows the aspect code (using AspectJ language).
Assuming that the system requires that it should play 10

songs at least before adding this requirement, while
currently the user’s credits are less than 10, so it will not
be able to satisfy the original requirements of the system
after adding this requirement (weaving CreditsAspect),
namely, the program can’t run correctly after weaving
this aspect. In other words, there is a conflict existed
between the CreditsAspect and the base program.

B. Related Work
Reference [13] puts forward an approach based on the

behavior subtyping to deal with contract checking
(mainly contracts in the methods of a class or interface)
after inheriting classes and interfaces in the object-
oriented programming. It points out that contract
checking tools should report the following three kinds of
errors: pre-condition errors, post-condition errors as well
as contract inheritance errors. Moreover, it states that,
without the last kind of errors, contract checking tools
will assign blame incorrectly for some contract violations,
and sometimes it even can’t detect certain contract
violations.

Reference [14] extends JML (Java Modeling
Language), proposes and realizes a kind of contract
description language, Pipa, which is suitable for AOP
system. Namely, description methods of the pre-
conditions, post-conditions and invariants in the advice of
aspect. In order to use some support tools of JML, Pipa
transforms AOP program and its contract description to
Java code and its corresponding contract description. So
it doesn’t focus on resolving automatic detection to the
behavioral conflict in aspect composition.

Reference [15] applies DBC to AOP, shows
corresponding execution sequences of aspects and the
assertions (contracts) they should follow, and introduces
CONA used to DBC in AOP. It extracts the contracts of
aspect, then generates a new aspect through CONA’s
processing, to check the contracts. But it is not intended
to detect the behavioral conflict in aspect composition.

Reference [5] proposes a model-based method for the
conflict detection, it extracts the related information
between the Aspect and Class from the UML model in
the Aspect-Oriented software, and analyzes the potential
conflicts among aspects based on these information.
However, it can only detect the conflicts among aspects
acted on a shared join point.

Reference [6] proposes a detection model of semantic
conflict, based on the composition filter model, which
transforms the semantics of filter operations to the
resource operations. The needed behaviors (semantics)
can be specified by patterns which are used to operate the
resources. In order to detect conflicts, the pattern, used to
identify the error operations, must be existed. By
analyzing all of the advice acted on a shared join point, it
detects conflicts based on sequences of the resource
operations. However, it needs to add annotations to all
advice using the resource-operation specification. And
this approach can also only detect the conflicts among
aspects acted on a shared join point.

Reference [16] analyzes execution sequences and their
dependence of multiple aspects acted on a shared join
point, on this basis, identifies a set of requirements upon

class Jukebox{
…
public void play(Song song){

Player p = new Player() ;
p.play(file) ;

}
…

}

aspect CreditsAspect {
 before (): call (public void Jukebox.play (Song)) {

 if (Credits.instance ().enoughCredits()) {
 Credits.instance ().withdraw ();
 System.out.println(“Ok! Begin playing…”);
 }

else {
 throw new NotEnoughCreditsException ();

 } }
}
Figure 2．Definition of Jukebox class and CreditsAspect

2256 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

mechanisms for composing aspects at a shared join point,
and proposes a model based on contracts. The model is
used to define contracts specification upon all possible
compositions of aspects acted on a shared join point, and
detects the possible existed conflicts at runtime. By
extending the notion of join points, the proposed model is
adopted by AspectJ and Compose*.

Reference [17] proposes a reflective multi-level
framework developed for the construction of aspect-
oriented applications, which includes a component, the
Conflict Manager, which manages and solves the
conflicts generated by interaction of multiple aspects at
runtime according to the information specified by the
application developer. In addition, it introduces a visual
tool, Alpheus, which supports the specification of all the
components of an application (such as basic objects,
aspects etc) as well as the associations and conflicts
between the components. Moreover, it can generate the
corresponding Java code of the application, and it
provides the visualization of different UML diagrams to
aid the development process. As a result, aspect-oriented
applications are easy to specify and implement.

