
Task Schedulable Problem and Maximum
Scheduling Problem in a Multi-agent System

Bin Li, Xiaowei Zhang, Jun Wu, Junwu Zhu

School of Information Engineering
Yangzhou University

Yangzhou, China
Email: lb@yzu.edu.cn, zxw9289zxw@163.com, j_wu@vip.sohu.net, jdkr@163.com

Abstract—Tasks scheduling is a key problem in multi-agent
system, traditional tasks scheduling methods can’t be
applied to new application areas of the MAS such as
emergency system. In order to apply the Agent method to
these new areas, a multi-agent system model is built in this
paper, and corresponding task schedulable problem and
maximum scheduling problem are defined based on this
multi-agent system model. Task schedulable problem is
modeled using flow network, and it is proved that maximum
flow algorithm can be used to solve such problem, which
means the problem can be solved in polynomial time.
Furthermore, by analyzing the flow network model, a
necessary and sufficient condition which can be used to
determine whether tasks can be scheduled is gained and
proved. Three approximation algorithms have been
proposed to solve the maximum scheduling problem. The
experiment results show that all above algorithms can get
pretty solutions in solving maximum scheduling problem,
and the approximation ratio for optimal solution of these
approximation algorithms are all larger than or equal to 0.5
even though the resource ratio is very low.

Index Terms—task scheduling, task schedulable problem,
maximum task scheduling problem, MAS, flow network, NP
complete

I. INTRODUCTION

Multi-Agent system (MAS) is composed of a number
of autonomous units named agent which can interact with
each other to improve the problem-solving ability of the
overall system which greater than simple addition of
problem-solving ability of single agent. MAS is an open
system, and the change of external environment may
continually generate new tasks. However, single Agent
has limited capability to get solution about information
and problem. At this time, multiple Agents are needed to
complete these tasks by collaboration. Therefore, task
scheduling problem is a key problem in MAS. An
effective task scheduling method is necessary for MAS to
accomplish the tasks with high efficiency. Recent years
have seen a lot of work on task scheduling methods,
which can be broadly classified as follow: (1) task
scheduling based on auction protocol [1, 2]; (2) Coalition
formation methods [3, 4]; (4) Distributed task scheduling
methods [5, 6]; (5) Decision theory based methods [7, 8];

(6) Manisterski et al. [9] discusses the possibilities of
achieving efficient allocations in both cooperative and
non-cooperative settings. They propose a centralized
algorithm to find the optimal solution.

All of above works have improved the efficiency and
have enriched the theory of MAS. However, these works
can’t be used in many new applications of MAS such as
Emergency system [10] etc. The reasons are: (1) in these
applications all agents must mandatory executing tasks
allocated by distributor, and the agent’s local goal must
not conflict with the distributor’s global goal. However,
above task scheduling methods such as auction based
ones suppose that the agents are selfish, and have high
degree of autonomy, so they would not execute the tasks
if the distributor doesn’t offer payment they expected. (2)
Situation is urgency and tasks should be accomplished as
soon as possible in above applications. However, task
allocation of most above works is decentralized, and the
task scheduling process is carried out by negotiating
between agents, and the task scheduling process will be
uncertainty and time-consuming, which cannot satisfy the
requirements of timely task allocation in urgency
situation of above application of MAS.

In order to make MAS suitable for above applications,
we construct a MAS model based on the characteristics of
the Emergency system, and then define task schedulable
problem and maximum task scheduling problem in
section 2. In section 3, we prove that task schedulable
problem can be solved in polynomial time. Furthermore,
we construct flow network based on the instance of task
schedulable problem to show that the maximum flow
algorithm can be used to solve the problem. We discuss
the maximum task scheduling problem in section 4, we
prove the problem to be NP complete by reducing X3C
problem to it in polynomial time. In section 6, we
propose three approximation algorithm (named Increased
Greedy Algorithm, IGA; Decreased Greedy Algorithm,
DGA; Iterative Minimum Cost Algorithm, IMCA) to
solve the maximum task scheduling problem. We also do
experiment to verify the performance of above algorithms
in this section, and conclude our work at the last section.

II. PROBLEM DESCRIPTION

A. Multi-agent System Model
In this section, we design a MAS model according to

characteristics of emergency system, C3I system etc. As

Project number: 60903130, BK2007074, BK2009698, BK2009699.

