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Abstract—Coverage-based fault localization techniques are 
effective to support program debugging. However, these 
techniques assess the suspiciousness of program entities 
individually. Such calculation oversimplifies executions and 
cannot reflect execution contexts. In this paper, we use 
control flow paths to analyze the execution context, quantify 
edge profiles to assess how each block contributes to failures 
and propose the context-aware fault localization approach 
FP. We use the edge profile to represent the passed and 
failed executions, calculate the coverage statistics and edge 
suspiciousness scores, and then by contrasting edge 
suspiciousness scores of blocks covered by a failed execution, 
we propose fault proneness to evaluate how each block 
contributes to the failure. At last, we take the sum of fault 
proneness as the suspiciousness to assess the probability of 
containing faults. We construct controlled experiments to 
compare our technique with a representative technique. The 
findings are as follows. 1) the FP technique performs well in 
locating faults if the infected state propagation is complex, 
2) but when the fault is easy to locate, the FP technique may 
be overly complicated, 3) the integration of the two 
techniques are more effective than any of them. 
 
Index Terms—program debugging, fault localization, fault 
proneness, control flow analysis 
 

I.  INTRODUCTION 

Program debugging is a tedious, challenging and 
error-prone process in software development. It is 
desirable to automate the debugging as much as possible. 
Fault localization is the vital step of debugging [1]. It 
aims to filter statements unrelated to bugs and locate only 
the remaining statements to be further examined.   

Coverage based fault localization (CBFL) techniques 
have been proposed to support program debugging [2]. 
CBFL techniques usually contrast the program spectra 
information (such as coverage statistics) between passed 
and failed executions to compute the suspiciousness of 
individual program entities (such as statements, blocks 
and predicates), and then they construct a list of program 
entities in descending order of their fault suspiciousness. 
Programmers may follow the suggested list to locate 
faults. Empirical studies have shown that CBFL 
techniques can be effective in guiding programmers to 
examine code and locate faults. 

However, the coverage statistics of program entities 
are calculated individually. For all the entities that are 

executed in a failed execution, the number of failed 
executions will be equally added by 1. Several studies 
have proposed that such calculation ignores the 
dependency relationships between the predecessor and 
successor entities, which may result that the located entity 
is not the root cause of failure. For example, CBFL 
techniques are always able to locate the entities at which 
the program fails, but these entities do not contain faults 
[5].  

In addition, with the impact of random test cases, the 
individual coverage statistics cannot reflect the similarity 
of executions [7]. We take an example as follows for 
detailed illustration. The number of failed executions that 
cover the entity b is noted as failed (b) =n. The n failed 
executions may follow n different control flow paths that 
cover b. Also, the n failed executions can just follow the 
same path that covers b. In the two cases, the number of 
failed executions that executed b is n. However, if the n 
failed executions follow the same path, the coverage 
statistics of all the program entities covered by the path 
are n. So the programmer still cannot locate the entity 
containing the fault. On the contrary, if the n failed 
executions follow n different paths that cover n, we can 
infer that b is more likely containing faults because n 
different executions are failed. That is to say, the 
difference between the case that n failed executions 
follow the same path and the case that n failed executions 
follow n different path is distinct. Therefore, we claim 
that to enable the execution context analysis during the 
coverage statistics is significant to improve CBFL 
techniques. 

The control flow path is an appropriate way to solve 
the above problem. If b contains a fault, all execution 
paths that cover b may trigger the fault and perform 
failure [11]. On the contrary, if b is fault free, even if b is 
executed in a failed execution, the possibility that all the 
executions are failed is rather low. To sum up, the 
coverage statistics to paths can indicate how infected 
states propagate to failure and further indicate the fault 
proneness of blocks. The passed and failed executions 
covering a block are not identical for every entity, so the 
fault proneness of entities covered by a failed execution is 
different from each other. Capturing this characteristic, 
we propose a context-aware fault localization approach 
via path analysis. 

