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Abstract—Tasks scheduling is a key problem in multi-agent 
system, traditional tasks scheduling methods can’t be 
applied to new application areas of the MAS such as 
emergency system. In order to apply the Agent method to 
these new areas, a multi-agent system model is built in this 
paper, and corresponding task schedulable problem and 
maximum scheduling problem are defined based on this 
multi-agent system model. Task schedulable problem is 
modeled using flow network, and it is proved that maximum 
flow algorithm can be used to solve such problem, which 
means the problem can be solved in polynomial time. 
Furthermore, by analyzing the flow network model, a 
necessary and sufficient condition which can be used to 
determine whether tasks can be scheduled is gained and 
proved. Three approximation algorithms have been 
proposed to solve the maximum scheduling problem. The 
experiment results show that all above algorithms can get 
pretty solutions in solving maximum scheduling problem, 
and the approximation ratio for optimal solution of these 
approximation algorithms are all larger than or equal to 0.5 
even though the resource ratio is very low. 
 
Index Terms—task scheduling, task schedulable problem, 
maximum task scheduling problem, MAS, flow network, NP 
complete 

I.  INTRODUCTION 

Multi-Agent system (MAS) is composed of a number 
of autonomous units named agent which can interact with 
each other to improve the problem-solving ability of the 
overall system which greater than simple addition of 
problem-solving ability of single agent. MAS is an open 
system, and the change of external environment may 
continually generate new tasks. However, single Agent 
has limited capability to get solution about information 
and problem. At this time, multiple Agents are needed to 
complete these tasks by collaboration. Therefore, task 
scheduling problem is a key problem in MAS. An 
effective task scheduling method is necessary for MAS to 
accomplish the tasks with high efficiency. Recent years 
have seen a lot of work on task scheduling methods, 
which can be broadly classified as follow: (1) task 
scheduling based on auction protocol [1, 2]; (2) Coalition 
formation methods [3, 4]; (4) Distributed task scheduling 
methods [5, 6]; (5) Decision theory based methods [7, 8];  

(6) Manisterski et al. [9] discusses the possibilities of 
achieving efficient allocations in both cooperative and 
non-cooperative settings. They propose a centralized 
algorithm to find the optimal solution. 

All of above works have improved the efficiency and 
have enriched the theory of MAS. However, these works 
can’t be used in many new applications of MAS such as 
Emergency system [10] etc. The reasons are: (1) in these 
applications all agents must mandatory executing tasks 
allocated by distributor, and the agent’s local goal must 
not conflict with the distributor’s global goal. However, 
above task scheduling methods such as auction based 
ones suppose that the agents are selfish, and have high 
degree of autonomy, so they would not execute the tasks 
if the distributor doesn’t offer payment they expected. (2) 
Situation is urgency and tasks should be accomplished as 
soon as possible in above applications. However, task 
allocation of most above works is decentralized, and the 
task scheduling process is carried out by negotiating 
between agents, and the task scheduling process will be 
uncertainty and time-consuming, which cannot satisfy the 
requirements of timely task allocation in urgency 
situation of above application of MAS. 

In order to make MAS suitable for above applications, 
we construct a MAS model based on the characteristics of 
the Emergency system, and then define task schedulable 
problem and maximum task scheduling problem in 
section 2. In section 3, we prove that task schedulable 
problem can be solved in polynomial time. Furthermore, 
we construct flow network based on the instance of task 
schedulable problem to show that the maximum flow 
algorithm can be used to solve the problem. We discuss 
the maximum task scheduling problem in section 4, we 
prove the problem to be NP complete by reducing X3C 
problem to it in polynomial time. In section 6, we 
propose three approximation algorithm (named Increased 
Greedy Algorithm, IGA; Decreased Greedy Algorithm, 
DGA; Iterative Minimum Cost Algorithm, IMCA) to 
solve the maximum task scheduling problem. We also do 
experiment to verify the performance of above algorithms 
in this section, and conclude our work at the last section. 