Corresponding author: Bin Li, Yangzhou University, Yangzhou, China.
Email: lb@yzu.edu.cn.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2225

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.11.2225-2231

we can see from figure 1, the model includes a task
manager, task interface layer, task schedule layer, and
resource layer. Task manager is responsible for
monitoring the overall system, and intervene the system
when necessary who can receives the tasks from
customers, and translates them into a certain format the
system can understand.

The task interface layer comprised of task matching
model, task template library. Task template library is
used to store task templates which is a role set that
complete corresponding tasks, and a task matching
module which responsible for searching task templates in
template library according to the task arrive at the system.
The advantage of the mechanism is simple, fast and
efficient, which can prettily instead of traditional task
decomposition process and satisfy requirements of
emergency systems.

Task scheduling layer includes resource discovery
module, scheduling module, and role set. The role is
equivalent to a sub-task which can be used to restraint the
agent’s actions. For example, if an agent plays the role of
fire-fighting, it can only fight fire, and can not carry the
wounded and other rescue tasks. Resource discovery
module can find agents required to accomplish tasks in
accordance with relationships between roles and agents,
and send the information about these agents to the
scheduling module. When the scheduling module
received the information, it can easily schedule agents to
execute tasks arrive at the system by scheduling
algorithm. The algorithm and role enable the system to
accomplish tasks effectively and possesses strong
exception handling capability.

Figure 1. Multi-agent system mode

Resource layer includes a resource manager, and all
agents that form the multi-agent system. Resource
manager monitor the agent’s action in system, and
register the name, function, utilities, and role-agent
relation information about agent when it entering the
system, and delete these information when agent is in
failure or exiting the system. Agents are ultimate executor
of tasks, which encapsulate part of resources necessary to
accomplish tasks. The agent has characteristics of
autonomy, interactively, and initiative etc. In this system,
the quality of task scheduling strategy determines the
overall system’s performance. Therefore, we define task
schedulable problem based on agent’s preferences in next
section, and further discuss the problem below.

B. Problem definition
There is a set of agents: A = { a1, . . . , am }, each of

which encapsulate parts of needed resources to complete
tasks. Let R = { r1, . . . , rl } denote the collection of the
role the agents can play. Each agent a A can plays a
number of roles in R, on the contrary, a role can also be
played by a number of agents, which is defined by role-
agent relations: Re⊂ R×A. Suppose a set of tasks T = {t1,
t2, . . . , tn} arrives at the system. Each task mapping is
then represented by a tuple < t, Re’ >, where t∈T is the
task, Re’⊂ Re. The exact assignment of tasks to agents is
defined by a task scheduling. Task scheduling generally
includes two situations, the one is that all tasks in T can
be accomplished by MAS, and the other is that only parts
of the tasks in T can be accomplished by MAS of which
we consider how to make the existing Agent resources to
accomplish tasks of the system as much as possible,
which known as the maximum scheduling problem.
Formal definitions of these two problems are defined as
follow:

DEFINITION 1. (TASK SCHEDULABLE PROBLEM)
Given a set of tasks T = {t1, . . . , tn}, a set of agents A = {
a1, . . . , am }, and a set of role R = { r1, . . . , rl } the
agents can play, ti T (i = 1,2, …, m) is a multi-set on R,
then task schedulable problem is a mapping φ: R→A.
which must satisfy the following constraints:

(1) If task t can be accomplished, every role related
to t must have corresponding agents to play, that
is for each r in multi-set t, there is a function φ(r
) = a⇒ (r, a)∈Re, r∈R, a∈A.

(2) The agent be scheduled can at most play a role
at some time point,
i.e. . | { : ())} | 1a A r R r aϕ∀ ∈ ∈ = ≤

(3) All roles related to every task have
corresponding agents to play, that is

. . . ()t T r R a A S r a∀ ∈ ∀ ∈ ∃ ∈ =
DEFINITION 2. (MAXIMUM SCHEDULING PROBLEM,

MAX-S) Given a set of tasks T = {t1, . . . , tn}, a set of
agents A = { a1, . . . , am }, and a set of role R = { r1, . . . ,
rl } the agents can play, ti∈T (i = 1,2, …, m) is a multi-
set on R, then the maximum task scheduling 'max | ' |T T T⊆
s.t. there exists a mapping :S R A→ which satisfy
following constraints:

(1) () (,) Re, ,S r a r a r R a A= ⇒ ∈ ∈ ∈ ,

(2) '. . . ()t T r t a S r a∀ ∈ ∀ ∈ ∃ = ,

(3) . | { : () } | 1a A r R S r a∀ ∈ ∈ = ≤ .