Our approach uses the program control flow graph to 
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organize the coverage and calculate edge suspiciousness. 
Given a failed execution, we use the fault proneness to 
assess how each block covered by this execution 
contributes to the failure by contrasting the coverage 
statistics of different edges covering the block. The sum 
of all fault proneness for every failed execution is defined 
as suspiciousness, and finally we synthesize a ranked list 
to facilitate fault localization. At last, we construct 
controlled experiments to validate the effectiveness of our 
approach. The main contributions of this paper include 
three aspects: 1) by contrasting the coverage statistics of 
different edges covering the block, we propose an 
approach to assess the fault proneness of blocks covered 
by the same execution. 2) The experiment results show 
that our approach is promising when dealing with faults 
which are hard to localize with the Tarantula technique. 
3) Besides, the experiment results also indicate that the 
FP works better if integrated with CBFL techniques such 
as Tarantula.  

The paper is organized as follows: Section 2 gives 
related work and a motivation example. Section 3 
presents our analysis model and the FP technique, 
followed by some experimental evaluations and 
discussion in Section 4. Section 5 concludes this paper 
and presents our future work. 

II.  RELATED WORK AND MOTIVATION 

A.  Coverage based Fault Localization 
Agrawal et al. [1] are the first to propose the coverage 

based fault localization technique, which is called χSlice. 
In this technique, the set of statements executed only in 
the failed test run, is reported as the likely faulty 
statements. This idea is further developed by Renieris and 
Reiss [18]. They propose the Nearest Neighborhood (NN) 
technique, which selects the nearest passed execution. 
Jones and colleagues [13] propose a different CBFL 
technique called Tarantula. Tarantula uses the coverage 
statistics and ratio of failed executions to predicate the 
suspiciousness of program failures. Researchers propose 
new CBFL techniques, such as Ochiai and Jaccard [3], 
which are similar to Tarantula except that they use 
different formulas to compute the suspiciousness. Existed 
experiment results show that when multiple test runs are 
available, the performance of CBFL is better than delta 
debugging and program slicing based techniques [2].  

Tarantula and other similar fault localization 
techniques such as SBI are statements level. Statistical 
debugging instruments predicates into program code and 
locates faults by comparing the evaluation results of 
predicates in failed test runs with those in all test runs 
[14][20][21]. Predicates can be regarded as another 
manner of coverage refinement by exploiting the program 
state information. Santelices et al. investigate the 
effectiveness of using different program entities to locate 
faults. They show that the integrated results of using 
different program entities may be better than the use of 
any single kind of program entity [4].  

The path and edge profiles have also been used in 
previous studies, which are similar to our technique in 
this paper. Jiang and Su propose a technique which uses 

clustering to obtain fault predictors with the biggest fault 
proneness, and then generate the execution paths that 
traverse these predicates to reflect how the failure occurs 
[8]. George and his colleagues propose the program 
dependence graph (PPDG) that facilitates probabilistic 
analysis and reasoning about uncertain program behavior, 
particularly behavior that associated with faults. The 
PPDG could be applied to fault diagnosis [22]. Chilimbi 
et al. [12] believe that there are more meaningful 
information in execution report based on path than 
execution report based on block, and propose the 
HOLMES framework. The statements are examined 
according to the suspiciousness of path which covers 
them. Zhang et al. [5] propose the idea of propagation of 
infected states, which is very novel. Getting inspiration 
from it, we design the suspiciousness calculation of paths.  

B.  Motivating Example 
    In this section, we will take an example to illustrate our 
motivation. 

The statements shown in Figure 1 are a real program 
segment of grep, which is a Linux program. Among the 
statements, the operation '||' in the if condition statement 
should be '&&'. The control flow graph is shown in 
Figure 1. When examining the coverage information, we 
find that the if condition statement is always executed in 
either failed execution or passed executions. According to 
the coverage information, the suspiciousness score of b2 
cannot be assured to be larger than other blocks when the 
coverage statistics based techniques are employed such as 
Tarantula [13] and SBI [3]. 

We note that the failed executions covering b3 is failed 
(b3), the passed executions covering b3 is passed (b3). 
According to SBI, the suspiciousness score of b3 is failed 
(b3)/ (failed (b3) + passed (b3)). Similar, the 
suspiciousness score of b2 is failed (b2)/ (failed (b2) + 
passed (b2)). Because failed (b2) = failed (b3) + failed (b4), 
and passed (b2) = passed (b3) + passed (b4), the 
suspiciousness of b2 will be no larger than the larger one 
of b3 and b4. 

In fact, the failed executions of b3 and b4 are caused by 
the faulty condition which is generated in b2, so the 
suspiciousness of b2 should be larger in ideal fault 
localization method. 