In summary, behavioral conflict in AOP has aroused
widespread attention and produced some research
achievements. However, most studies still have some
shortcomings, which haven’t solved this problem
essentially. For example, it not only needs to solve
conflicts which may arise among aspects, but also those
may occur between aspects and the base program. In
addition, it is necessary to consider that multiple aspects
acted on a shared join point as well as acted on different
join points.

III. AUTOMATIC DETECTION TO THE BEHAVIORAL
CONFLICT BASED ON DESIGN BY CONTRACT AND

BEHAVIORAL SUBTYPING

The basic idea of this approach is: apply concepts of
design by contract and behavioral subtyping to the
Aspect-Oriented software, which uses Java annotation to
describe contracts in the base program and aspects,
considering the program as super type before weaving a
certain aspect, the woven program as a subtype. If they
meet the conditions of the behavioral subtyping (pre-
condition becomes weaker while post-condition becomes
stronger), consequently, we can ensure the correctness of
the program’s behaviors after weaving aspects, so as to
achieve the automatic detection to the behavioral conflict
among aspects.

For the automatic detection to the behavioral conflict
in the aspect composition, we use the following flow as
shown in Fig. 3. Firstly, according to the inheritance
(including Class, Interface, Aspect inheritance) and the
weaving relationship between the aspects (including
weaving sequence, weaving type), extract the contract
description in source code and transform them into the
assertion verification program through the contract
transformation program, then generate the byte code of
Java by the AOP compiler. Consequently automatic
detection to the behavioral conflict is achieved at runtime.

A. Description of Contracts
 Java annotation is a mechanism to describe the

metadata, which is introduced by JDK1.5 and its later
versions. We use annotation to describe pre-conditions
and post-conditions of the base program and aspect code,
and the annotation is defined as shown in Fig. 4.

In Fig. 4, @retention indicates that how long
annotations with the annotated type are to be retained.
RetentionPolicy.RUNTIME means that annotations are to
be recorded in the class file by the compiler and retained
by the VM at runtime, so they may be read reflectively.
@pre, @post, the declared types of annotation, can be
used to describe pre-conditions, post-conditions of
methods and aspects, as shown in Fig. 5.

Next, we discuss respectively detection to the
behavioral conflict after weaving before advice, after
advice into the base program.

B. Weaving Before Advice
Fig. 6 describes the base program and aspect code

annotated by the contracts.

AOP program annotated by
contracts

Object files including the
assertion verification program

Executed results and contract
checking (behavioral conflict)

AOP program annotated by
contracts and assertion

Contract transformation program

AOP compiler

Java execution tools

Figure 3. Automatic detection flow of the behavioral conflict

@Retention(RetentionPolicy.RUNTIME)
public @interface pre {
 String value() default"";
 }

@Retention(RetentionPolicy.RUNTIME)
public @interface post {
 String value() default"";
 }

Figure 4. Definition of the annotation

Class Compute{
@pre(“x>=0 ”)
double sqrt(double x){

… }
}

aspect beforeCallCompute {

@pre（“a>=0”）
@post（“a>=0”）
before(double a):call(double
Compute.sqrt(double))&&args(a){

… }
}

Figure 5. Usage of the annotation

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2257

© 2011 ACADEMY PUBLISHER

If considering the program as super type before
weaving a certain aspect, the woven program as a subtype,
so the relationship between them is shown in Fig. 7.

 In order to guarantee correctness of the program’s

behavior, the contracts, needed to be satisfied before and
after weaving aspects, are shown in Table I. abef

pre denotes
that pre-conditions of before advice in aspect code; abef

post
denotes that post-conditions of before advice in aspect
code; mpre denotes that pre-conditions of the method m;
mpost denotes that post-conditions of the method m; A→B
denotes that if A then B holds true.