III. TASK SCHEDULABLE PROBLEM IN MAS

A. Construct flownetwork model
We construct flow network model in accordance with

an instance I of task schedulable problem, and then
determine whether the tasks can be scheduled on the flow
network, the construction algorithm is as follows:

2226 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

Figure 2. Directed graph of the problem

Figure 3. Flow network model of the problem

Algorithm 1. Construct Flow Network

 1. Create direct graph (see figure 2), create directed
graph (,)G V E= in accordance with an instance of
task scheduling problem, where the vertex set V =
T∪R∪A and the edge set E = Ms∪Re, in which
Tr⊂ T×R. and Re⊂ R×A.

2. Construct flow network (see figure 3), create the
flow network model N as below:
(a) Add source node s and sink node t to graph G.
(b) For each task node ti (i = 1, 2, …, n) in T, create

an edge (s, ti) from s to this node with capacity
equal to out-degree of ti (e.g. c(s, ti) = dout(ti))

(c) For each agent node aj (j = 1, 2, …, m) in A,
create an edge from aj to sink node t with
capacity 1.

(d) For each edge (r, a) in Re, r∈ R, a∈ A, and for

each edge (t, r), t∈ T and r∈ R, set the capacity
be 1.

B. Solution of Task Schedulable Problem
As we will use different method to solve the tasks

schedulable problem and maximum task scheduling
problem, then we must determine whether tasks can be
scheduled before we assigned tasks to agents of MAS.

THEOREM 1. Given a set of tasks T = {t1, . . . , tn}, a
set of agents A = { a1, . . . , am }, and a set of role R = {

r1, . . . , rl } the agents can play, ti∈T (i = 1,2, …, m) is a
multi-set on R, role-agent relations represented by
Re⊂ R×A, then tasks are schedulable if and only if the
maximum flow of the corresponding flow network N is
equal to summation of out degree of all task nodes, which
represented as follow:

 | | ()
i out it Tf d t∈=∑ . (1)

PROOF. Suppose that all tasks in T can be accomplished
by agents in A, which implies that we can find enough
agents to play all roles relate to each task vertex

it T∈ (1,2, ,i n= ⋅ ⋅ ⋅), then in corresponding flow network
N, the flow value of each edge from vertex it T∈ to

jr R∈ (1,2, ,j l= ⋅ ⋅ ⋅) is 1. For the capacity constraints, note
that f (ti, rj) ≤ 1 for all it T∈ and jr R∈ (1,2, ,j l= ⋅ ⋅ ⋅).
Intuitively we can see that the overall flow value of flow
network N is maximum, and the value | | ()

i
out it Tf d t

∈
= ∑ .

On the contrary, if we know that | | ()
i

out it T
f d t

∈
= ∑ in

corresponding flow network N, then the flow value of
each edge (,)i jt r (,i jt T r R∈ ∈) must be 1. Thus from the
flow-conservation property, we can know that each role
vertex has related to an agent, which means there have
enough agents to accomplish all tasks.

Theorem 1 shows that the task schedulable problem of
such MAS model can be solved by the maximum flow
algorithm[11], the current maximum flow algorithm
complexity is O(n3), so the problem can be solved in
polynomial time. By further analysis of the problem, we
can get the following conclusions:

DEFINITION 3. There is a direct graph (,)G V E= , let
S V⊆ be any vertex set of G, {(,) | , }H s v s S v V= ∈ ∈ be
the arc set of which arcs are all sourced by vertex in S,
and ()N S be the terminal vertex set of H (if (,)s v H∈ ,
then ()v N S∈), then we say that ()N S is neighbour set of
S.

THEOREM 2. Given a set of tasks T = {t1, . . . , tn}, a
set of agents A = { a1, . . . , am }, and a set of role R = {
r1, . . . , rl } the agents can play, ti∈T (i = 1,2, …, m) is a
multi-set on R, role-agent relations represented by
Re⊂ R×A, then tasks are schedulable if and only if for
any role vertex set S R⊆ in corresponding direct graph
G, there has

() | () |inr S d r N S
∈

≤∑ (2)

in which ()ind r represents the in-degree of role vertex
r.