II.  PROBLEM DESCRIPTION 

A.  Multi-agent System Model 
In this section, we design a MAS model according to 

characteristics of emergency system, C3I system etc. As 
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we can see from figure 1, the model includes a task 
manager, task interface layer, task schedule layer, and 
resource layer. Task manager is responsible for 
monitoring the overall system, and intervene the system 
when necessary who can receives the tasks from 
customers, and translates them into a certain format the 
system can understand. 

The task interface layer comprised of task matching 
model, task template library. Task template library is 
used to store task templates which is a role set that 
complete corresponding tasks, and a task matching 
module which responsible for searching task templates in 
template library according to the task arrive at the system. 
The advantage of the mechanism is simple, fast and 
efficient, which can prettily instead of traditional task 
decomposition process and satisfy requirements of 
emergency systems. 

Task scheduling layer includes resource discovery 
module, scheduling module, and role set. The role is 
equivalent to a sub-task which can be used to restraint the 
agent’s actions. For example, if an agent plays the role of 
fire-fighting, it can only fight fire, and can not carry the 
wounded and other rescue tasks. Resource discovery 
module can find agents required to accomplish tasks in 
accordance with relationships between roles and agents, 
and send the information about these agents to the 
scheduling module. When the scheduling module 
received the information, it can easily schedule agents to 
execute tasks arrive at the system by scheduling 
algorithm. The algorithm and role enable the system to 
accomplish tasks effectively and possesses strong 
exception handling capability. 

 
Figure 1.  Multi-agent system mode 

Resource layer includes a resource manager, and all 
agents that form the multi-agent system. Resource 
manager monitor the agent’s action in system, and 
register the name, function, utilities, and role-agent 
relation information about agent when it entering the 
system, and delete these information when agent is in 
failure or exiting the system. Agents are ultimate executor 
of tasks, which encapsulate part of resources necessary to 
accomplish tasks. The agent has characteristics of 
autonomy, interactively, and initiative etc. In this system, 
the quality of task scheduling strategy determines the 
overall system’s performance. Therefore, we define task 
schedulable problem based on agent’s preferences in next 
section, and further discuss the problem below. 

B.  Problem definition 
There is a set of agents: A = { a1, . . . , am }, each of 

which encapsulate parts of needed resources to complete 
tasks. Let R = { r1, . . . , rl } denote the collection of the 
role the agents can play. Each agent a  A can plays a 
number of roles in R, on the contrary, a role can also be 
played by a number of agents, which is defined by role-
agent relations: Re⊂ R×A. Suppose a set of tasks T = {t1, 
t2, . . . , tn} arrives at the system. Each task mapping is 
then represented by a tuple < t, Re’ >, where t∈T is the 
task, Re’⊂ Re. The exact assignment of tasks to agents is 
defined by a task scheduling. Task scheduling generally 
includes two situations, the one is that all tasks in T can 
be accomplished by MAS, and the other is that only parts 
of the tasks in T can be accomplished by MAS of which 
we consider how to make the existing Agent resources to 
accomplish tasks of the system as much as possible, 
which known as the maximum scheduling problem. 
Formal definitions of these two problems are defined as 
follow: 

DEFINITION 1. ( TASK SCHEDULABLE PROBLEM ) 
Given a set of tasks T = {t1, . . . , tn}, a set of agents A = { 
a1, . . . , am }, and a set of role R = { r1, . . . , rl } the 
agents can play, ti T ( i = 1,2, …, m ) is a multi-set on R, 
then task schedulable problem is a mapping φ: R→A. 
which must satisfy the following constraints: 

(1) If task t can be accomplished, every role related 
to t must have corresponding agents to play, that 
is for each r in multi-set t, there is a function φ( r 
) = a⇒ ( r, a )∈Re, r∈R, a∈A. 

