
An Encoding and Labeling Scheme Based on
Continued Fraction for Dynamic XML

Yi Jiang
Department of Computer Science, Xiamen University, Xiamen, 361005, China

Email: jiangyi@xmu.edu.cn

Xiangjian He
Research Centre for Innovation in IT Services and Applications (iNEXT)

University of Technology, Sydney, Australia
Email: Xiangjian.He@uts.edu.au

Fan Lin
School of Software, Xiamen University, Xiamen, 361005, China

Email: iamafan@xmu.edu.cn

Wenjing Jia
Research Centre for Innovation in IT Services and Applications (iNEXT)

University of Technology, Sydney, Australia
Email: Wenjing.Jia-1@uts.edu.au

Abstract— Much research about labeling schemes has been
conducted to efficiently determine the ancestor-descendant
relationships and the document-order between any two
random XML nodes without re-labeling for updates. In this
paper, we present an efficient XML encoding and labeling
scheme for dynamic XML document, named Continued
Fraction-based Encoding (CFE). The proposed CFE scheme
labels nodes with continued fractions and has the following
three important properties: (1) CFE codes can be inserted
between any two consecutive CFE codes with the orders
kept and without re-encoding the existing nodes; (2) CFE
is orthogonal to specific labeling schemes, thus it can be
applied broadly to different labeling schemes or other
applications to efficiently process the updates; (3) CFE
supports all structural relationships query in XPath. Two
test data sets were built for evaluation. The experimental
results show that CFE provides fairly reasonable XML
query processing performance while completely avoiding re-
labeling for updates.

Index Terms— continued fraction; labeling scheme; dynamic
XML data

I. INTRODUCTION

XML-based query and processing have drawn more and
more attentions in both academia and industry for many
years. The main XML query languages are XPath [1]–[4]
and XQuery [5]–[7]. The common core technologies of
these query languages include the use of regular path ex-
pressions to query XML data and the retrieval of the user

This paper is based on “A Continued Fraction Encoding and Labeling
Scheme for Dynamic XML Data,” by Y. Jiang et al., which appeared
in the Proceedings of the 2011 International conference on Industry, In-
formation System and Material Engineering (IISME 2011), Guangzhou,
China, April 2011. c© 2011 IEEE.

This work was supported by National Natural Science Foundation of
China (Grants No. 61001143 and No. 50604012).

specified structure model to realize the structural query
of XML. In order to efficiently support the structural
query of XML, many researchers have proposed a variety
of static encoding schemes, such as the range encoding
scheme [8]–[15], the prefix encoding scheme [16]–[21]
and the prime number encoding scheme [22]. This is
to quickly determine whether the relationship between
any two XML elements is parent-child or ancestors-
descendant relation, and to determine the document-order.
If the XML document is static, these encoding schemes
are able to effectively deal with the structural query of
the XML. When an XML document is to be updated,
one more important point for the labeling scheme is the
label update cost in inserting or deleting a node into or
from the XML tree. All the current labeling schemes
have high update costs. Therefore, in order to effec-
tively deal with XML document updating, many other
researchers have proposed a variety of dynamic encoding
schemes [23]–[37]. Amagasaetal [23] useed floating-point
numbers rather than integral numbers to label the XML
element. However, the storage of floating-point numbers
on a computer is limited by accuracy [23], and it is
still unable to avoid the re-labeling of XML elements.
OrdPath [24] is a prefix encoding scheme, which uses
only odd numbers during the initial labeling of the XML
in order to avoid re-labeling documents. In the event of
inserting an element, it uses an even number between
the two odd numbers to connect the new element to
the existing elements. Although OrdPath can effectively
deal with XML document updating, the length of the
code is O(n) when frequent insertions happen. QED [25]
encoding completely avoids re-labeling and is orthogonal
to some of the encoding schemes. However, when an

JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011 2043

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.10.2043-2049

XML node is inserted with new nodes continuously, the
coding length of the node grows rapidly.

To tackle the above mentioned issues, in this paper
we propose a new dynamic encoding scheme, named
Continued Fraction-based Encoding (CFE), and computer
simulations are run to demonstrate its performance. Ex-
perimental results show that the proposed CFE scheme
has a good query and update performance, and high fea-
sibility. At the same time, it has the following advantages:

1) It supports all structural queries of the Xpath to de-
termine the ancestors-descendant and parent-child
relationships, and the document order between any
two XML nodes;

2) It can insert a new CFE node between any two
consecutive CFE nodes. When updating an XML
document, CFE can completely avoid re-labeling
existing nodes; and

3) CFE is orthogonal to the range encoding scheme
and the prefix encoding scheme. Hence, they can
be combined to further improve the updating per-
formance.