PROOF. Let N be the corresponding flow network
model of an instance of the problem (see figure 4), and
let S V⊂ be any vertex set which satisfy that source
vertex s S∈ and sink vertex t S∈ , and set

, ,T R AS S T S S R S S A= = =∩ ∩ ∩ .
It is simply to know, from the maximum flow

minimum cut set theorem, that all tasks in T can be
accomplished by the system if and only if for any cut of

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2227

© 2011 ACADEMY PUBLISHER

N, the capacity is larger than or equal to ()
i

out it T d t
∈∑ ,

represented by

(,) ()
i

out it T
capacity S S d t

∈
≥ ∑ (3)

S

Figure4. The cut of the flow network N

We first show that if the formula (2) is satisfied, then
tasks in T can be scheduled. Suppose that for any vertex
set S R⊆ in Graph G satisfy the
inequality () | () |inr S

d r N S
∈

≤∑ . Thus for any cut

(,)S S that:

\ (, \) (, \)
(,) (,) () () (,)

i T R R A j A
i jt T S h S R S h S A S a S

c S S c s t c h c h c a t
∈ ∈ ∈ ∈

= + + +∑ ∑ ∑ ∑

\ (,)
() (() ()) | () | | |

i T i T T R
out i out i R At T S t S h S S

d t d t c h N S S S
∈ ∈ ∈

≥ + − + +∑ ∑ ∑ ∩

\ (,)() () () | () |
i T i T T R

out i out i Rt T S t S h S Sd t d t c h N S
∈ ∈ ∈

≥ + − +∑ ∑ ∑

(because () (())R A RN S S N S S⊆ ∪ ∩)

(,)() () ()
i T R R

out i int T h S S r Sd t c h d r
∈ ∈ ∈

≥ − +∑ ∑ ∑
(by inequality (2))

()
i

out it T d t
∈

≥ ∑ (because (,)() ()
R T R

inr S h S S
d r c h

∈ ∈
≥∑ ∑)

Thus, all tasks can be accomplished by MAS from the
formula (3).

To prove the converse, suppose that all tasks in T can
be accomplished. By the formula (3), for any cut (,)S S of
flow network N, there has (,) ()it T out ic S S d t∈≥ Σ , and if
there a vertex set SR ⊆ R, ST ⊆ T and SA ⊆ A which satisfy
that N(ST)=SR，SA=N(SR), let S=ST ∪ SR ∪ SA ∪ {s}, then

\ \(,) () | | () | () |i T i Tt T S out i A t T S out i Rc S S d t S d t N S∈ ∈= Σ + = Σ + . Thus
\ () | () | ()i T it T S out i R t T out id t N S d t∈ ∈Σ + ≥ Σ which can get

| () | ()i TR t S out iN S d t∈≥ Σ . Observe that ()T RN S S= , we have
| () | ()RR r S inN S d r∈≥ Σ , which completes the proof.

IV. MAXIMUM TASK SCHEDULING PROBLEM IN MAS

We know that maximum flow algorithm can be used to
solve task schedulable problem, but whether it is suitable
for maximum scheduling problem? Unfortunately, we
have prove that maximum scheduling problem is NP
complete in our previous work [12].

As we know that MAX-S problem is NP complete,
hence the problem cannot be solved in polynomial time

through brute force algorithm. That is to say, the brute
force method can not meet the urgency requirements of
the emergency systems. To deal with the problem of task
scheduling in above MAS model, we design three
approximation algorithm to solve the maximum task
scheduling problem. We will introduce Increased Greedy
Algorithm, Decreased Greedy Algorithm and Revised
Minimum Cost Algorithm in next three consecutive
sections.

A. Increased Greedy Algorithm
The idea of increased greedy algorithm is as follows.

In each iteration, the algorithm select the task that require
least resources from the set T, and find appropriate agents
to play roles of the task. If all roles of the task can find
corresponding agent to play, the algorithm execute the
task. Otherwise, the algorithm does not allocate any
resource to it. The algorithm is ended with all task in T
have been scanned by the algorithm.

 Algorithm 1: IGA (Increased Greedy Algorithm)

While T≠Ø, repeat the following process:
1. Search the task t T∈ that require least resource.

For each role of the task:
(a) If there has agents can play it, then select

the most suitable agent.
(b) Otherwise, delete the task from T, and skip

to the top of the procedure.
2. If all roles of the task can find enough agent to

play, then move the task from T to
accomplished task set T’, and delete all
resources it has consumed.

