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Abstract—Equipped with powerful machines and complex
softwares, web servers providing services are widely used all
over the Internet. But, how to specify their behaviors are
interesting and meaningful. However, process algebras nowadays
cannot specify the behaviors of web servers with time limitations
and different groups of clients who are belong to different
groups/priorities. The behaviors of web servers can be expressed
by actions equipped with parameters of timet and priority w.
We present a process algebra with timed-priority executingpolicy
which can specify the behaviors of web servers.

Key words: process algebra, executing policy, web server, time
limitation, priority.

I. I NTRODUCTION

Internet has infiltrated into common life world wide.
Equipped with powerful machines and complex softwares, web
servers form the core of the Internet. They provide services
for the whole Internet. Their behaviors are composed by all
kinds of actions they can perform. Thus, their behavior are
meaningful and interesting for us to study. We can show this
by the following example.
Example 1.1There is a web server providing three kinds of
services includingfile service,dataservice andinternalservice
at the same time. Accordingly, there are three kinds of requests.
They arefile requestsdenoted by actionsai(ti, wi) (i ≥ 1),
data requestsdenoted by actionsbj(tj , wj) (j ≥ 1), and
internal requestsdenoted by actionsck(tk, wk) (k ≥ 1). Fig.
1 demonstrates the workflow of the web server.

During the system runs, web servers may face the situation
that three kinds services are requested at the same time.
They meet different needs, and intuitively, we have reason
to assign the priority parametersw′′

i > wi and w′′
i > w′

i

(wi in ai(ti, wi), w′
i in bi(t

′
i, w

′
i) andw′′

i in ci(t
′′
i , w

′′
i )) with

wi = w′
i. Actionsci(t′′i , w

′′
i ) in processc are internal requests

which update web server’s information, and they are critical
for the correctness of services.ai(ti, wi) in processa are
external requests for files and they do not consume much
server resources.bi(t′i, w

′
i) in processb are external requests

for data which are stored in the web server in the form of

large databases (e.g. DB2, MS SQL Server, Oracle etc.). They
consume many server resources.

In process algebras [22], [18], [3], [14], [16], [5], there
is a default executing policy named “Maximal Progress”.
From the above example, we can see clearly that this default
executing policy is too abstract for systems to schedule their
services/actions. A more doable policy which can specify the
behaviors of web servers is required, based on this, we propose
a process algebra withtimed-priorityexecuting policy to meet
the need which can be taken as a refinement of the “Maximal
Progress” executing policy for web servers.

According to the timed-priority policy, we classify the
choice composition+ into two groups: one is “internal choice
composition” ⊕, through which system can decide which
action is to be executed (viz. the choice for server encountered
with processesa, b and c at the same time); the other is
“external choice composition”⊎, which is the options exposed
for environment, and the system has no idea which one to
be executed next (viz. the choice for clients to request either
file or data from the server). We also focus on the parallel
composition with which systems can execute actions on its
decision i.e. pick up actions through components under parallel
composition.

After defining the language for process algebra with timed-
priority execution policy, we show the operational semantics
for its operators. By analyzing the operators’ behaviors, we
give out the axioms operators in our language. As there are
some changes in both choice and parallel compositions, we
construct intuitive algorithms for them under timed-priority
executing policy. Bisimulation relationships play an impor-
tant role in the study of process algebras. According to the
operators in process algebra with timed-priority, we define
strong bisimulation, weak bisimulation and the expansion law
as equivalent relationships in this language.

This paper is organized as follows. Section 2 defines the
language for process algebra with timed-priority executing
policy. Section 3 defines the operational semantics. Section
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Fig. 1. Web server provids three kinds of services

4 lists out axioms for all operators. Section 5 proposes
algorithms for internal choice composition and parallel com-
position under timed-priority policy. Section 6 proposes the
equational relationships including strong bisimulation,weak
bisimulation and the expansion law. Section 7 concludes this
paper.