II. DYNAMIC ENCODING BASED ON CONTINUED
FRACTION

With continued fraction, CFE completely avoids the
re-labeling issue when inserting XML elements. Table I
shows the encoding results from numbers 1 to 18 with
various encoding schemes. For encoding details of QED,
please refer to [25] and [30]. The description of CFE
coding is as follows.

Definition: Known i and n are positive integers, and
1 ≤ i ≤ n, the coding for number i is

cfcode(i) = [0, n + 2− i].

It can be seen from Table I,

cfcode[1] < cfcode[2] < · · · < cfcode[18]

which is exactly the same as decimal number order.

A. The Application of CFE

CFE is orthogonal to the prefix encoding and range
encoding. It is called as Range-CFE when CFE is applied
to the range encoding [10]. In the Range-CFE, each node
is labeled as (startCF, endCF, level), in which startCF
and endCF are simple continued fractions. Figure 1(b) is
an example of Range-CFE.

Similarly, CFE can also be applied to the prefix encod-
ing, keeping the document order. It is called Prefix-CFE
when CFE is applied to the prefix encoding. Figure 2
is an example of Prefix-CFE. As there is only a single
root node, there is no need to label it. Root node has
four children nodes which are labeled as [0, 5], [0, 4],
[0, , 3] and [0, 2] from left to right. Similarly, Nodes [0, 4]
and [0, 2] have two children each which are labeled as
[0, 4], [0, 3], [0, 4], [0, 2] and [0, 2], [0, 3], [0, 2], [0, 2]
respectively.

(2)

(1)

Figure 1 Application of CFE to Regional Encoding Scheme example

Similarly, CFE can also be applied to the prefix encoding, keeping the document order. It is

called Prefix-CFE when CFE is applied to the prefix encoding,. Figure 2 is an example of

Prefix-CFE.

Determine ancestor-descendant relationship and document order

 Theorem 1: In Range-CFE, the node A is the ancestor of node D, if and only if the label of

node A(startCFA, endCFA, levelA), and the label of node D(startCFD, endCFD, levelD) satisfy the

following:

 startCFA < startCFD < endCFD < endCFA

 Theorem 2: In Range-CFE, the node A is the father of node D, if and only if A is the ancestor

of D, and at the same time, the label of node A(startCFA, endCFA, levelA), and the label of node

D(startCFD, endCFD, levelD) satisfy the following equation:

 levelA - levelD =1

Storage of the encoding

CFE encoding used Utf-8 format. In the case of Range-CFE, for example, the storage format

will be "19 2,8 1" when a node has been labelled "[0,19], [0,2,8], 1". It follows the rules: (1) Each

different item is separated by a space. (2) the starting 0 is not to be stored with the same continued

fraction. (3) Each different item is separated by comma with the same continued fraction.

Processing XML documents update with CFE

[0,8],[0,3],2

[0,16],[0,11],2 [0,10],[0,9],2

[0,5],[0,4],3
[0,7],[0,6],3 [0,15],[0,14],3 [0,13],[0,12],3

[0,18],[0,17],2

[0,19],[0,2],1

 Range-CFE Encoding

2,3,2

1,18,1

10,11,2

7,8,3

4,9,2 12,17,2

5,6,3 13,14,3 15,16,3

 Regional Encoding Scheme

[0,4] [0,2]

[0,3]

[0,2].[0,2] [0,2].[0,3] [0,4].[0,3] [0,4].[0,2]

[0,5]

Figure 2 Prefix-CFE Encoding Scheme example

(a) Range encoding scheme

(2)

(1)

Figure 1 Application of CFE to Regional Encoding Scheme example

Similarly, CFE can also be applied to the prefix encoding, keeping the document order. It is

called Prefix-CFE when CFE is applied to the prefix encoding,. Figure 2 is an example of

Prefix-CFE.

Determine ancestor-descendant relationship and document order

 Theorem 1: In Range-CFE, the node A is the ancestor of node D, if and only if the label of

node A(startCFA, endCFA, levelA), and the label of node D(startCFD, endCFD, levelD) satisfy the

following:

 startCFA < startCFD < endCFD < endCFA

 Theorem 2: In Range-CFE, the node A is the father of node D, if and only if A is the ancestor

of D, and at the same time, the label of node A(startCFA, endCFA, levelA), and the label of node

D(startCFD, endCFD, levelD) satisfy the following equation:

 levelA - levelD =1

Storage of the encoding

CFE encoding used Utf-8 format. In the case of Range-CFE, for example, the storage format

will be "19 2,8 1" when a node has been labelled "[0,19], [0,2,8], 1". It follows the rules: (1) Each

different item is separated by a space. (2) the starting 0 is not to be stored with the same continued

fraction. (3) Each different item is separated by comma with the same continued fraction.