In Table I, the first column lists the contracts which
need to be met before weaving aspect into the base
program, namely, pre-conditions and post-conditions of
the method m; the second column lists the contracts
(according to the order） which need to be checked after
weaving aspect into the base program. Considering the
program as super type before weaving aspect, the woven
program as a subtype, when checking these contracts, it
requires that the program before and after weaving aspect,
satisfies the conditions of behavioral subtyping. Thus,
after weaving before advice, pre-conditions of the
program become weaker, namely, mpre → abef

pre .

TABLE I.

CONTRACTS NEED TO BE SATISFIED BEFORE AND AFTER WEAVING
ASPECT (BEFORE ADVICE) INTO THE BASE PROGRAM

Contracts before
weaving aspect

Contracts after
weaving aspect

mpre
mpost

abef
pre

mpre → abef
pre

abef
post

abef
post→ mpre

mpre
mpost

After weaving aspect, according to the contract
transformation program, convert the above contracts to
the assertion verification program as shown in Fig. 8.

C. Weaving After Advice
Weaving after advice is basically similar to weaving

before advice. Their differences mainly lie in the
contracts to be satisfied after weaving aspect. The base
program and aspect code annotated by contracts are
shown in the following Fig. 9.

The relationship between the program before and after
weaving the aspect (after advice) is shown in Fig. 10.

Class C{
@pre(“m’s pre-condition ”)
@post(“m’s post-condition”)
void m(int a){ … }

}

aspect beforeCallm{

@pre（“before advice’s pre-condition”）
@post（“before advice’s post-condition”）
before(int a):call(void C.m(int))&&args(a){
… }

}
Figure 6. Base program and aspect (before advice)

annotated by annotation

Class Contract_Before{
if(!abef

pre) { //check the pre-condition of before advice
System.out.println(“violate the pre-condition of before
advice !”);
return aspName; }

// check the pre-condition of behavioral subtyping
if(mpre!=null && abef

pre !=null){ // both are not empty
 if (!mpre || abef

pre) return true; // mpre → abef
pre

 else{
 System.out.println(“violate the pre-condition of behavioral

subtyping!”);
 return aspName; } }

if(!abef
post) { // check the post-condition of before advice

System.out.println(“violate the post-condition of before
advice!”);
return aspName; }

// check whether weaving aspect breaks pre-condition of the
method m

if(abef
post!=null && mpre!=null){ // both are not empty

if (!abef
post || mpre) return true; // abef

post → mpre
 else{
 System.out.println(“weaving aspect breaks pre-condition of the

method m!”);
 return aspName; } }

if(!mpre) { // check the pre-condition of the method m
System.out.println(“violate the pre-condition of the method
m!”);
return callerName; }

if(!mpost) { // check the post-condition of the method m
System.out.println(“violate the post-condition of the method
m!”);
return calleeName; }

}

Figure 8. Assertion verification program after weaving before advice

Class C{
@pre(“m’s pre-condition ”)
@post(“m’s post-condition”)
void m(int a){ … }

}
aspect afterCallm{

@pre（“after advice’s pre-condition”）
@post（“after advice’s post-condition”）
after(C c, int a):call(void C.m(int))&& target(c)
&& args(a){
… } }

Figure 9. Base program and aspect (after advice)

annotated by annotation

2258 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

In order to guarantee that the program executes

correctly, the contracts, needed to be satisfied before and
after weaving aspects, are shown in Table II. The
meaning, indicated by mpre, mpost, →, is similar to the
above description. aaft

pre denotes that pre-conditions of after
advice in aspect code while a aft

post denotes that post-
conditions of after advice in aspect code.

In Table II, the first column is same to Table I; the
second column lists the contracts (according to the
order） which need to be checked after weaving aspect
(after advice) into the base program. According to the
conditions of behavioral subtyping, post-conditions of the
program become stronger after weaving after advice,
namely, aaft

post → mpost.

TABLE II.