Examining the executions of the scheduled program, 
there are two failed execution paths, which are 
b1→b2→b4 and b1→b2→b3. Suppose that the fault exists 
in b2, the infected program state may be generated after b2 
has been executed, and the infected state can propagate to 
b3 and b4 along with the path b2→b3 and b2→b4. It means 

Figure 1 The motivation example  

1978 JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011

© 2011 ACADEMY PUBLISHER



that there should be several failed executions along with 
b1→ b4, and this is in accordance with the actual 
executions. In contrast, if we suppose that b3 contains a 
fault, there should not be failed executions along with 
b2→b4. These suppositions are not supported by the 
actual executions as shown in Figure 1. 

According to the above analysis, the coverage statistics 
to different edges can indicate how infected states 
propagate to failure and further indicate the probability of 
containing faults. The qualified value is noted as the fault 
proneness as defined in Section 3. 

III.  METHODOLOGY 

A.  Preliminaries 

Definition 1 A basic block, also known as a block, is a 
sequence of consecutive statements or expressions 
containing no transfer of control except at the end.  

Given that the programs do not fail with crash fault, if 
one element (statement) of a block is executed, all the 
other elements are also executed. This definition has also 
been used in related researches [3][5]. 

Definition 2 EG={B,E,Path} is used to denote the 
execution graphs in this paper, where  B={ b1, b2, …, bm}  
is the set of basic blocks of the program, Path={ path1, 
path2, …, pathn} is the set of execution paths, and  E={e1, 
e2, …, ek} is the path edges that start from one block to 
another.  

In the rest of this paper, the notation e (bi, bj) is usually 
used to represent the edge that goes from block bi to 
block bj. The notation e (*, bj) is used to represent all the 
edges that go to bj. The notation e (bi,*) is used to 
represent all the edges that start from bi. Besides, the 
edge e (bi, bj) is covered means e (bi, bj) has been 
executed in the execution. 

Definition 3 The two blocks linked by an edge are 
named as successive blocks. The block from which the 
edge starts is named as the predecessor block while the 
other is named as the successor block. 

Definition 4 The fault proneness expresses the 
quantified value of how blocks contribute to a certain 
failed executions. The larger the fault proneness of a 
block is, the larger possibility of a block containing the 
fault causing failure.  

All the blocks covered by failed executions are likely 
to contain faults, but in many situations, only a certain 
block contains a fault. By employing the concept of fault 
proneness, we want to quantify how each block 
contributes to the failed execution, and in this way, we 
can distinguish the block that most likely contains fault 
from other blocks covered by the failed execution. 

Definition 5 The fault suspiciousness is defined to 
represent the probability of a block containing faults. 

The fault proneness just indicates how blocks 
contribute to a failed execution. For different failed 
executions, the fault proneness of a block may be 

different. As a result, the fault suspiciousness value must 
be normalized to accumulate different fault proneness. 

B.  Analysis Model 
In this section we use the failed execution edge shown 

in Figure 2 to illustrate the computing process of fault 
proneness. We note ( , )e s d as a failed execution edge as 
shown in Figure 2. There must be a fault in either s  or d . 
The fault localization is used to determine which node 
has more possibilities to lead to the failed execution and 
which node has higher fault proneness. If the fault is 
located at s  instead of d , then other execution edges 
which cover s  are likely to trigger the fault in s  and lead 
to failed executions. At the same time, the executions 
which cover d  instead of s  may be passed executions. 
On the contrary, if the fault is located at d  instead of s , 
then the executions which cover s  are likely to be passed 
executions while executions covering d  may be failed 
executions. In brief, if most of executions which cover s  
are passed executions while executions covering d  are 
failed executions, the fault is more likely to be located 
at d . Also, if most of executions which cover s  are failed 
executions while executions covering d  are passed 
executions, the fault is more likely to be located at s . 
Therefore, the fault proneness of d  and s can be 
measured through analyzing the coverage statistics of 
execution edges which cover s and those of execution 
edges which cover d . As a result, the comparison of 
coverage statistics between execution edges covering s  
and d  can be taken as the quantification of fault 
proneness. 

C.  Edge Suspiciousness Calculation 
Based on the conclusion in section 3.1, how to 

calculate the distribution probability of failed execution 
paths becomes an urgent problem. In this section, we first 
show the computing method of how to obtain the 
suspiciousness in an execution flow diagram. Existing 
researches indicate that it is not appropriate to use the 
coverage frequency as the fault coverage rate in an edge. 
In this paper, we choose the suspiciousness definition 
formula mentioned in [5] to solve this problem.  