Processing XML documents update with CFE

[0,8],[0,3],2

[0,16],[0,11],2 [0,10],[0,9],2

[0,5],[0,4],3
[0,7],[0,6],3 [0,15],[0,14],3 [0,13],[0,12],3

[0,18],[0,17],2

[0,19],[0,2],1

 Range-CFE Encoding

2,3,2

1,18,1

10,11,2

7,8,3

4,9,2 12,17,2

5,6,3 13,14,3 15,16,3

 Regional Encoding Scheme

[0,4] [0,2]

[0,3]

[0,2].[0,2] [0,2].[0,3] [0,4].[0,3] [0,4].[0,2]

[0,5]

Figure 2 Prefix-CFE Encoding Scheme example

(b) Range-CFE encoding scheme

Figure 1. Example of applying CFE to Range Encoding scheme.

(2)

(1)

Figure 1 Application of CFE to Regional Encoding Scheme example

Similarly, CFE can also be applied to the prefix encoding, keeping the document order. It is

called Prefix-CFE when CFE is applied to the prefix encoding,. Figure 2 is an example of

Prefix-CFE.

Determine ancestor-descendant relationship and document order

 Theorem 1: In Range-CFE, the node A is the ancestor of node D, if and only if the label of

node A(startCFA, endCFA, levelA), and the label of node D(startCFD, endCFD, levelD) satisfy the

following:

 startCFA < startCFD < endCFD < endCFA

 Theorem 2: In Range-CFE, the node A is the father of node D, if and only if A is the ancestor

of D, and at the same time, the label of node A(startCFA, endCFA, levelA), and the label of node

D(startCFD, endCFD, levelD) satisfy the following equation:

 levelA - levelD =1

Storage of the encoding

CFE encoding used Utf-8 format. In the case of Range-CFE, for example, the storage format

will be "19 2,8 1" when a node has been labelled "[0,19], [0,2,8], 1". It follows the rules: (1) Each

different item is separated by a space. (2) the starting 0 is not to be stored with the same continued

fraction. (3) Each different item is separated by comma with the same continued fraction.

Processing XML documents update with CFE

[0,8],[0,3],2

[0,16],[0,11],2 [0,10],[0,9],2

[0,5],[0,4],3
[0,7],[0,6],3 [0,15],[0,14],3 [0,13],[0,12],3

[0,18],[0,17],2

[0,19],[0,2],1

 Range-CFE Encoding

2,3,2

1,18,1

10,11,2

7,8,3

4,9,2 12,17,2

5,6,3 13,14,3 15,16,3

 Regional Encoding Scheme

[0,4] [0,2]

[0,3]

[[0,2].[0,2] [0,2].[0,3] [0,4].[0,3] [0,4].[0,2]

[0,5]

Figure 2 Prefix-CFE Encoding Scheme example

Figure 2. Example of Prefix-CFE encoding scheme.

B. Determining Ancestor-Descendant Relationship and
Document Order

Theorem 1: In Range-CFE, the node A is the ances-
tor of node D, if and only if the label of node A
(startCFA, endCFA, levelA) and the label of node D
(startCFD, endCFD, levelD) satisfy the condition:

startCFA < startCFD < endCFD < endCFA.
Theorem 2: In Range-CFE, Node A is the father

of Node D, if and only if A is the ancestor of
D, and at the same time, the label of Node A
(startCFA, endCFA, levelA) and the label of Node D
(startCFD, endCFD, levelD) satisfy the condition:

levelA− levelD = 1.

C. Storage of the Encoding

CFE encoding uses Utf-8 format. In the case of Range-
CFE, for example, the storage format will be 192, 81 when
a node has been labelled as [0, 19], [0, 2, 8], 1. It follows
the following three rules:

1) each different item is separated by a space;
2) the starting 0 is not to be stored with the same

continued fraction; and

2044 JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011

© 2011 ACADEMY PUBLISHER

TABLE I.
COMPARISON OF DIFFERENT ENCODING SCHEMES.

Decimal Number QED CFE Decimal Number QED CFE
1 112 [0,19] 10 1 [0,10]
2 12 [0,18] 11 10001 [0,9]
3 122 [0,17] 12 1001 [0,8]
4 13 [0,16] 13 101 [0,7]
5 132 [0,15] 14 1011 [0,6]
6 2 [0,14] 15 11 [0,5]
7 212 [0,13] 16 1101 [0,4]
8 22 [0,12] 17 111 [0,3]
9 222 [0,11] 18 1111 [0,2]

3) each different item is separated by a comma with
the same continued fraction.