 CONTRACTS NEED TO BE SATISFIED BEFORE AND AFTER WEAVING
ASPECT (AFTER ADVICE) INTO THE BASE PROGRAM

Contracts before
weaving aspect

Contracts after
weaving aspect

mpre
mpost

mpre
mpost
mpost → aaft

pre
aaft

pre
aaft

post
aaft

post → mpost

After weaving aspect (after advice), detection flow of
the above contracts is similar to weaving before advice.
The transformed assertion verification program is shown
in Fig. 11.

D. Weaving Before Advice and After Advice
Aspect definition contains both before advice and after

advice, which can be regarded as combination of weaving
before advice and after advice into the base program
simultaneously. The base program and aspect code
annotated by annotation are shown in Fig. 12.

The relationship between before and after weaving the

aspect (before advice and after advice) into the base
program is shown in Fig. 13.

Class Contract_After{
if(!mpre) { // check the pre-condition of the method m

System.out.println(“violate the pre-condition of the
method m!”);
return callerName; }

if(!mpost) { // check the post-condition of the method m
System.out.println(“violate the post-condition of the
method m!”);
return calleeName; }

// check whether weaving aspect breaks post-condition of the
method m

if(mpost!=null && aaft
pre!=null){ // both are not empty

 if (!mpost | | aaft
pre) return true; // mpost → aaft

pre
 else{
 System.out.println(“weaving aspect breaks post-condition

of the method m!”);
 return aspName; } }

if(!aaft
pre) { // check the pre-condition of after advice

System.out.println(“violate the pre-condition of after
advice!”);
return aspName; }

if(!aaft
post) { // check the post-condition of after advice

System.out.println(“violate the post-condition of after
advice!”);
return aspName; }

// check the post-condition of behavioral subtyping
if(aaft

post !=null && mpost !=null){ // both are not empty
if (!aaft

post|| mpost) return true; // aaft
post→ mpost

 else{
 System.out.println(“violate the post-condition of

behavioral subtyping!”);
 return aspName; }
}

Figure 11. Assertion verification program after weaving after

advice

Class C{
@pre(“m’s pre-condition ”)
@post(“m’s post-condition”)
void m(int a){
…
}

}
Aspect Callm{

@pre（“before advice’s pre-condition”）
@post（“before advice’s post-condition”）
before(int a):call(void C.m(int))&&args(a){
… }

@pre（“after advice’s pre-condition”）
@post（“after advice’s post-condition”）
after(C c, int a):call(void C.m(int))&& target(c)
&& args(a){
… }

}

Figure 12. Base program and aspect (before advice
and after advice) annotated by annotation

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2259

© 2011 ACADEMY PUBLISHER

In order to guarantee that running results of the

program satisfy the requirements, the contracts, needed to
be satisfied before and after weaving aspects, are shown
in Table III. In Table III, the first column is same to
Table I and Table II, and the second column is the
combination of them. According to the conditions of
behavioral subtyping, after weaving before advice and
after advice into the base program simultaneously, pre-
conditions of the program become weaker while post-
conditions become stronger.

TABLE III.

 CONTRACTS NEED TO BE SATISFIED BEFORE AND AFTER WEAVING
ASPECTS INTO THE BASE PROGRAM

Contracts before
weaving aspect

Contracts after
weaving aspect

mpre
mpost

abef
pre

mpre → abef
pre

abef
post

abef
post → mpre

mpre
mpost
mpost → aaft

pre
aaft

pre
aaft

post
aaft

post → mpost

After weaving aspect (before advice and after advice),

detection flow of the above contracts is similar to
weaving before advice. The transformed assertion
verification program is shown in Fig. 14.

What described above is that a single aspect acts on a
certain method (join point) of the base program, for
multiple aspects acted on a shared join point, in AspectJ,
through introducing the statement of declare precedence,
to specify the execution priority of advice acting on a
shared join point, according to the priority level, weaving
aspect one by one is similar to weaving a single aspect.