3. When all tasks have been scanned, exit the
while loop.

In each iteration, the IGA algorithm select the eligible
task from T, and search suitable agents from A to play all
role of the task. Obviously, the time complexity of the
IGA algorithm is ()O nmk , in which n is the number of
task, m is number of role, and k is number of agent.

B. Decreased Greedy Algorithm
The basic idea of DGA is as follows. The algorithm

firstly construct the flow network in accordance with the
instance of MAX-S problem, and use the maximum flow
algorithm to test whether tasks can be scheduled. If all
tasks can be accomplished, then the output is immediately
gained. Otherwise, delete the most unimportant or largest
resource consumption task from T. Repeat the above
procedure until all tasks have been scanned, see details of
the algorithm in algorithm 2.

Algorithm 2: DGA (Decreased Greedy Algorithm)

While T≠Ø, repeat the following process:
1. Constructing flow network model t T∈ through

Algorithm 1.
2. Test whether tasks can be scheduled.

2228 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

(a) If tasks can be scheduled, then output the
solution and end the procedure.

(b) Otherwise, search the most unimportant or
largest resource consumption task t T∈
and delete it from T.

The DGA algorithm call maximum flow network

algorithm in each iteration, and the time complexity of
maximum flow network algorithm is 3()O n . It is simply to
see that the time complexity of the DGA algorithm
is 3(())O n n m k+ + , in which n is the number of task, m is
number of role, and k is number of agent.

C. Iterative Min-Cost Flow Algorithm
The IMCA algorithm firstly ordered tasks in

accordance with the importance of tasks, such as
1 2 ... nt t t≺ ≺ ≺ . The order relation represents the priority

of tasks when select task to execute, which means tasks
must accomplished in accordance the order relation. Then
the algorithm construct flow network with cost in
accordance with above order relation. When assigning
cost value to edges of the flow network, the task priority
is higher, the cost of edge is smaller. Finally, the
algorithm iteratively call the successive approximation
algorithm[13, 14] on the flow network until the solution
is gained. The details of IMCA is as algorithm 3.

 Algorithm 3. Iterative Min-Cost Algorithm (IMCA)

Description: 1 2 ... nt t t≺ ≺ ≺ represents the order relation
of tasks，and cost value is interger.

1. Create directed graph (,)G V E= in accordance
with an instance of MAX-S problem, where the
vertex set V = T∪R∪A and the edge set E = Tr
∪Re, in which Tr⊂ T×R. and Re⊂ R×A.

2. Create the flow network model N as below
(a) Add source node s and sink node t to graph G.

(b) For each task node ti (i = 1, 2, …, n) in T,
create an edge (s, ti) from s to this node with
capacity equal to out-degree of ti (e.g. c(s,
ti) = dout(ti)), and cost value is from 1 to n
according to order relation.

 (c) For each agent node aj (j = 1, 2, …, m) in A,
create an edge from aj to sink node t with
capacity value is 1, and cost value is 0.

3. For each edge (r, a) in Re (r∈R, a∈A), set the
capacity to be 1 and cost be 0.

4. Create an edge directly from t to s with unlimited
capacity and zero cost.

5. While T≠Ø, repeat the following process:
 (a) Call approximation algorithm to gain

minimum cost of the flow network
(b) If | | (,)

i
it Tf capacity s t

∈
≥ ∑ , then output the

solution and exit the while loop.
(c) Otherwise, scanning T in ascending order of

costs. For task it , if (,) (,)i if s t capacity s t≥ ,
then scanning the next task it +1 . If

(,) (,)i if s t capacity s t< , then delete ti from T
(iT T t← −) and re-construct flow network
model.

The time complexity of successive approximation
algorithm is 3(log())O v vC , in which C is maximum cost
value and v is the vertex number of flow network N.
From the above section, we know that cost value on
edges (,)is t increased linearly, and IMCA algorithm will
call n times successive approximation function in the
worst case. Therefore, the time complexity of IMCA
algorithm is 3(() log(()))O n n m k n n m k+ + + + .