(2) The agent be scheduled can at most play a role 
at some time point, 
i.e. . | { : ( ) )} | 1a A r R r aϕ∀ ∈ ∈ = ≤  

(3) All roles related to every task have 
corresponding agents to play, that is  

. . . ( )t T r R a A S r a∀ ∈ ∀ ∈ ∃ ∈ =  
DEFINITION 2.  ( MAXIMUM SCHEDULING PROBLEM, 

MAX-S ) Given a set of tasks T = {t1, . . . , tn}, a set of 
agents A = { a1, . . . , am }, and a set of role R = { r1, . . . , 
rl } the agents can play, ti∈T ( i = 1,2, …, m ) is a multi-
set on R, then the maximum task scheduling 'max | ' |T T T⊆  
s.t. there exists a mapping :S R A→  which satisfy 
following constraints:  

(1) ( ) ( , ) Re, ,S r a r a r R a A= ⇒ ∈ ∈ ∈ ,  

(2) '. . . ( )t T r t a S r a∀ ∈ ∀ ∈ ∃ = ,  

(3) . | { : ( ) } | 1a A r R S r a∀ ∈ ∈ = ≤ . 

III.  TASK SCHEDULABLE PROBLEM IN MAS 

A.  Construct flownetwork model 
We construct flow network model in accordance with 

an instance I of task schedulable problem, and then 
determine whether the tasks can be scheduled on the flow 
network, the construction algorithm is as follows: 
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Figure 2.   Directed graph of the problem 

 
Figure 3.   Flow network model of the problem 

Algorithm 1.  Construct  Flow Network 

 1. Create direct graph (see figure 2), create directed 
graph ( , )G V E= in accordance with an instance of 
task scheduling problem, where the vertex set V = 
T∪R∪A and the edge set E = Ms∪Re, in which 
Tr⊂ T×R. and Re⊂ R×A. 

2. Construct flow network (see figure 3), create the 
flow network model N as below: 
(a) Add source node s and sink node t to graph G. 
(b) For each task node ti (i = 1, 2, …, n) in T, create 

an edge (s, ti) from s to this node with capacity 
equal to out-degree of  ti ( e.g. c(s, ti) = dout(ti) ) 

(c) For each agent node aj (j = 1, 2, …, m) in A, 
create an edge from aj to sink node t with 
capacity 1. 

(d) For each edge (r, a) in Re, r∈ R, a∈ A, and for 

each edge ( t, r ), t∈ T and r∈ R, set the capacity 
be 1. 

B.  Solution of Task Schedulable Problem 
As we will use different method to solve the tasks 

schedulable problem and maximum task scheduling 
problem, then we must determine whether tasks can be 
scheduled before we assigned tasks to agents of MAS. 

THEOREM 1. Given a set of tasks T = {t1, . . . , tn}, a 
set of agents A = { a1, . . . , am }, and a set of role R = { 

r1, . . . , rl } the agents can play, ti∈T ( i = 1,2, …, m ) is a 
multi-set on R, role-agent relations represented by 
Re⊂ R×A, then tasks are schedulable if and only if the 
maximum flow of the corresponding flow network N is 
equal to summation of out degree of all task nodes, which 
represented as follow: 

                      | | ( )
i out it Tf d t∈=∑ .                               (1)  

PROOF.  Suppose that all tasks in T can be accomplished 
by agents in A, which implies that we can find enough 
agents to play all roles relate to each task vertex 

it T∈ ( 1,2, ,i n= ⋅ ⋅ ⋅ ), then in corresponding flow network 
N, the flow value of each edge from vertex it T∈  to 

jr R∈ ( 1,2, ,j l= ⋅ ⋅ ⋅ ) is 1. For the capacity constraints, note 
that f (ti, rj) ≤ 1 for all it T∈  and jr R∈ ( 1,2, ,j l= ⋅ ⋅ ⋅ ).  
Intuitively we can see that the overall flow value of flow 
network N is maximum, and the value | | ( )

i
out it Tf d t

∈
= ∑ . 