II. L ANGUAGE

We introduce the language of process algebra withtimed-
priority executing policy in this section. The grammar is:

P :: = 0
∣∣ X

∣∣ δ
∣∣ a(t, w).P

∣∣ P ⊎ P
∣∣ P ⊕ P

∣∣ P ;P
∣∣

P ||SP
∣∣ P \ L

∣∣ P [f ]
∣∣ X

∣∣ fix(X = E)

0 is the constant namedempty processindicating inactive
process capable of doing nothing.
X is the constant namedsuccessful terminationindicating

a process terminate successfully.
δ is the constant nameddeadlockindicating unsuccessful

termination of a process capable of doing nothing.
a(t, w).P is action prefixing. Only whena(t, w) is executed,

system can behave processP . There are two parameters in
a(t, w): t indicates the time left before actiona had to be
finished, andw indicates the priority of the actiona in the
system runs.
P ⊎P is theexternalchoice composition for interaction be-

tween system and environment. It is totally non-deterministic
for system.
P ⊕ P is the internal choice composition which is decided

by the system itself.
P ;Q is the sequential composition. Only when processP

terminates successfully,Q can get its turn for execution.
P ||SQ is the parallel composition. It represents a situation

whenP andQ work together to perform activities in the set
S. Or executes other actions independently.
P \ L is the hiding operator. It behaves asP except that

any activities of in setL arehidden.
P [f ] is the relabelling operator. It behaves likeP with its

actions relabelled by functionf .
X is a bound process variable. It is used in recursive

expressions.
fix(X = E) is the recursive expression, we treat recursive

expression as fixed-point to express the recursive process in
the real world.

Example 2.1 Revisit example 1.1, we can specify the
behaviors of the server as

Server := SvrFile||SvrInternal||SvrData

From the above formula, we can see that three services
(SvrFile, SvrInternal andSvrData) run synchronously under
parallel composition.

For file service, the web server transfers files to its clients
on requests. We useTrans to denote it and it can be specified
as SvrFile = Trans.SvrFile. As there aren countable files
in the server,Trans can be refined to

Trans = (File1(t1, w1) ⊎ File2(t2, w2) ⊎ · · · ⊎

Filen(tn, wn)).T rans

For data service, it based on databases inServer. There
are four kinds of actions associated with it:Select(t′i, w

′
i),

Delete(t′i, w
′
i), Update(t′i, w

′
i) and Insert(t′i, w

′
i) (i ≥ 1).

Accordingly, the behaviors of theSvrData can be specified as

SvrData = (Select(t′i, w
′

i) ⊎Delete(t′i, w
′

i) ⊎

Update(t′i, w
′

i) ⊎ Insert(t′i, w
′

i)).SvrData

For internal service based on Fig. 1.,SvrInternal
has two kinds of actions: (UpdateFile(t

′′
i , w

′′
i ) and

UpdateData(t
′′
i , w

′′
i ) (i ≥ 1)) representing general action

ci(t
′′
i , w

′′
i ) which can be specified asSvrInternal =

(UpdateFile(t
′′

i , w
′′

i ) ⊎ UpdateData(t
′′

i , w
′′

i )).SvrInternal.
Thus, the behaviors of web serverServer can be specified

as

Server = (File1(t1, w1) ⊎ File2(t2, w2) ⊎ · · · ⊎

Filen(tn, wn))||(Select(t
′

i, w
′

i) ⊎

Delete(t′i, w
′

i) ⊎ Update(t′i, w
′

i) ⊎

Insert(t′i, w
′

i))||(UpdateFile(t
′′

i , w
′′

i ) ⊎

UpdateData(t
′′

i , w
′′

i )).

Now, the behaviors of web server are specified by the
language defined above.