V. EXPERIMENTS

We implemented the increased greedy algorithm(IGA),
the decreased greedy algorithm (DGA), and the iterative
min-cost flow algorithm(IMCA) in C++, and tested them
on a Windows PC. The purpose of these experiments is to
study the performance of the algorithms in different
problem settings using different instances of the problem.
The performance measurements are the solution quality
and computation time, where the solution quality (SQ) is
computed as follows. When the number of tasks is small,
we compare the output of the above algorithms with the
optimal solution, but if it is not feasible to compute the
optimal solution, we use the task completion rate to
compare the solution quality. In the following, we
describe the setup of all experiments, and present the
results.

A. Eexperiment Settings
We consider several kinds of instance of the problem

and several experimental environments. We now describe
the different settings used in our experiments.

Setting 1. In order to be able to compare the output of
the algorithms with the optimal solution, the scale of
problem is relatively small. The number of tasks is 10,
the number of roles is 10, and the number of agents varies
from 5 to 40. During the experimenting, the average
resource requirements remain unchanged, and the role-
play ability of agent is maintained around 3.

Setting 2. The setting is used to evaluate the
computation time of the algorithm implementing on large
scale problems. The number of the vertex varies from 170
to 1290, and the number of tasks varies from 50 to 400,
and the average outdegree of the task vertex and agent
vertex remain around 4. The ratio between the number of
task and agent is 1/2.

B. Experiment Results
The first experiment implements on experimental

setting 1. We would like to see how the algorithms
behave when the resource ratio varied gradually.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2229

© 2011 ACADEMY PUBLISHER

Figure 5. Approximation ratio of the algorithms

In Figure 5 we see how the quality of the IGA
algorithm, DGA algorithm, and the IMCA algorithm
depends on the resource ratio. Remarkably, for higher
resource ratios, the quality of the algorithms are better.
When the resource ratio grows above 1.2, the solution of
the algorithms are almost optimal solution. The optimal
ratio of all algorithms are larger than 0.55, and the
solution quality of the IMCA is best, which larger than
IGA and DGA algorithm. By experiments, we also find
that when the resource ratio is relative lower, the solution
of DGA is far worse than other algorithms. But when the
resource ratio increased, the solution quality of the
algorithms are more closer, and the solution quality of
DGA even better than IGA when the resource ratio larger
than 0.66. Besides, we find that when the role-play
capability of agents are weak, the outputs of DGA are
volatile.

The another experiment is to test the time performance
of above algorithms. We would like to see the run time of
algorithms when the scale of the MAX-S problem
increased.

We can obviously see from the figure 6 that the run
time of IGA is far less than DGA and IMCA algorithm.
Therefore, the IGA algorithm is more suitable than DGA
and IMCA algorithm when used in large scale task
scheduling, especially when the MAS used in emergency
systems that need strong real time requirements. Besides,
we also find that the run time of IMCA is less than DGA
which conflicts with the time complexity of the two
algorithm mentioned in above section. But by further
analysis, we find that the number of push operation of
IMCA is much more less than DGA in each iteration,
hence the practical run time of IMCA is less than DGA.

VI. COCLUSIONS

In this paper, we studied the task scheduling problem
based on some new application of MAS such as
emergency system, C3I commander system etc. We
believe that it has a great amount of potential for these
applications because of its advantages. Firstly, we built a
multi-agent system model according to characteristics of
above applications. Then we define and discuss task
schedulable problem and maximum task scheduling

Figure4. Run time of the approximation algorithms

problem based on above MAS model. For task
schedulable problem, we firstly constructed a flow
network corresponds to instance of task problem, and
then test whether task can be scheduled on this flow
network model. We conclude that the task schedulable
problem can be solved in polynomial time. Thirdly, we
proposed three efficiently approximation algorithm to
solve maximum task scheduling problem. Finally, we do
experiments to test both time performance and solution
quality of above algorithms, the experiment results show
that IGA algorithm is most suitable for MAX-S problem,
especially when the MAS model used in emergency
systems.

There are many interesting extensions to our current
work. In this paper, we only test the performance of
approximation algorithm by experiments. In our future
work, we would also like to analyze the algorithm’s
optimality theoretically. Besides, we will discuss optimal
task scheduling problem with utility, which aims to
maximize the utility of the system. Another interesting
topic for further work is the addition of QoS information
among the agents. This may further help to select more
suitable agents to improve efficiency of the system when
scheduling.

ACKNOWLEDGMENT

This paper is supported by the National Science
Foundation of China under Grant No. 60903130, and the
Natural Science Foundation of the Jiangsu Province of
China under Grant No. BK2007074, BK2009698,
BK2009699.