On the contrary, if we know that | | ( )
i

out it T
f d t

∈
= ∑  in 

corresponding flow network N, then the flow value of 
each edge ( , )i jt r  ( ,i jt T r R∈ ∈ ) must be 1. Thus from the 
flow-conservation property, we can know that each role 
vertex has related to an agent, which means there have 
enough agents to accomplish all tasks. 

Theorem 1 shows that the task schedulable problem of 
such MAS model can be solved by the maximum flow 
algorithm[11], the current maximum flow algorithm 
complexity is O(n3), so the problem can be solved in 
polynomial time. By further analysis of the problem, we 
can get the following conclusions: 

DEFINITION 3. There is a direct graph ( , )G V E= , let 
S V⊆  be any vertex set of G, {( , ) | , }H s v s S v V= ∈ ∈  be 
the arc set of which arcs are all sourced by vertex in S, 
and ( )N S  be the terminal vertex set of H (if ( , )s v H∈ , 
then ( )v N S∈ ), then we say that ( )N S  is neighbour set of 
S. 

THEOREM 2. Given a set of tasks T = {t1, . . . , tn}, a 
set of agents A = { a1, . . . , am }, and a set of role R = { 
r1, . . . , rl } the agents can play, ti∈T ( i = 1,2, …, m ) is a 
multi-set on R, role-agent relations represented by 
Re⊂ R×A, then tasks are schedulable if and only if for 
any role vertex set S R⊆  in corresponding direct graph 
G, there has 

( ) | ( ) |inr S d r N S
∈

≤∑                                 (2) 

in which ( )ind r  represents the in-degree of role vertex 
r. 

PROOF. Let N be the corresponding flow network 
model of an instance of the problem (see figure 4), and 
let S V⊂ be any vertex set which satisfy that source 
vertex s S∈ and sink vertex t S∈ , and set 

, ,T R AS S T S S R S S A= = =∩ ∩ ∩ . 
It is simply to know, from the maximum flow 

minimum cut set theorem, that all tasks in T can be 
accomplished by the system if and only if for any cut of 
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N, the capacity is larger than or equal to ( )
i

out it T d t
∈∑ , 

represented by 

( , ) ( )
i

out it T
capacity S S d t

∈
≥ ∑             (3) 

S

 
Figure4.   The cut of the flow network N 

We first show that if the formula (2) is satisfied, then 
tasks in T can be scheduled. Suppose that for any vertex 
set S R⊆  in Graph G satisfy the 
inequality ( ) | ( ) |inr S

d r N S
∈

≤∑ . Thus for any cut 

( , )S S that: 

\ ( , \ ) ( , \ )
( , ) ( , ) ( ) ( ) ( , )

i T R R A j A
i jt T S h S R S h S A S a S

c S S c s t c h c h c a t
∈ ∈ ∈ ∈

= + + +∑ ∑ ∑ ∑

\ ( , )
( ) ( ( ) ( )) | ( ) | | |

i T i T T R
out i out i R At T S t S h S S

d t d t c h N S S S
∈ ∈ ∈

≥ + − + +∑ ∑ ∑ ∩

\ ( , )( ) ( ) ( ) | ( ) |
i T i T T R

out i out i Rt T S t S h S Sd t d t c h N S
∈ ∈ ∈

≥ + − +∑ ∑ ∑    

( because ( ) ( ( ) )R A RN S S N S S⊆ ∪ ∩ ) 

( , )( ) ( ) ( )
i T R R

out i int T h S S r Sd t c h d r
∈ ∈ ∈

≥ − +∑ ∑ ∑  
( by inequality (2) ) 

( )
i

out it T d t
∈

≥ ∑  ( because  ( , )( ) ( )
R T R

inr S h S S
d r c h

∈ ∈
≥∑ ∑ ) 

Thus, all tasks can be accomplished by MAS from the 
formula (3). 