A. Operational semantics and axioms

Based on the informal expressions of the language in the
previous section, we give out its formal operational semantics
now. All deduction rules of the language listed in this table
are in form ofa(t, w).
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Action prefix
a(t, w).P

a(t,w)
−−−−→ P

External Choice
P

a(t,w)
−−−−→ P ′

P ⊎Q
a(t,w)
−−−−→ P ′

Q
a(t,w)
−−−−→ Q′

P ⊎Q
a(t,w)
−−−−→ Q′

Internal Choice
P

a(t,w)
−−−−→ P ′, Q

a(t′,w′)
−−−−−→ Q′

P ⊎Q
a(t,w)
−−−−→ P ′

(w > w′)
P

a(t′,w′)
−−−−−→ P ′, Q

a(t,w)
−−−−→ Q′

P ⊎Q
a(t,w)
−−−−→ Q′

(w = w′, t < t′)

Parallel
P

a(t,w)
−−−−→ P ′

P ||SQ
a(t,w)
−−−−→ P ′||SQ

(a 6∈ S)
Q

a(t,w)
−−−−→ Q′

P ||SQ
a(t,w)
−−−−→ P ||SQ′

(a 6∈ S)

P
a(t′,w′)
−−−−−→ P ′, Q

a(t′′,w′′)
−−−−−−→ Q′

P ||SQ
τ(t,w)
−−−−→ P ′||SQ′

(a ∈ S) where(t, w) = (max(t′, t′′), min(w′, w′′))

Hiding
P

a(t,w)
−−−−→ P ′

P \ L
a(t,w)
−−−−→ P ′ \ L

(a 6∈ L)
P

a(t,w)
−−−−→ P ′

P \ L
τ
−→ P ′ \ L

(a ∈ L)

Relabelling
P

a(t,w)
−−−−→ P ′

P [f ]
f(a)(t,w)
−−−−−−→ P ′[f ]

Recursion
E{fix(X = E)/X}

a(t,w)
−−−−→ E′

fix(X = E)
a(t,w)
−−−−→ E′

TABLE I
THE OPERATIONAL SEMANTICS OF PROCESS ALGEBRA WITH TIMED-PRIORITY EXECUTING POLICY

Action prefix : a(t, w).P can evolve toP by executing ac-
tion a(t, w) within time limitationt. Parameterw representing
priority does not take effect in terma(t, w).P for there is no
other competitive actions involved.

Sequential composition: P ;Q. Q can get its turn for
execution only whenP terminates successfully.

Termination predicator : X indicates the successful termi-
nation of a process which can be distinguished from deadlock
(δ).

External Choice: ⊎ is an interface between system and
environment. System provides external choices for its envi-
ronment, and the environment can accomplish its purposes by
interacting with them.⊎ is completely non-deterministic for
system.

In formula
P

a(t,w)
−−−−→ P ′

P ⊎Q
a(t,w)
−−−−→ P ′

, the environment picks up

action a(t, w) to execute among actions available provided
by the system.

Parallel composition: Rule
P

a(t,w)
−−−−→ P ′

P ||SQ
a(t,w)
−−−−→ P ′||SQ

(a 6∈ S)

indicates thatP evolves toP ′ by executinga(t, w) with

a 6∈ S while Q remains unchanged. It is similar with

Q
a(t,w)
−−−−→ Q′

P ||SQ
a(t,w)
−−−−→ P ||SQ′

(a 6∈ S).

As to rule
P

a(t′,w′)
−−−−−→ P ′, Q

a(t′′,w′′)
−−−−−−→ Q′

P ||SQ
τ
−→ P ′||SQ′

(a ∈ S), there

is an internal actionτ (can also beτ(t, w)). SystemP ||SQ
evolves toP ′||SQ

′ by executing an internal actionτ .
System waits until to the point where neitherP or Q

can wait any longer. That point ist = min(t′, t′′). P ||SQ
needs corporation of bothP andQ to perform internal action
τ . The priority of the actionτ is the lighter one which
is w = min(w′, w′′), then we get the condition(t, w) =
(min(t′, t′′),min(w′, w′′)).

Hiding : P \ L behaves likeP except that any activities of
types within setL are hidden.

Relabeling: P [f ] is the relabeling operator.P [f ] behaves
like P with its actions relabeled by functionf .

Recursion: The meaning of recursion operator is given by
equation such asE{fix(X = E)/X}, provided that process
variableX is guarded in the expressionE, and the system run
of E{fix(X = E)/X} can be taken as a fixed-point, which
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means the the final step of one cycle run of the system leads
to the starting point of the system run.

B. Axioms

Providing sound and complete axiomatizations for various
equivalence relations has been one of the major research topics
in the development of process theories.