REFERENCES

[1] O. Shehory and S. Kraus, “Methods for task allocation via
agent coalition formation”, Artificial Intelligence, Vol. 101,
May, 1998, pp. 165-200

[2] H. L. Choi, L. Brunet, and J. P. How, “Consensus-based
decentralized auctions for robust task allocation,” IEEE
Trans. on Robotics. 2008.

[3] D. Sarne1 and S. Kraus, “Solving the auction-based task
allocation problem in an open environment”, Proc of
Twentieth National Conference on Artificial Intelligence
and the Seventeenth Innovative Applications of Artificial

2230 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

Intelligence Conference, MIT Press, May, 2005, pp. 164-
169.

[4] S. Aknine and O. Shehory, “A feasible and practical
coalition formation mechanism leveraging compromise
and task relationships”, Proc of IEEE/WIC/ACM
International Conference on Intelligent Agent Technology,
IEEE Computer Society, Jul. 2006, pp. 436-439.

[5] M. Weerdt, Y. Q. Zhang and T. B. Klos, “Distributed task
allocation in social networks”, Proc of International
Conference on Autonomous Agents and Multiagent
Systems, ACM press, May, 2007, pp. 488-495.

[6] S. Berman, A. Halasz, M. A. Hsieh, V. Kumar,
“Optimized Stochastic Policies for Task Allocation
in Swarms of Robots, IEEE Transactions on
Robotics”, 2009, 25(4): 829-838.

[7] S. Abdallah and V. Lesser, “Modeling task allocation using
a decision theoretic model”, Proc of International
Conference on Autonomous Agents and Multiagent
Systems, ACM press, Jul. 2005, pp. 719-726.

[8] S. Papantonopoulos, G. Salvendy, “Analytic Cognitive
Task Allocation: a decision model for cognitive task
allocation”, Theoretical Issues in Ergonomics Science,
2008 , 9(2): 155-185.

[9] E. Manisterski, E. David, S. Kraus and N. R. Jennings,
“Forming efficient agent groups for completing complex
tasks”, Proc of International Conference on Autonomous
Agents and Multiagent Systems, ACM press, May, 2006,
pp. 257-264.

[10] H. Kitano, S. Tadokoro. RoboCup Rescue: a grand
challenge for multi-agent systems. AI Magazine, 2001,
22(1): 39-52

[11] A. V. Goldberg, Éva Tardos, R. E. Tarjan. “Network flow
algorithms”, In Bernhard Korte László Lovász, Hans
Jürgen Prömel, and Alexander Schrijver, Springer-Verlag,
1990, pp. 101–164

[12] Z. Xiaowei. “Research on Task Scheduling problems for
MAS based Emergency System”, Master degree thesis,
2009.

[13] A. V. Goldberg, R. E. Tarjan. Finding minimum-cost
circulations by successive approximation, Mathematics of
Operations Research, 1990, 15(2): 430-466

[14] A. V. Goldberg, R. E. Tarjan , An efficient implementation
of a scaling minimum-cost flow algorithm, Journal of
Algorithms, 1997, 22(1): 1-29

Bin Li was born in Yangzhou, Jiangsu Province, China, in
1965. He received the Ph.D. degree in computer application
technology from Nanjing University of Aeronautics &
Astronautics, Jiangsu, China in 2001.

Currently, he is a Professor of Yangzhou University and
conducts research in the areas of multi-agent system, artificial
intelligence and service oriented computing.

Xiaowei Zhang was born in Yugan, Jiangxi Province, China,

in 1982, M. S.. His main research interests include multi-agent
system and artificial intelligence.

Jun Wu was born in Yangzhou, Jiangsu Province, China, in
1970. He received the Ph.D. degree in computer application
technology from Southeast University, Jiangsu, China in 2005.

Currently, he is a Associate Professor of Yangzhou
University and conducts research in the areas of computer
network and formal method.

Junwu Zhu was born in Yangzhou, Jiangsu Province,

China, in 1972. He received the Ph.D. degree in computer
application technology from Nanjing University of Aeronautics
& Astronautics, Jiangsu, China in 2008.

Currently, he is an Associate Professor of Yangzhou
University and conducts research in the areas of Ontology and
artificial intelligence.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2231

© 2011 ACADEMY PUBLISHER