To prove the converse, suppose that all tasks in T can 
be accomplished. By the formula (3), for any cut ( , )S S of 
flow network N, there has ( , ) ( )it T out ic S S d t∈≥ Σ , and if 
there a vertex set SR ⊆ R, ST ⊆ T and SA ⊆ A which satisfy 
that N(ST)=SR，SA=N(SR), let S=ST ∪ SR ∪ SA ∪ {s}, then 

\ \( , ) ( ) | | ( ) | ( ) |i T i Tt T S out i A t T S out i Rc S S d t S d t N S∈ ∈= Σ + = Σ + . Thus 
\ ( ) | ( ) | ( )i T it T S out i R t T out id t N S d t∈ ∈Σ + ≥ Σ  which can get 

| ( ) | ( )i TR t S out iN S d t∈≥ Σ . Observe that ( )T RN S S= , we have 
| ( ) | ( )RR r S inN S d r∈≥ Σ , which completes the proof. 

IV.  MAXIMUM TASK SCHEDULING PROBLEM IN MAS 

We know that maximum flow algorithm can be used to 
solve task schedulable problem, but whether it is suitable 
for maximum scheduling problem? Unfortunately, we 
have prove that maximum scheduling problem is NP 
complete in our previous work [12]. 

As we know that MAX-S problem is NP complete, 
hence the problem cannot be solved in polynomial time 

through brute force algorithm. That is to say, the brute 
force method can not meet the urgency requirements of 
the emergency systems. To deal with the problem of task 
scheduling in above MAS model, we design three 
approximation algorithm to solve the maximum task 
scheduling problem. We will introduce Increased Greedy 
Algorithm, Decreased Greedy Algorithm and Revised 
Minimum Cost Algorithm in next three consecutive 
sections. 

A.  Increased Greedy Algorithm 
The idea of increased greedy algorithm is as follows. 

In each iteration, the algorithm select the task that require 
least resources from the set T, and find appropriate agents 
to play roles of the task. If all roles of the task can find 
corresponding agent to play, the algorithm execute the 
task. Otherwise, the algorithm does not allocate any 
resource to it. The algorithm is ended with all task in T 
have been scanned by the algorithm. 

 
 Algorithm 1: IGA ( Increased Greedy Algorithm ) 
 
While T≠Ø, repeat the following process: 
1. Search the task t T∈  that require least resource. 

For each role of the task: 
(a) If there has agents can play it, then select 

the most suitable agent. 
(b) Otherwise, delete the task from T, and skip 

to the top of the procedure. 
2. If all roles of the task can find enough agent to 

play, then move the task from T to 
accomplished task set T’, and delete all 
resources it has consumed. 

3. When all tasks have been scanned, exit the 
while loop. 

 
  

In each iteration, the IGA algorithm select the eligible 
task from T, and search suitable agents from A to play all 
role of the task. Obviously, the time complexity of the 
IGA algorithm is ( )O nmk , in which n is the number of 
task, m is number of role, and k is number of agent. 

B.  Decreased Greedy Algorithm 
The basic idea of DGA is as follows. The algorithm 

firstly construct the flow network in accordance with the 
instance of MAX-S problem, and use the maximum flow 
algorithm to test whether tasks can be scheduled. If all 
tasks can be accomplished, then the output is immediately 
gained. Otherwise, delete the most unimportant or largest 
resource consumption task from T. Repeat the above 
procedure until all tasks have been scanned, see details of 
the algorithm in algorithm 2. 

 
Algorithm 2: DGA ( Decreased Greedy Algorithm ) 
 
While T≠Ø, repeat the following process: 
1. Constructing flow network model t T∈  through 

Algorithm 1. 
2. Test whether tasks can be scheduled.  
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(a) If tasks can be scheduled, then output the 
solution and end the procedure. 

(b) Otherwise, search the most unimportant or 
largest resource consumption task t T∈  
and delete it from T. 