D. Processing XML Documents Update with CFE

It is a very important issue how to minimize the cost
of update in processing dynamic XML documents when
there are frequent insertings and deletings of nodes. One
important feature of CFE code is that it does not require
re-labeling of existing nodes when inserting a new CFE
node between any two CFE nodes. The following reasons
show how to insert a new CFE code between two arbitrary
CFE codes.

Deduction: For two given continued fractions A and
B with

0 < A < B < 1,

A = [0, α2, . . . , αj , xj+1, . . . , xs],

B = [0, α2, . . . , αj , yj+1, . . . , yt], and

xj+1 6= 1, yj+1 6= 1, and xj+1 6= yj+1,

when any of the following conditions are met, the con-
tinued fraction C obtained will meet A < C < B:

1) s = j and t ≥ j + 1, then

C = [0, α2, . . . , αj , yj+1 + 100];

2) s ≥ j + 1 and t = j, then

C = [0, α2, . . . , αj , xj+1 + 100];

3) s ≥ j + 1, t ≤ j + 1, and |xj+1 − yj+1| > 1, then

C = [0, α2, . . . , αj , (xj+1 + yj+1)/2];

4) s = j + 1, t = j + 1, |xj+1 + yj+1| = 1, and j is
an even number, then

C = [0, α2, . . . , αj , xj+1, 100];

5) s ≥ j + 2, t = j + 1, |xj+1 − yj+1| = 1, and j is
an even number. If xj+2 = 2, then

C = [0, α2, . . . , αj , xj+1, 1, 100];

otherwise,

C = [0, α2, . . . , αj , xj+1, xj+2 − 1];

6) s ≥ j + 1, t ≥ j + 2, |xj+1 − yj+1| = 1, and j is
an even number, then

C = [0, α2, . . . , αj , yj+1, yj+2 + 100];

7) s = j + 1, t = j + 1, |xj+1 − yj+1| = 1, and j is
an odd number, then

C = [0, α2, . . . , αj , yj+1, 100];

8) s = j + 1, t ≥ j + 2, |xj+1 − yj+1| = 1, and j is
an odd number. If yj+2 = 2, then

C = [0, α2, . . . , αj , yj+1, 1, 100];

otherwise

C = [0, α2, . . . , αj , yj+1, yj+2 − 1];

9) s ≥ j + 2, t ≥ j + 1, |xj+1 − yj+1| = 1, and j is
an odd number, then

C = [0, α2, . . . , αj , xj+1, xj+2 + 100].

Example-1. For two given continued fractions A = [0, 1]
and B = [0, 1, 3], while s = j = 2, t = 3 ≥ j +1, in line
with Case 1, C = [0, 1, 103], A < C < B.
Example-2. For two given continued fractions A =
[0, 1, 3, 5] and B = [0, 1, 3], while j = 3, s = 4 ≥ j + 1,
t = 3 = j, in line with Case 2, C = [0, 1, 3, 105].
Example-3. For two given continued fractions A =
[0, 1, 3] and B = [0, 1, 9], while j = 2, s = 3 ≥ j + 1,
t = 3 ≥ j + 1, |x3 − y3| > 1, in line with Case 3,
C = [0, 1, 6].

E. Processing XML Documents Update with Range-CFE

Updating on an XML document includes inserting
or deleting XML elements, text, attributes, or changing
text. Encoding of a new node takes place only when
an insertion is involved, while deleting elements and
changing text have nothing to do with encoding. The
insertion of XML nodes can be divided into the following
four types:

1) the inserted node has no brother nodes;
2) the inserted node has only left brother node;
3) the inserted node has only right brother node; and
4) the inserted node has a brother node on both sides.

Following are discussions for these four situations.

1) Node A has a label of (startCFA, endCFA, levelA)
without child nodes. Now insert Node D to Node A.
D’s label is calculated as follows (GetInsertedCode

JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011 2045

© 2011 ACADEMY PUBLISHER

is the algorithm for obtaining insertion label in
deduction):

startCFD = GetInsertedCode (startCFA, endCFA),
endCFD = GetInsertedCode (startCFD, endCFA).

2) Assume the most right node to Node A is B. Insert
Node D right to Node B. Then,

startCFD = GetInsertedCode (endCFB, endCFA),
endCFD = GetInsertedCode (startCFD, endCFA).

3) Assume the most left node to Node A is B. Insert
Node D left to Node B. Then,

startCFD = GetInsertedCode (startCFA, startCFB),
endCFD = GetInsertedCode (startCFD, startCFB).

4) Assume Nodes A and B are next to each other,
Node A is on the left side of Node B. Assuming a
new node denoted by D is inserted between Nodes
A and B, then,

startCFD = GetInsertedCode (endCFA, startCFB),
endCFD = GetInsertedCode (startCFD, startCFB).