IV. TRANSFORMATION OF THE VERIFICATION PROGRAM

This section describes transformation algorithm of the
assertion verification (contract checking) program. Take
weaving before advice as an example, a specific
transformation algorithm is shown in listing 1.

Class Contract_Both{
if(!abef

pre) { //check the pre-condition of before advice
System.out.println(“violate the pre-condition of before
advice !”);
return aspName; }

// check the pre-condition of behavioral subtyping
if(mpre!=null && abef

pre !=null){ // both are not empty
 if (!mpre || abef

pre) return true; // mpre → abef
pre

 else{
 System.out.println(“violate the pre-condition of behavioral

subtyping!”);
 return aspName; } }

if(!abef
post) { // check the post-condition of before advice

System.out.println(“violate the post-condition of before
advice!”);
return aspName; }

// check whether weaving aspect breaks pre-condition of the
method m
if(abef

post!=null && mpre!=null){ // both are not empty
if (!abef

post || mpre) return true; // abef
post → mpre

 else{
 System.out.println(“weaving aspect breaks pre-condition

of the method m!”);
 return aspName; } }

if(!mpre) { // check the pre-condition of the method m
System.out.println(“violate the pre-condition of the
method m!”);
return callerName; }

if(!mpost) { // check the post-condition of the method m
System.out.println(“violate the post-condition of the
method m!”);
return calleeName; }

// check whether weaving aspect breaks post-condition of
the method m

if(mpost!=null && aaft
pre!=null){ // both are not empty

 if (!mpost | | aaft
pre) return true; // mpost → aaft

pre
 else{
 System.out.println(“weaving aspect breaks post-

condition of the method m!”);
 return aspName; } }

if(!aaft
pre) { // check the pre-condition of after advice

System.out.println(“violate the pre-condition of after
advice!”);
return aspName; }

if(!aaft
post) { // check the post-condition of after advice

System.out.println(“violate the post-condition of after
advice!”);
return aspName; }

// check the post-condition of behavioral subtyping
if(aaft

post !=null && mpost !=null){ // both are not empty
if (!aaft

post|| mpost) return true; // aaft
post→ mpost

 else{
 System.out.println(“violate the post-condition of

behavioral subtyping!”);
 return aspName; }

}

Figure 14. Assertion verification program after weaving before
advice and after advice

2260 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

For weaving multiple aspects, first it needs to confirm

the amount of aspect and their execution priority,
according to the priority level to weave the corresponding
aspect. Detection flow of the contracts and the
transformation algorithm are similar to weaving a single
aspect. It is important to note that when program checks
the contracts of weaving aspect i, firstly it needs to judge
the weaving type of aspect i-1. Different weaving types
may result in changes of different conditions (contracts)
in the base program.

V. AN EXAMPLE

Take the program shown in Fig. 2 as an example, after
adding the requirement of checking credits, because the
system requires that it should play 10 songs at least
before weaving Creditsaspect, so pre-condition of the
method play (Song) in Jukebox is: user’s credits are
larger than or equal 10, while the post-condition is: user’s
credits are larger than or equal 0. Aspect Creditsaspect is
used to check whether the user has enough credits,
therefore, its post-condition is: user’s credits are larger
than or equal 0. Jukebox class and Creditsaspect, both
annotated by annotation, are shown in Fig. 15.

According to the contract transformation algorithm
(listing 1) after weaving aspect, converting contracts of
the base program (Jukebox Class) and aspect code
(Creditsaspect), the generated assertion verification
program is shown in listing 2. It checks the pre-condition
of Creditsaspect in line 3, which is empty, so it returns
true directly. Then it checks the pre-condition of
behavioral subtyping in line 5, in this example, the pre-
condition of Creditsaspect is empty while the play
method’s pre-condition is not empty, so it returns true
directly. In lines 7-9, check the post-condition of
Creditsaspect, if it isn’t satisfied, print the related
information and return name of the woven aspect; In lines
12-16, it checks whether weaving Creditsaspect breaks
the pre-condition of method play; In lines 18-20, check
the pre-condition of method play, if it isn’t satisfied,
return name of the caller’s method; Finally, in lines 22-24,
check the post-condition of method play, if it isn’t
satisfied, return name of the callee.