( )
( ) ( )

i
i

i i

failed e
e

failed e passed e
θ( ) =

+
             (1) 

As shown above, ( )ifailed e represents the number of 
failed executions that cover ie , and ( )ipassed e  represents 

Figure 2 An illustration example 
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the number of passed executions that cover ie . 

D.  Quantification of fault Proneness 
Let us reexamine the executions which are shown in 

Figure 2. The notation ( ( , ))inprob e s d is used to represent 
the proportion of ( ( , ))e s dθ  to ( (*, )e dθ , which is the 
sum of edge suspiciousness values of all edges which go 
to d . The notation ( ( , ))outprob e s d  is used to represent the 
proportion of ( ( , ))e s dθ  to ( ( ,*))e sθ , which is the sum of 
edge suspiciousness values of all edges which start 
from s . In this example, ( ( ,*))e sθ includes 1( ( , ))e s dθ , 
and ( ( , ))e s dθ . ( (*, ))e dθ includes 1( ( , ))e s dθ , 2( ( , ))e s dθ  
and ( ( , ))e s dθ .  

If all the executions along 1( , )e s d and 2( , )e s d are 
passed executions while the executions along 

1( , )e s d and 2( , )e s d are failed executions, then d has the 
higher fault proneness. According to Equation (1), the 
value of both 1( ( , ))e s dθ and 2( ( , ))e s dθ are equal to 0, 
while the value of 1( ( , ))e s dθ and 2( ( , ))e s dθ are larger 
than 0. In such case, the value of ( ( , ))inprob e s d  is less 
than ( ( , ))outprob e s d . By contrast, if all the executions 
along 1( ( , ))e s dθ and 2( ( , ))e s dθ  are failed executions 
while the executions along 1( ( , ))e s dθ and 2( ( , ))e s dθ are 
passed executions, then s has higher fault proneness. In 
this case, the value of ( ( , ))inprob e s d is larger 
than ( ( , ))outprob e s d . In conclusion, the value of 

( ( , ))inprob e s d  and ( ( , ))outprob e s d can be used to 
indicate the fault proneness of s and d , respectively. The 
next, we will use ( ( , ))inprob e s d  and ( ( , ))outprob e s d to 
qualify the values of fault proneness of s and d . The 
equation of ( ( , ))inprob e s d  is given as below. 

(*, )

(*, )

( ( , ))
( ( , ))

[ ( (*, ))]
e d

in
e d

e s d
prob e s d

e d

θ

θ
∀

∀

∗
=

∑
∑

              (2) 

, where ( ( , ))e s dθ represents the edge suspiciousness 
of ( , )e s d , 

(*, )
[ ( (*, ))]

e d
e dθ

∀∑ represents the sum of 

suspiciousness of all the edges that go to d , 
and

(*, )e d∀∑  represents the number of edges that go 

to d . The reason for setting 
(*, )e d∀∑ in Equation (2) is 

to deal with the case that ( ( , )) 0e s dθ = . Take the example 
shown in Figure 2. If 1( ( , )) 0e s dθ =  and 2( ( , )) 0e s dθ = , 
the value of Equation (2) equals 3. If 

(*, )e d∀∑  is not set 

in Equation (2), the value equals 1, which cannot be 
distinguished from the case that there are only one edge 
that goes to d . Actually, that 1( ( , )) 0e s dθ =  
and 2( ( , )) 0e s dθ = indicates that s may have higher fault 
proneness. It satisfies the equation value of Equation (2). 

The equation of ( ( , ))outprob e s d  is given as below. 

( ,*)

( ,*)

( ( , ))
( ( , ))

[ ( ( ,*))]
e s

out
e s

e s d
prob e s d

e s

θ

θ
∀

∀

∗
=

∑
∑

              (3) 

, where ( ( , ))e s dθ  represents the edge suspiciousness 
of ( , )e s d , 

( ,*)
[ ( ( ,*))]

e s
e sθ

∀∑ represents the sum of 

suspiciousness scores of all the edges that go from s , and 

( ,*)e s∀∑ represents the number of edges that go from s . 