III. EXPERIMENTAL RESULTS

In our experiments, the three dynamic encoding
schemes, OrdPath [24], QED [25] and Range-CFE, have
been discussed and compared with regard to their storage
space, query time and update performance, etc. All algo-
rithms are implemented with C# programming language.
All experiments are run on a 2.02GHz Celeron processor
with 512MB of physical memory running Windows XP
Professional. XML testing data set comes from [38], of
which characteristics are shown in Table II.

A. Comparison of Storage Space

Figure 3 shows the total coding size of all nodes in
each data set. QED takes up the largest space for each
data set. Compared with OrdPath, Range-CFE takes up
lager space for data sets D1 and D3, and takes up less
space for data sets D2 and D4.

Shakespeare’s plays data set (D4) is used to test the
query performance of the three encoding schemes. The
test query sentence and the number of returned nodes are
shown in Table III. Figure 4 indicates that Range-CFE
has the best query performance and QED is the second
with regard to query time.

B. Update Property

Assuming that the elements are in order in the Shake-
speare’s plays (D4), Club (D1), Movie (D2), and edmunds
(D3). This study has tested the update performance of
different encoding schemes under the follwoing four
situations:

1) inserting one new element between any two adja-
cent elements in the Club;

2) inserting one new element between any two adja-
cent elements in the Movie;

3) inserting one new element between any two adja-
cent elements in edmunds; and

4) inserting one new element between any two adja-
cent elements in Shakespeare’s plays.

It can be seen from Figure 5 that the Range-CFE has the
best update performance and QED is the second.

IV. CONCLUSIONS

By applying the continued fraction based XML encod-
ing CFE to range encoding, i.e., the Range-CFE encoding,
it provides a good solution to the problems of exist-
ing encoding schemes, such as high cost of re-labeling
XML elements when updating XML documents, as well
as the rapid growth of code length when continuously
inserting new nodes at an XML node. This is because
the Range-CFE not only supports the two XML nodes
having ancestors-descendent or parent-child relationships,
and can quickly determine document order, but also does
not require re-label existing nodes when inserting or
deleting any XML node. The experimental results have
demonstrated that the Range-CFE encoding scheme has
superior performance to existing encoding schemes on the
label updates and query processing performance. Follow-
up work will explore how to establish an index based on
CFE to better fit the need of XPath query.

ACKNOWLEDGMENT

We thank sincerely for all resources offered to us,
including various kinds of data, dissertations, reports and
other materials. We also thank the reviewers for their
detailed and valuable comments.

REFERENCES

[1] A. Berglund, S. Boag, and D. Chamberlin, “Xml path
language (xpath) 2.0,” W3C working draft, 2002.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Wiener, “The lorel query language for semistructured
data,” International Journal on Digital Libraries, vol. 1,
no. 2, pp. 68–88, 200.

[3] A. Deutsch, M. Fernadez, D. Florescu, A. Levy, and
D. Suciu, “A query language for xml,” in Proceedings
of the 8th International World Wide Web Conference,
Toronto,Canada, 1999, pp. 77–91.

[4] D. S. J. Robie, J. Lapp, “Xml query language (xql),”
in Proceedings of the W3C Query Languages Workshop
(QL’98), Boston, Massachusets, USA, 1998, pp. 3–4.

[5] P. Fankhauser, M. Fernandez, and A. Malhotra, “Xquery
1.0 formal semantics,” W3C Working Draft, 2002.

[6] D. Chamberlin, J. Robie, and D. Florescu, “Quilt: An
xml query language for heterogeneous data sources,” in
Proceeings of Web DB 2000, Dallas,texas, 2000, pp. 53–
62.

[7] D. Chamberlin, “Xquery: A query language for xml,”
in Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, Califor-
nia, 2003, pp. 682–682.

[8] P. F. Dietz, “Maintaining order in a linked list,” in Pro-
ceedings of the 14th Annual ACM Symposium on Theory
of Computing. San Francisco: ACM Press, 1982, pp.
122–127.

2046 JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011

© 2011 ACADEMY PUBLISHER

TABLE II.
TESTING DATA SET.

Data set Subject Number of documents Max fan out
of element

Max depth
of element

Total number of nodes
in data set

D1 Club 12 47 3 2928
D2 Movie 490 38 4 26044
D3 edmunds 1190 162 3 234400
D4 Shakespeare’s plays 37 434 5 179689

0

1000

2000

3000

4000

5000

6000

7000

D1 D2 D3 D4

Data Set

S
to

ra
g

e
 S

pa
ce

(K
B

)

OrdPath

QED

Range_CFE

Figure 3 Comparison of Storage Space

Shakespeare’s plays data set (D4) is used to test the query performance of the three encoding

schemes. The test query sentence and number of returned nodes are shown in Table 3. Figure 4

indicates that Range-CFE has the best query performance and QED is the second with regards to

query time.