1. Extract contracts description of the base program (classes) and
aspect code (advice);

2. Output the code to check whether the pre-condition abef
pre of the aspect

is satisfied;
3. Output the code to check whether the pre-condition (!mpre || abef

pre)of
behavioral subtyping is satisfied;
3.1 Output the code to check whether the pre-condition (mpre) of

method is empty or the aspect’s (abef
pre) is empty;

3.2 Output the processing code when one of them is empty;
3.3 Output the processing code when both are empty;
3.4 Output the processing code when both are not empty;

4. Output the code to check whether the post-condition abef
post of the

aspect is satisfied;
5 Output the code to check whether weaving aspect breaks pre-

condition of the method m, namely, whether the condition (!abef
post ||

mpre) is satisfied;
5.1 Output the code to check whether the post-condition (abef

post)of
aspect is empty or pre-condition (mpre) of the method is
empty;

5.2 Output the processing code when one of them is empty;
5.3 Output the processing code when both are empty;
5.4 Output the processing code when both are not empty;

6 Output the code to check whether the pre-condition mpre of the
method m is satisfied;

7 Output the code to check whether the post-condition mpost of the
method m is satisfied.

Listing 1. Contract transformation algorithm after weaving before

advice

1. Class Contract_before{
2. // check the pre-condition of Creditsaspect (is empty)
3. return true;
4 .// check the pre-condition of behavioral subtyping
5. return true;
6. // check the post-condition of Creditsaspect
7. if(Credits<0){
8. System.out.println(”violate post-condition of Creditsaspect!”);
9. return aspName;
10. }
11. // check whether weaving Creditsaspect breaks pre-condition of the

method play
12. if(Credits<0 || Credits>=10)
13. return true;
14. else{
15. System.out.println(”Weaving Creditsaspect breaks pre-condition of the

method play!”);
16. return aspName;
17. }
18. if(Credits<10){ // check the pre-condition of the method play
19. System.out.println(“violate pre-condition of the method play!”);
20. return callerName;
21. }
22. if(Credits<0){ // check the post-condition of the method play
23. System.out.println(“violate post-condition of the method play!”);
24. return methodName;
25. } }

Listing 2. Generated assertion verification program after transformation

class Jukebox{
…

 @pre(“credits>=10”)
 @post(“credits>=0 ”)

public void play(Song song){
Player p = new Player();
p.play(file);

}
…

}
aspect CreditsAspect {

@post(“credits>=0 ”)
 before (): call (public void Jukebox.play (Song)) {
 if (Credits.instance ().enoughCredits()) {
 Credits.instance ().withdraw ();
 System.out.println(“Ok! Begin playing…”); }

else {
 throw new NotEnoughCreditsException (); } }

}

Figure 15. Annotated Jukebox class and Creditsaspect

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2261

© 2011 ACADEMY PUBLISHER

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes an approach of automatic
detection, based on design by contract and behavioral
subtyping, to solve the behavioral conflict in AOP
application. This approach has the following
characteristics:

 Based on ideas of design by Contract and
behavioral subtyping, it achieves automatic
detection to the behavioral conflict in aspect
composition at runtime, and provides
safeguard for security composition of the
aspects and it is also benefit for building the
trusted aspect-oriented software.

 The approach uses Java annotation to describe
the contracts in the base program and aspect
code, then converts these contracts to the
assertion verification program to check
whether the program violates the related
contracts, consequently achieving automatic
detection to the behavioral conflict at runtime.

Our future work will concentrate on: contract checking
after weaving around advice, description and verification
of the aspects’ invariants, etc.

ACKNOWLEDGMENT

This research project was supported by the National
Natural Science Foundation of China under Grant No.
60873024, Provincial Natural Science Foundation of
Hubei under Grant No.2009CDB293.