As demonstrated above, ( ( , ))inprob e s d and 
( ( , ))outprob e s d  can oppositely indicate the fault proneness 

of s and d . Therefore, the ratio of fault proneness of s to 
fault proneness of d  is designed as below. 

( ( , ))
( ) : ( )

( ( , ))
in

out

prob e s d
proness s proness d

prob e s d
=                

, where ( )proness s and ( )proness d denote the values of 
fault proneness of s and d , respectively.   

E.  Normalization of fault Proneness 
The structures are complex in real programs and the 

control flow graphs are also complex. By comparing the 
probability of edge suspiciousness, the ratio of fault 
proneness of two successive blocks can be qualified. 
However, there are many blocks covered by the same 
execution. In order to calculate which block mostly 
contributes to a failed execution, the fault proneness must 
be normalization. 

1 2 1{ }n npath b b b b−= → → … → → is employed here 
to represent a failed execution path, 
and ib path∈ . 1ib − refers to the predecessor  block of ib , 
and 1ib +  is the successor block of ib .The ratio of fault 
proneness of 1ib − to that of ib is  

1
1

1

( , )
( ) : ( )

( , )
in i i

i i
out i i

prob b b
proness b proness b

prob b b
−

−
−

= . 

Similarly, the ratio of fault proneness of ib to that of 

1ib +  is 1
1

1

( , )
( ) : ( )

( , )
in i i

i i
out i i

prob b b
proness b proness b

prob b b
+

+
+

= . As a 

consequence, the ratio of the fault proneness of 1ib − to 
that of 1ib + can be calculated as below. 

1 1 1

1 1 1

( ) ( , ) ( , )
( ) ( , ) ( , )

i in i i in i i

i out i i out i i

proness b prob b b prob b b
proness b prob b b prob b b

− − +

+ − +

∗
=

∗
 

Therefore, the ratio of fault proneness of successive 
blocks can be traversed. 

For the 1 2 1{ }n npath b b b b−= → → … → → , the ratio 
of fault proneness of blocks from 1b  to nb  is given as 
below. 
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1 2

1 2

1 2

2 3 1 2

2 3

( ) : ( ) : ( )
( , )

: ( , )
( , ) ( , ):

( , )

n

in

out

out out

in

proness b proness b proness b
prob b b
prob b b
prob b b prob b b

prob b b

       =

                     

                     
∗

                     

                     

… :

1
1

1
2

:

( , )
:

( , )

i n

out i i
i
i n

in i i
i

prob b b

prob b b

=

+
=
=

+
=

                     
∏

∏

……
        (4) 

F.  Block suspiciousness calculation 
The fault proneness is corresponding to a certain failed 

execution. The uniform assessment must be designed to 
assess the suspiciousness of blocks of the entire program.  

We use the sum of fault proneness scores to represent 
the block suspiciousness, of which the calculation is 
shown as below. 

( )
( ( ) | ( ( ) 0 & & ))i i i

suspiciousness b
proness b failed path b path

                                              =

> ∈∑
   (5) 

After obtaining the suspiciousness of every block, we 
assign the suspiciousness of the block to every statement 
in this block. Through this way, we get the rank list of 
blocks in descending order of their suspiciousness. Some 
special statements such as macro definitions in C 
programming language are never executed, so the 
suspiciousness of these statements is assigned as 0. 

IV.  EXPERIMENTS AND DISCUSSION 

In this section, the experiments will be proposed to 
evaluate the effectiveness of our technique. 

A.  Experiments Setup 
In this paper, we use the UNIX programs, obtained 

from the Software-artifact Infrastructure Repository (SIR), 
as the subjects [15]. They have been used in other related 
research [3][6][14]. The numbers of statements are all 
between 8000 and 10000. All the three subjects have 5 
different versions, respectively. Different types of faults 
are inserted into each version of all programs, relevant 
test cases are provided. In addition, SIR also provides 
corresponding tools such as gen_fault_matrix, which is 
used to distinguish tests cases with which programs fail 
from those with which programs pass. 

Table 1 shows the statistics of subject programs used 
in the experiments and the corresponding test suites. Take 
the flex for example, v1 to v5 in SIR correspond in the 
2.4.7 to 2.5.4 versions of real flex programs. Different 
types of faults are seeded into different versions of source 
code. In Table 1, there are 19 different faults in the v1 
version and 20 different faults in the v2 version. The 
numbers of test cases in flex, grep and gzip are 567, 809 
and 213 respectively. In our experiments, we seed only 
one fault into the source files each time and run the test 
cases to collect executions. That is to say, n different 
faults in the same version correspond to n different 
groups of experiments. 