 
 
The DGA algorithm call maximum flow network 

algorithm in each iteration, and the time complexity of 
maximum flow network algorithm is 3( )O n . It is simply to 
see that the time complexity of the DGA algorithm 
is 3( ( ) )O n n m k+ + , in which n is the number of task, m is 
number of role, and k is number of agent. 

C.  Iterative Min-Cost Flow Algorithm 
The IMCA algorithm firstly ordered tasks in 

accordance with the importance of tasks, such as 
1 2 ... nt t t≺ ≺ ≺ . The order relation represents the priority 

of tasks when select task to execute, which means tasks 
must accomplished in accordance the order relation. Then 
the algorithm construct flow network with cost in 
accordance with above order relation. When assigning 
cost value to edges of the flow network, the task priority 
is higher, the cost of edge is smaller. Finally, the 
algorithm iteratively call the successive approximation 
algorithm[13, 14] on the flow network until the solution 
is gained. The details of IMCA is as algorithm 3. 

 
 Algorithm 3. Iterative Min-Cost Algorithm (IMCA) 
 

Description: 1 2 ... nt t t≺ ≺ ≺ represents the order relation 
of tasks，and cost value is interger. 

1. Create directed graph ( , )G V E= in accordance 
with an instance of MAX-S problem, where the   
vertex set V = T∪R∪A and the edge set E = Tr
∪Re, in which Tr⊂ T×R. and Re⊂ R×A. 

2. Create the flow network model N as below 
(a) Add source node s and sink node t to graph G. 

(b)  For each task node ti (i = 1, 2, …, n) in T,   
create an edge (s, ti) from s to this node with 
capacity equal to out-degree of  ti ( e.g. c(s, 
ti) = dout(ti) ), and cost value is from 1 to n 
according to order relation. 

 (c)  For each agent node aj (j = 1, 2, …, m) in A, 
create an edge from aj to sink node t with 
capacity value is 1, and cost value is 0. 

3. For each edge (r, a) in Re (r∈R, a∈A), set the 
capacity to be 1 and cost be 0. 

4. Create an edge directly from t to s with unlimited 
capacity and zero cost. 

5. While T≠Ø, repeat the following process: 
  (a) Call approximation algorithm to gain 

minimum cost of the flow network 
(b)  If | | ( , )

i
it Tf capacity s t

∈
≥ ∑ , then output the 

solution and exit the while loop. 
(c)  Otherwise, scanning T in ascending order of 

costs. For task it , if ( , ) ( , )i if s t capacity s t≥ , 
then scanning the next task it +1 . If 

( , ) ( , )i if s t capacity s t< , then delete ti from T 
( iT T t← − ) and re-construct flow network 
model. 

  

The time complexity of successive approximation 
algorithm is 3( log( ))O v vC , in which C is maximum cost 
value and v is the vertex number of flow network N. 
From the above section, we know that cost value on 
edges ( , )is t  increased linearly, and IMCA algorithm will 
call n times successive approximation function in the 
worst case. Therefore, the time complexity of IMCA 
algorithm is 3( ( ) log( ( )))O n n m k n n m k+ + + + . 

V.  EXPERIMENTS 

We implemented the increased greedy algorithm(IGA), 
the decreased greedy algorithm (DGA), and the iterative 
min-cost flow algorithm(IMCA) in C++, and tested them 
on a Windows PC. The purpose of these experiments is to 
study the performance of the algorithms in different 
problem settings using different instances of the problem. 
The performance measurements are the solution quality 
and computation time, where the solution quality (SQ) is 
computed as follows. When the number of tasks is small, 
we compare the output of the above algorithms with the 
optimal solution, but if it is not feasible to compute the 
optimal solution, we use the task completion rate to 
compare the solution quality. In the following, we 
describe the setup of all experiments, and present the 
results. 