Table 3 Query Sentence

Query Number of Returned Nodes

Q1 /play/act[4] 37

Q2 /play/act[5]//preceding::scene 611

Q3 /play/act/scene/speech[2] 730

Q4 /play/*/* 1938

Q5 /play/act//speech[3]/preceding-sibling::* 3093

Q6 /play//act[2]/following::speaker 18406

Q7 /play//scene/speech[6]/following-sibling::speech 26705

Q8 /play/act/scene/speech 30933

Q9 /play/*//line 107833

0
10
20
30
40
50
60
70
80
90

100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Data Set

Q
u

er
y

 T
im

e(
s)

OrdPath

QED

Range-CFE

Figure 4. Comparison of Query Time

Update Property

Assuming that the elements are in order in the Shakespeare's plays(D4), Club(D1), Movie(D2),

edmunds(D3). This study has tested the update performance of the different encoding schemes

under the four situations. Inserting one new element between any two adjacent elements in the Club;

inserting one new element between any two adjacent elements in the Movie; inserting one new

Figure 3. Comparison on storage space.

TABLE III.
TESTING DATA SET.

Query Number of Returned Nodes
Q1 /play/act[4] 37
Q2 /play/act[5]//preceding::scene 611
Q3 /play/act/scene/speech[2] 730
Q4 /play/*/* 1938
Q5 /play/act//speech[3]/preceding-sibling::* 3093
Q6 /play//act[2]/following::speaker 18406
Q7 /play//scene/speech[6]/following-sibling::speech 26705
Q8 /play/act/scene/speech 30933
Q9 /play/*//line 107833

0

1000

2000

3000

4000

5000

6000

7000

D1 D2 D3 D4

Data Set
S

to
ra

g
e

 S
pa

ce
(K

B
)

OrdPath

QED

Range_CFE

Figure 3 Comparison of Storage Space

Shakespeare’s plays data set (D4) is used to test the query performance of the three encoding

schemes. The test query sentence and number of returned nodes are shown in Table 3. Figure 4

indicates that Range-CFE has the best query performance and QED is the second with regards to

query time.

Table 3 Query Sentence

Query Number of Returned Nodes

Q1 /play/act[4] 37

Q2 /play/act[5]//preceding::scene 611

Q3 /play/act/scene/speech[2] 730

Q4 /play/*/* 1938

Q5 /play/act//speech[3]/preceding-sibling::* 3093

Q6 /play//act[2]/following::speaker 18406

Q7 /play//scene/speech[6]/following-sibling::speech 26705

Q8 /play/act/scene/speech 30933

Q9 /play/*//line 107833

0
10
20
30
40
50
60
70
80
90

100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Data Set

Q
u

er
y

 T
im

e(
s)

OrdPath

QED

Range-CFE

Figure 4. Comparison of Query Time

Update Property

Assuming that the elements are in order in the Shakespeare's plays(D4), Club(D1), Movie(D2),

edmunds(D3). This study has tested the update performance of the different encoding schemes

under the four situations. Inserting one new element between any two adjacent elements in the Club;

inserting one new element between any two adjacent elements in the Movie; inserting one new

Figure 4. Comparison on query time.

[9] Q. Li and B. Moon, “Indexing and querying xml data
for regular path expressions,” in Proceedings of the 27th
International Conference on VLDB. Roma: Morgan
Kaufmann Publishers, 2001, pp. 361–370.

[10] C. Zhang, J. Naughton, and D. DeWitt, “On supporting
containment queries in relational database management
systems,” in Proceedings of the 2001 ACM SIGMOD
International COMAD. Santa Barbara:ACM Press, 2001,
pp. 425–436.

[11] C. X. Wan and Y. S. Liu, “Restore: Middleware for xml’s
relational storage and retrieve,” Wuhan University Journal

of Natural Science, vol. 8, no. 1A, pp. 28–34, 2003.

[12] C. W. Chung, J. K. Min, K. Shim, and K. Seoul, “Apex:
An adaptive path index for xml data,” in Proceedings
of the 2002 ACM SIGMOD international conference on
Management of data, Madison, Wisconsin, 2002, pp. 121–
132.

[13] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes,
“Exploiting local similarity for indexing paths in graph-
structured data,” in Proceedings of the 18th International
Conference on Data Engineering, San Jose, USA, 2002,
pp. 129–140.

JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011 2047

© 2011 ACADEMY PUBLISHER

element between any two adjacent elements in edmunds and inserting one new element between

any two adjacent elements in Shakespeare's plays. It can be seen from Figure 5 that Range-CFE has

the best update performance and QED is the second.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

U
p

d
a

te
 T

o
ta

l
T

im
e

(S
)

D1 D2 D3 D4
Data Set

OrdPath

QED

Range-CFE

Figure 5. Renew Property

Conclusion

 By applying the continued fraction based XML encoding CFE to range encoding, that is,

the Range-CFE encoding, it provides a good solution to the problems of the existing encoding

schemes, such as the high cost of re-labeling XML elements when updating XML documents, as

well as the rapid growth of code length when continuously inserting new nodes at an XML node.

These are because the Range-CFE not only supports the two XML nodes having

ancestors-descendent or parent-child relationships, and can quickly determine document order, but

also, it does not require re-labeling of existing nodes when inserting or deleting any XML nodes.

The experimental results show that the Range-CFE encoding scheme has superior performance to

the existing encoding schemes on the label updates and query processing performance. Follow-up

work will explore how to establish an index based on CFE to better fit the need of XPath query.

Acknowledgement

The paper is supported by National Natural Science Foundation of China(Grant No. 61001143

and No.50604012). Sincerely thanks for all resources offering us kinds of data,

dissertations, reports and other materials.

References

[1] A. Berglund, S. Boag, and D. Chamberlin, “Xml path language (xpath) 2.0,” W3C working draft, 2002.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J.L. Wiener. “The Lorel query language for semistructured data”[J].

International Journal on Digital Libraries ,Volume 1,Number1,pp.68–88.

[3] A. Deutsch, M. Fernadez, D. Florescu, A. Levy, and D. Suciu. “A Query Language for XML”[C]. In Proceedings of the 8th

International World Wide Web Conference. Toronto,Canada,1999,pp.77-91.

[4] J. Robie, J. Lapp, D. Schach. “XML Query Language(XQL)”[C]. In Proceedings of the W3C Query Languages Workshop

(QL'98), Boston, Massachusets, USA, 1998, pp.3-4.

[5] P. Fankhauser, M. Fernandez, and A. Malhotra, “Xquery 1.0 formal semantics,” W3C Working Draft, 2002.

Figure 5. Comparison on renew property.

[14] H. Wang, S. Park, W. Fan, and P. S. Yu, “Vist: a dynamic
index method for querying xml data by tree structures,” in
Proceedings of the 2003 ACM SIGMOD, Madison, USA,
2003, pp. 110–121.

[15] P. Rao and B. Moon, “Prix: Indexing and querying xml
using prufer sequences,” in Proceedings of the 2004 ICDE,
Boston, USA, 2004, pp. 288–299.

[16] S. Tatarinov, K. S. Viglas, and Beyer, “Storing and query-
ing ordered xml using a relational database system.” in
Proceedings of the 2002 ACM SIGMOD int’l COMAD.
Madison: ACM Press, 2002, pp. 204–215.

[17] E. Cohen, H. Kaplan, and T. Milo, “Labeling dynamic xml
trees. in spds,” in SPDS. Madison: ACM Press, 2002, pp.
271–281.

[18] H. Wang and X. Meng, “On the sequencing of tree
structures for xml indexing,” in Proceedings of the 2005
ICDE, Tokyo, Japan, 2005, pp. 372–383.

[19] S. A. l. Khalifa, H. V. Jagadish, and N. Koudas, “Structural
joins: A primitive for efficient xml query pattern match-
ing,” in Proceedings of the 2002 ICDE, San Jose, USA,
2002, pp. 141–152.

[20] H. Jiang, W. Wang, H. Lu, and J. X. Yu, “Holistic twig
joins on indexed xml documents,” in Proceedings of the
2003 VLDB, Berlin, Germany, 2003, pp. 273–284.

[21] Q. Li and B. Moon, “Indexing and querying xml data
for regular path expressions,” in Proceedings of the 2001
VLDB, Rome, Italy, 2001, pp. 361–370.

[22] X. Wu, M. L. Lee, and W. Hsu, “A prime number labeling
scheme for dynamic ordered xml trees,” in Proceedings of
the 19th International Conference on Data Engineering.
Boston: IEEE Computer Society, 2004, pp. 66–78.

[23] T. Amagasa, M. Yoshikawa, and S. Uemura, “Qrs: A robust
numbering scheme for xml documents,” in Proceedings of
the 19th International Conference on Data Engineering.
Bangalore: IEEE Computer Society, 2003, pp. 705–707.

[24] P. O’Neil, E. O’Neil, and S. Pal, “Ordpaths: Insert-friendly
xml node labels,” in Proceedings of the 2004 ACM SIG-
MOD International COMAD. Paris: ACM Press, 2004,
pp. 903–908.