We select Tarantula [13], which is one of the 
statements level based techniques to build the controlled 
experiments. In our experiments, we exclude those faults 
which cannot be manifested with all test cases in the test 
suite [3][5]. Besides, we also exclude those faults which 
occur in the declaration of variable, functions or macro. 
Several previous studies also employ such manners 
[3][5][13]. We construct experiments on the platform of 
ubuntu 10.4. The compiler is gcc-4.4.1 and the 
component gcov is used to collect the coverage 
information. 

B.  Evaluation Metric 
After calculating the fault suspiciousness, all blocks 

are sorted in a descending order of fault suspiciousness to 
form the ranked list. The larger fault suspiciousness 
means higher priority to be examines in the ranked list.  

In previous studies, the evaluation metric is defined as 
the ratio of statements which are needed for programmers 
to examine. That is, developers check all the statements 
in ascending order of their ranks in the ranked list, until 
the faulty statement is found. This metric can be notes as 
(f / F)*100%, in which F represents the number of 
executable statements and f represents the number of 
statements which are needed to examine [3][6].  

Similar to peer studies, we adopt (f / F)*100% as 
evaluation indicator in this paper, which is noted as code 
inspection percentage in the following sections. 
Meanwhile, the executable statements do not include 
program annotation, blank line, function, variable 
declaration and types, etc. 

C.  Results Analysis 
In our experiment, we select a typical CBFL technique 

Tarantula to compare with our approach. Tarantula is 
often chosen as alternatives for comparison in other 
evaluations of fault-localization techniques.  

The experiments results are shown in Figure 3 and 
Figure 4. The results show the code inspection percentage 
on individual fault. The results shown in Figure 3 are 
used to express the effectiveness of our FP technique than 
Tarantula. However, the FP does not always perform well 
for every fault, that is, the effectiveness is not always 
better than Tarantula. We take results shown in Figure 4 
for detailed analysis. First, we bring out the promising 
results. 

Table 1 Statistics of Subject Programs 

Program subjects No. of faults within 
different versions 

No. of test 
cases 

flex 
v1 v2 v3 v4 v5 

567 
19 20 17 16 9 

grep 
v1 v2 v3 v4 v5 

809 
18 8 18 12 1 

gzip 
v1 v2 v3 v4 v5 

213 
16 7 10 12 14 
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As shown is Figure 3, the x-axis refers to the serial 
numbers of faults of which the code inspection 
percentage is higher than 10% when Tarantula is 
employed, and the y-axis refers to the code inspection 
percentage to locate faults. If the length of the bar is 
shorter, the corresponding technique is more effective. 
The red bars represent the results of FP technique in this 
paper, and the blue bars refer to the results of Tarantula. 
From the results we can see that our results are promising 
when dealing with faults which are hard to be located 
with Tarantula method. 

However, the FP technique may be not fit for all types 
of faults. We found that for some faults, the code 
inspection percentage also will be 40% or higher with FP 
technique. For detailed analysis, we selected the faults of 
which the code inspection percentage is higher than 10% 
with FP technique, and then compare the results between 
FP and Tarantula. As shown in Figure 4, the x-axis means 
the serial number of faults, and the y-axis refers to the 
code inspection percentage to locate faults. From the 
results we can see that when dealing with the faults of 
which the code inspection percentage is lower with 
Tarantula technique, the FP technique is complication 
instead of facilitating the fault localization. 

D.  Integrating FP with Tarantula 
By analyzing the experiment results, we find several 

interesting phenomenon. The Tarantula is good at dealing 

with cases that the fault location is where the failure 
occurs. This type of fault is usually an operation error or 
assignment error, for example, the 4th fault of flex is 
caused by the error parameter when invoking printf 
function. But FP is good at fixing more complex faults 
such as the error expression of branch condition. We 
believe our approach is useful in complex fault 
localization because the challenge of automated 
debugging is just how to deal with the complex 
executions, and if the execution is simple, the fault is also 
easy to be detected. Besides, to our knowledge, we found 
that there is no fault localization technique which does 
well in dealing with all types of faults. As a consequence, 
the integration of different types of fault localization 
techniques such as Tarantula, CBI, or FP may be a novel 
solution.  For example, we take the value of 10% as the 
threshold. First, we take the Tarantula technique to locate 
faults, if the fault is not located until the code inspection 
is up to 10%, then we will choose the FP technique 
instead. Suppose the code inspection percentage is 5% 
with FP, so the overall result of code inspection 
percentage will be 15% or lower if some statements have 
been examined twice. 