A. Eexperiment Settings 
We consider several kinds of instance of the problem 

and several experimental environments. We now describe 
the different settings used in our experiments. 

Setting 1. In order to be able to compare the output of 
the algorithms with the optimal solution, the scale of 
problem is relatively small. The number of tasks is 10, 
the number of roles is 10, and the number of agents varies 
from 5 to 40. During the experimenting, the average 
resource requirements remain unchanged, and the role-
play ability of agent is maintained around 3. 

Setting 2. The setting is used to evaluate the 
computation time of the algorithm implementing on large 
scale problems. The number of the vertex varies from 170 
to 1290, and the number of tasks varies from 50 to 400, 
and the average outdegree of the task vertex and agent 
vertex remain around 4. The ratio between the number of 
task and agent is 1/2. 

B. Experiment Results 
The first experiment implements on experimental 

setting 1. We would like to see how the algorithms 
behave when the resource ratio varied gradually. 
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Figure 5.   Approximation ratio of the algorithms 

In Figure 5 we see how the quality of the IGA 
algorithm, DGA algorithm, and the IMCA algorithm 
depends on the resource ratio. Remarkably, for higher 
resource ratios, the quality of the algorithms are better. 
When the resource ratio grows above 1.2, the solution of 
the algorithms are almost optimal solution. The optimal 
ratio of all algorithms are larger than 0.55, and the 
solution quality of the IMCA is best, which larger than 
IGA and DGA algorithm. By experiments, we also find 
that when the resource ratio is relative lower, the solution 
of DGA is far worse than other algorithms. But when the 
resource ratio increased, the solution quality of the 
algorithms are more closer, and the solution quality of 
DGA even better than IGA when the resource ratio larger 
than 0.66. Besides, we find that when the role-play 
capability of agents are weak, the outputs of DGA are 
volatile. 

The another experiment is to test the time performance 
of above algorithms. We would like to see the run time of 
algorithms when the scale of the MAX-S problem 
increased. 

We can obviously see from the figure 6 that the run 
time of IGA is far less than DGA and IMCA algorithm. 
Therefore, the IGA algorithm is more suitable than DGA 
and IMCA algorithm when used in large scale task 
scheduling, especially when the MAS used in emergency 
systems that need strong real time requirements. Besides, 
we also find that the run time of IMCA is less than DGA 
which conflicts with the time complexity of the two 
algorithm mentioned in above section. But by further 
analysis, we find that the number of push operation of 
IMCA is much more less than DGA in each iteration, 
hence the practical run time of IMCA is less than DGA. 

VI.  COCLUSIONS 

In this paper, we studied the task scheduling problem 
based on some new application of MAS such as 
emergency system, C3I commander system etc. We 
believe that it has a great amount of potential for these 
applications because of its advantages. Firstly, we built a 
multi-agent system model according to characteristics of 
above applications. Then we define and discuss task 
schedulable problem and maximum task scheduling  

 
Figure4.   Run time of the approximation algorithms 

problem based on above MAS model. For task 
schedulable problem, we firstly constructed a flow 
network corresponds to instance of task problem, and 
then test whether task can be scheduled on this flow 
network model. We conclude that the task schedulable 
problem can be solved in polynomial time. Thirdly, we 
proposed three efficiently approximation algorithm to 
solve maximum task scheduling problem. Finally, we do 
experiments to test both time performance and solution 
quality of above algorithms, the experiment results show 
that IGA algorithm is most suitable for MAX-S problem, 
especially when the MAS model used in emergency 
systems. 

There are many interesting extensions to our current 
work. In this paper, we only test the performance of 
approximation algorithm by experiments. In our future 
work, we would also like to analyze the algorithm’s 
optimality theoretically. Besides, we will discuss optimal 
task scheduling problem with utility, which aims to 
maximize the utility of the system. Another interesting 
topic for further work is the addition of QoS information 
among the agents. This may further help to select more 
suitable agents to improve efficiency of the system when 
scheduling. 
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