In table II, we use+ to stands for⊕ and⊎ when there is
no confusion.

There are two axioms about the distributive law among
internal choice⊕ and external choice⊎, both of them can
distribute over each other, and they are shown byD1 andD2.

III. A LGORITHMS

Under timed-priority executing policy, there are some
changes ininternal choice⊕ and parallel composition||S ,
and we propose algorithms for them in this section.

A. Algorithm for internal choice composition

If there is only one actionai(ti, wi) available, the system
executes it. If there are more than one actions ready for
execution, the system can schedule their order by certain
algorithm under policy of timed-priority.

Example 4.1: Revisit example 1.1, there are three lines of
sequential actions representing clients with different priorities.
Processc owns the biggest priority, the system will halta and
b whenc is ready for execution.

Based on the analysis, we design the following algorithm
for scheduling:

1) while ∃ai(ti, wi)
2) Action Number = count(ai(ti, wi)) //the num-

ber of actions
3) if Action Number = 1
4) do ai(ti, wi)
5) else Priority Action Number =

count(max(wi)) //the number of actions belong
to themaximalpriority

6) if Priority Action Number = 1
7) do ai(ti, wi) with max(wi)
8) else do ai(ti, wi) with max(wi) ∧min(ti)
9) endif

10) endif
11) endwhile

B. Algorithm for parallel composition

Under timed-priority executing policy, system can also
schedule the executing for parallel composition.

Example 4.2: Revisit example 1.1, we know thata, b andc
are parallel processes. In the system runs, processesa, b andc
applyCPU resources in the form ofa||b||c||CPU . According
to timed-priority policy, we know thatc gets theCPU resource
and executes,a ∪ b gets its turn afterc terminates.

Based on the analysis, we have the following algorithm:

1) while ∃ai(ti, wi)||CPU
2) Action Number = count(ai(ti, wi)) //the number

of actions

3) if Action Number = 1
4) do ai(ti, wi)||CPU
5) else Priority Action Number =

count(max(wi)) //the number of actions belong to
the maximalpriority

6) if Priority Action Number = 1
7) do ai(ti, wi)||CPU with max(wi)
8) else do ai(ti, wi)||CPU with max(wi) ∧

min(ti)
9) endif

10) endif
11) endwhile

IV. EQUATIONAL THEORIES

Equivalence relations have been studied in classic [3], [18],
[2], probabilistic [4], [7], [9], [11], [19], [20], [23], [25],
[27], timed and stochastic process algebra [24], [5], [13],
[14], [17] to compare components and to replace a component
with another which exhibits an equivalent behavior, but hasa
simpler representation. In process algebra with timed-priority
executing policy, we also study its equational theories.

A. Strong bisimulation

In strong bisimulation, there is no difference between ob-
servable action and internal action. All actions can be observed
and compared together with their parameters.
Definition 5.1 A binary relationS ⊆ P × P over processes
with action in the form ofa(t, w) is a strong bisimulation
under policy of timed-priority if (P,Q) ∈ S implies, for all
a(t, w) ∈ Act,

• WheneverP
a(t,w)
−−−−→ P ′ then, for someQ′, Q

a(t,w)
−−−−→ Q′

and (P ′, Q′) ∈ S;

• WheneverQ
a(t,w)
−−−−→ Q′ then, for someP ′, P

a(t,w)
−−−−→ P ′

and (P ′, Q′) ∈ S.

Based on definition 5.1, we define the strong equivalence
relation.
Definition 5.2 P and Q are strongly equivalent or strongly
bisimilar written asP ∼(t,w) Q w.r.t. a(t, w) under execution
policies of timed-priority. This may be equivalently expressed
as follows:

∼(t,w) = ∪{S|S is a strong bisimulation under policy

of timed-priority}

Theorem 5.3∼(t,w) is orthogonal extension of process alge-
bras both on timed and priority.
Proof: If we omit the parameter oft in ∼(t,w), ∼(t,w) be-
comes∼w which represents the weak bisimulation of priority.
Otherwise, if we omit the parameter ofw in ∼(t,w), ∼(t,w)

becomes∼t which represents the weak bisimulation of real
time. Thus, we know that∼(t,w) is orthogonal extension of
process algebras both timed and priority. 2
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P +Q = Q+ P A1 a · τ · P = a · P T1