To support our analysis, we construct some 
experiments to combine the FP with Tarantula. The brief 
processes are as follows. 1) Take the Tarantula to locate 
faults. 2) If no fault is located until the code inspection 
percentage is up to 10%, use the FP instead. Otherwise, 
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Figure 3 The comparisons of code inspection percentage for faults of which the code inspection percentage is higher than 10% with 
the Tarantula technique. 
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Figure 4 The comparisons of code inspection percentage for faults of which the percentage of code inspection is higher than 10% 
with the FP technique. 
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the process is end. 3) Locate the fault with FP technique 
until the fault is located. We take the sum of the code 
inspection percentage with two different techniques as the 
overall code inspection percentage. 

Following the above steps, we construct experiments 
on the three subject programs, which are flex, grep and 
gzip. The results of the flex, grep and gzip are shown in 
Figure 5 (a), Figure 5 (b) and Figure 5 (c), respectively. 

As shown in Figure 5 (a), Figure 5 (b) and Figure 5 (c). 
The integration technique of FP and Tarantula is noted as 
FP-T. The red plot refers to the percentage of faults 
located within a range of code inspection percentage 
when using FP-T and the blue plot refers to the result of 
Tarantula. It is clear that FP-T is more effective than 
Tarantula, especially when the range of code inspection 
percentage is up to 10% or larger. 

The results indicate that our analysis of the integration 
could be useful. In our future work, we are planning to 
study the classification of faults and propose the theory 
basis for the integration of different CBFL techniques. 

E.  Discussion 
To our knowledge, our work may also been helpful for 

related studies. 1) There are several studies which focus 
on the test suite reduction for effective fault localization, 
and have done some empirical studies [3][10][23]. The 
FP technique which mostly depends on the structure of 
execution profiles may be useful to analyze, verify and 
improve the test suite reduction techniques. 2) On the 
similarity of test cases, previous studies point out that 
CBFL technique should be improved for the case that 
some of test cases may be similar [5][9]. There are 
duplicate calculations for some cases. The FP technique 
mostly depends on the structure, which is static and can 
reduce the impact of test cases similarity as well. In FP 
technique, the coverage statistics of edges covering a 
block is thought to be a significant factor to indicate the 
suspiciousness of the block. This may not be sustainable 
for multi-faults localization, for the reason that different 
failed executions caused by different faults may cover the 
same blocks [16]. These blocks may be regarded as much 
more suspiciousness by FP technique, but actually they 
are fault free. But, the multi-faults localization itself is 
hard to be solved just according to the coverage 
information. For example, one failed execution covers 

b1→b2→b4, while another failed execution covers b1→b3

→ b4. In such situation, it is hard to conclude that b1 
contains a fault, or both b2 and b3 contain faults. At 
present, nearly all the fault localizations calculate the 
code inspection percentage statically, neglecting the 
feedback of developers [17]. With the feedback of 
developers during debugging process, can the code 
inspection percentage be changed dynamically? In the 
above example, since that b1 and b4 are fault free with the 
feedback, can the developers verify that there may be two 
faults existing in b2 and b3 respectively? We plan to do 
some experimental studies given that the feedbacks are 
available.  

V.  CONLUSION 

In this paper, we propose the FP fault localization via 
control flow analysis. In this approach, we use control 
flow paths to analyze the program executions, qualify 
edge suspiciousness, and by contrasting edge 
suspiciousness scores of blocks covered by a failed 
execution, we propose fault proneness to evaluate how 
each block contributes to a failed execution. At last, the 
block suspiciousness calculation is proposed.  

By comparing the results of experiments between ours 
and Tarantula, we claim that our approach to some extent 
is effective, but it is not promising in any cases. All the 
different types of coverage information, different types of 
fault and different test suites affect the results of fault 
location techniques. The research of automated 
debugging could be combined with test cases generation, 
static analysis and other related techniques. 
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