[25] C. Li and T. W. Ling, “Qed: a novel quaternary encoding
to completely avoid re-labeling in xml updates,” in Pro-
ceedings of the 14th ACM International CIKM. Bremen:
ACM Press, 2005, pp. 501–508.

[26] H. Xiao, C. Tang, and T. Zhang, “Btcs: The binary
traveling coding scheme for xml document,” Journal of
Sichuan University of Natural Science, vol. 43, no. 3, pp.
532–536, 2006.

[27] L. Xu, Z. Bao, and T. Wang, “A dynamic labeling scheme
using vectors,” in Proceedings of 18th International Con-
ference on DEXA. Regensburg: Springer-Verlag, 2007,
pp. 130–140.

[28] R. Thonangi, “A concise labeling scheme for xml data,”
in Proceedings of International COMAD. Delhi, India:
Computer Society of India, 2006.

[29] J.-K. Min, J. Lee, and C.-W. Chung, “An efficient encoding
and labeling for dynamic xml data,” in Proceedings of
12th International Conference on DASFAA. Bangkok,
Thailand: Springer-Verlag, 2007, pp. 715–726.

[30] C. Li, T. W. Ling, and M. Hu, “Efficient processing of
updates in dynamic xml data,” in Proceedings of the 22nd
International Conference on Data Engineering. Atlanta,
Georgia: IEEE Computer Society, 2006, pp. 13–23.

[31] Y. Lu, L. Zhang, and W. Wang, “A new xml document
coding scheme,” Journal of Computer Research and De-
velopment, vol. 41, no. 3, pp. 500–503, 2004.

[32] H. Jiang, H. Lu, and W. Wang, “Xr-tree:indexing xml data
for efficient structural joins,” in Proceedings of the 2003
ICDE, San Jose, USA, 2003, pp. 78–82.

[33] N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig
joins: optimal xml pattern matching,” in Proceedings of
the 2002 ACM SIGMOD, Madison, USA, 2002, pp. 310–
321.

[34] T. Chen, J. Lu, and T. Ling, “On boosting holism in
xml twig pattern matching using structural indexing tech-
niques,” in Proceedings of the 2005 ACM SIGMOD, Bal-
timore, Maryland, 2005, pp. 455–466.

[35] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen, “From region
encoding to extended dewey: On efficient processing of
xml twig pattern matching,” in Proceedings of the 2005
VLDB, Trondheim, Norway, 2005, pp. 193–204.

[36] T. Chen, T. W. Ling, and C. Y. Chan, “Prefix path
streaming: A new clustering method for optimal holistic
xml twig pattern matching,” in Proceedings of the 2004
DEXA, Zaragoza, Spain, 2004, pp. 801–810.

[37] J. Lu, T. Chen, and T. W. Ling, “Efficient processing of
xml twig patterns with parent child edges: a look-ahead
approach,” in Proceedings of the 2004 CIKM, Washington,
USA, 2004, pp. 533–542.

[38] “The niagara project experimental data,”
http://www.cs.wisc.edu/niagara/data.html.

2048 JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011

© 2011 ACADEMY PUBLISHER

Yi Jiang is currently an Associate Professor at the Depart-
ment of Computer Science, School of Information Science
and Technology, Xiamen University, China. He was a lecturer
at the Department of Finance in the School of Economics,
Xiamen University, China from 1994 to 1998. His research
interest includes database, data mining, knowledge discovery
and embedded system.

Xiangjian He received his PhD degree in Computing Sciences
in 1999 from University of Technology, Sydney (UTS). He is
currently a professor at UTS and a Deputy Director of Research
Centre for Innovation in IT Services and Applications (iNEXT)
at UTS. His research interest includes computer vision, image
processing, e-services, and computer and network security. In
recent years, he has had over 200 refereed publications in books,
journals and conferences. Professor He is a Senior Member of
IEEE.

Fan Lin received his MS degree in Computer Science from
the Department of Computer Science, Xiamen University, China
in 2003. He is currently an Assistant Professor at School of
Software, Xiamen University. Dr. Lin’s research interest includes
security and cloud computing, evolutionary computation, em-
bedded system, Internet middleware, and machine vision.

Wenjing Jia received her PhD degree in Computing Sciences
in 2007 from University of Technology, Sydney (UTS). She is
currently a Lecturer in Faculty of Engineering and Information
Technology at UTS, and a core member of Research Centre for
Innovation in IT Services and Applications (iNEXT) at UTS.
Before joining UTS, Dr. Jia was an Associate Lecturer in Fuzhou
University from 1999 to 2003. Her research interest includes
computer vision, pattern recognition, and machine learning. Dr.
Jia is a member of IEEE and IPRS since 2006.

JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011 2049

© 2011 ACADEMY PUBLISHER