P + (Q+ R) = (P +Q) +R A2 τ · P = τ · P + P T2

P + P = P A3 P · (τ ·Q+ R) = P · (τ ·Q+R) + P ·Q T3

(P +Q) ·R = P ·R+Q ·R A4

(P ·Q) · R = P · (Q · R) A5 P ||S0 = P C1

P ⊎ δ = P A6 P ||Sδ = P C2

δ · P = δ A7 P ||SQ = Q||SP C3

P + 0 = P A8 (P +Q)||SR = P ||SR+Q||SR C4

P · 0 = P A9 R||S(P +Q) = R||SP + R||SQ C5

0 · P = P A10

p[f ] = p if p = {0,X, δ} L1

δH (τ) = τ H0 p[f ] = f(p) L2

δH (a) = a if a 6∈ H H1 P [id] = P L3

δH (a) = δ if a ∈ H H2 (P +Q)[f ] = P [f ] +Q[f ] L4

δH (P +Q) = δH (P ) + δH (Q) H3 (P ·Q)[f ] = (P [f ]) · (Q[f ]) L5

δH (P ·Q) = δH (P ) · δH (Q) H4 P [f ][g] = P [f ◦ g] L6

δHδK(P ) = δH∪K(P ) H5 (P ||SQ)[f ] = (P [f ])||S[f ](Q[f ]) L7

P ⊕ (Q ⊎ R) = (P ⊕Q) ⊎ (P ⊕ R) D1 P ⊎ (Q ⊕R) = (P ⊎Q)⊕ (P ⊎ R) D2

fix(X = E) = E{fix(X = E)/X} R1

If F = E{F/X} thenF = fix(X = E), with X is guarded inE R2

fix(X = X + E) = fix(X = E) R3

fix(X = τ ·X + E) = fix(X = τ · E) R4

fix(X = τ · (X +E) + F ) = fix(X = τ +X + E + F ) R5

TABLE II
THE AXIOMS OF PROCESS ALGEBRA WITH TIMED-PRIORITY EXECUTING POLICY

B. Weak bisimulation

Under situation that internal actionτ is unobservable, thus
only observable actions can be compared between processes
which yields weak bisimulation. More precisely, we merely
require that each internal actionτ can just be omitted from
the process.
Definition 5.4 If t ∈ Act∗, thent̂ ∈ L∗ is the sequence gained
by deleting all occurrences ofτ from t.

Note: τ̂n = 0 (the empty sequence).
Now we define a new labeled transition system(E ,L∗, {

s
⇒

| s ∈ L∗}) over process expressions, in which the transition
relations

s
⇒ are defined as follows. For convenience we

actually define
s
⇒ for all t ∈ Act∗, i.e. for sequences which

may contain internal actionτ :

Definition 5.5 If t = a1 · · ·an ∈ Act∗, then E
t
⇒ E′ if

E(
τ
→)∗(

a1→)(
τ
→)∗ · · · (

τ
→)∗(

an→)(
τ
→)∗E′ We also writeE

t
⇒ to

mean thatE
t
⇒ E′ for someE′.

Thus E
ab
⇒ E′ means thatE(

τp

→)(
a
→)(

τq

→)(
b
→)(

τr

→)E′ for

somep, q, r ≥ 0. Note also thatE
0
⇒ E′ iff E

τn

⇒ E′ for
somen ≥ 0.
Definition 5.6 If t ∈ Act∗, thenE′ is a t-descendant ofE iff

E
t̂
⇒ E′.
Note that if t ∈ L∗ this just meansE

t
⇒ E′, sincet = t̂

in this case. But notice thatE′ is a τ -descendent ofE iff
E

τ∗

⇒ E′ for somen ≥ 0, and this includes the casen = 0 in
which E′ ≡ E.