REFERENCES

[1] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C.,
Lopes, C., Loingtier, J., Irwin, J.: Aspect oriented
programming. In: Proceedings of ECOOP'97. Number
1241 in Lecture Notes in Computer Science, Springer
Verlag (1997) 220-242.

[2] Chengwan He, Zheng Li, Keqing He. Towards Trusted
Aspect Composition. In: Proceedings of 2008 International
Conference on Computer Science and Software
Engineering. Volume , Issue , 8-11 July 2008 Page(s):643
– 648.

[3] AspectJ team. The AspectJTM Programming Guide. 2003.
HUhttp://eclipse.org/Aspectj/UH.

[4] Jonas Boner, Alexandre Vasseur. Aspectwerkz
Documentation. HUhttp://Aspectwerkz.codehaus.org/UH.

[5] F. Tessier, M. Badri, L. Badri. A Model-Based Detection
of Conflicts Between Crosscutting Concerns: Towards a
Formal Approach. In International Workshop on Aspect-
Oriented Software Development, Peking University,
China,September 2004

[6] Pascal Durr, Tom Staijen, Lodewijk Bergmans, Mehmet
Aksit. Reasoning About Semantic Conflicts Between
Aspects. In:EIWAS 2005: 2nd European Interactive
Workshop on Aspects in Software.

[7] Richard Mitchell and Jim McKim. Design by Contract by
Example. Addison-Wesley, Boston, 2002.

[8] B. Meyer. “Design by Contract.”in Advances in Object-
Oriented Software Engineering, D. Mandrioli and B.
Meyer, eds. Prentice Hall, Englewnod Cliffs, N.J. 1991,
pp.1-50.

[9] Bertrand Meyer. Applying “design by contract”. IEEE
Computer Society Press, 1992, Volume25, Issue10, Pages:
40-51.

[10] G. T. Leavens and D. A. Naumann. Behavioral subtyping,
specification inheritance and modular reasoning. Technical
Report 06-20a, Department of Computer Science, Iowa
State University, Ames, Iowa, 50011, Aug. 2006. URL
HUftp://ftp.cs.iastate.edu/pub/techreports/TR0620/TR.pdf
UH.

[11] Barbara H. Liskov and Jeannette M. Wing. A behavioral
notion of subtyping. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(6):1811–1841,
1994.

[12] Java Software. Annotations.
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotati
ons.html.

[13] Robert Bruce Findler, Mario Latendresse, Matthias
Felleisen. Behavioral Contracts and Behavioral Subtyping.
Foundations of Software Engineering, FSE 2001.pp.229-
236.

[14] Jianjun Zhao, Martin Rinard. Pipa: A Behavioral Interface
Specification Language for AspectJ. 6th International
Conference, FASE 2003.

[15] David H.Lorenz, Therapon Skotiniotis. Extending Design
by Contract for Aspect-Oriented Programming.
arXiv:cs/0501070v1 [cs.SE] 24 Jan,2005.

[16] Istvan Nagy, Lodewijk Bergmans, Mehmet Aksit.
Composing Aspects at Shared Join Points. Workshop AID
in 20th. ECOOP. France, 2006.

[17] Jane L. Pryor and Claudia Marcos. Solving Conflicts in
Aspect-Oriented Applications. In: Proceedings of the
Fourth ASSE. 32 JAIIO. Argentina. 2003.

Chengwan He, born in 1967. In 1997, he received master's

degree in Information Engineering of Hokkaido University in
Japan. In 2005, he received doctor's degree in Computer
Software and Theory of State key laboratory of Software
Engineering, Wuhan University, China. He does postdoctoral
research in School of Electronic Information, Wuhan University.
His current research interests include theory and application of
software engineering, knowledge discovery and data mining,
intelligent network and software engineering.

 Zheng Li, born in 1984.She is studying for a master's degree
and her research area is software engineering.

2262 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