Now, we summarize the differences between three relations
t
→,

t
⇒, and

t̂
⇒ for t ∈ Act∗. Each specifies an action-

sequence with exactly the same observable content ast, but the
possibilities for interveningτ actions are different:

t
→ specifies

exactly theτ actions occurring int;
t
⇒ specifies at least the

τ actions occurring int;
t̂
⇒ specifies nothing aboutτ actions.

Thus P
t
→ P ′ implies P

t
⇒ P ′, and P

t
⇒ P ′ implies

P
t̂
⇒ P ′.

Definition 5.7 A binary relationS ⊆ P × P over processes
with action in form ofa(t, w) is a weak bisimulationunder
policy of timed-priority, if (P,Q) ∈ S implies, for all
a(t, w) ∈ Act,

• WheneverP
a(t,w)
−−−−→ P ′ then, for someQ′, Q

â(t,w)
=⇒ Q′

and (P ′, Q′) ∈ S;

• WheneverQ
a(t,w)
−−−−→ Q′ then, for someP ′, P

â(t,w)
=⇒ P ′
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and (P ′, Q′) ∈ S.

where the
â(t,w)
=⇒ means

τ̂n

=⇒
a(t,w)
−−−−→

τ̂n

=⇒, andτ̂n = 0 (the empty
sequence).
Definition 5.8 P and Q are observation equivalent or
weakly bisimilar under timed-priority execution policy, written
P ≈(t,w) Q, if (P,Q) ∈ S. That is,

≈(t,w) = ∪{S | S is a bisimulation under policy

of timed-priority}

Theorem 5.9 ∼(t,w)⇒≈(t,w)

Proof: straight forward. 2

Theorem 5.10 ≈(t,w) is orthogonal extension of process
algebras both timedt and priorityw.
Proof: Parametert represents the time left for action to
accomplish, and parameterw represents the weight/priority of
the action. So,t andw are independent parameters. If we addt
to process algebra, we get real-time process algebra. If we add
w to process algebra, we get a process algebra with priority.
Now, we add botht and w into process algebra, then we
get the process algebra with timed-priority executing policy.
This process algebra can tackle the behaviors of intelligence
systems. Then,≈(t,w) is orthogonal extension of botht and
w. 2

Note: If we omit parametert, ≈(t,w) becomes≈w which
is the weak bisimulation of priority. What’s more, if we
omit the parameterw, ≈(t,w) becomes≈t which is the
weak bisimulation of real time. Thus, we know that≈(t,w)

is orthogonal extension of process algebras both timed and
priority.

C. The expansion law

The expansion law shows all possible executions of con-
current systems. The nondeterminism and concurrency of the
executions in complex systems can be showed clearly by this
law.
Definition 5.11 The expansion law under timed-priority
policy

Let P ≡ (P1||S · · · ||SPn), with n ≥ 1. Then

P ∼
∑

⊕

{
a(t, w).(P1||S · · · ||SP

′

i ||S · · · ||SPn) |

Pi
a
−→ P ′

i , a(t, w) 6∈ S, t = tmin, w = wmax

}

+
∑

⊎

{
a(t, w).(P1||S · · · ||SP

′

i ||S · · · ||SPn) |

Pi

a(t,w)
−−−−→ P ′

i , a(t, w) 6∈ S
}

+
∑{

τ.(P1||S · · · ||SP
′

i ||S · · · ||SP
′

j · · · ||SPn) |

Pi
l
−→ P ′

i , Pj
l
−→ P ′

j , i < j, l ∈ S
}

Under internal choice composition⊕, action a(t, w) is
executed amongPi (1 ≤ i ≤ n). System selects a action
with the biggest prioritywmax and the least timetmin. As for
external choice composition⊎, system responds according to
the choices of its clients. For internal actionτ between two

processes, though unobservable, we have reason to believe that
the system behaves in the same way.
Theorem 5.12The expansion law under timed-priority policy
is orthogonal extension of process algebras both on timed and
priority.
Proof: If we omit the parameter oft, by dropping allt from
the formula, the expansion law becomes

P ∼
∑

⊕

{
a(w).(P1||S · · · ||SP

′

i ||S · · · ||SPn) |

Pi
a
−→ P ′

i , a(w) 6∈ S,w = wmax

}

+
∑

⊎

{
a(w).(P1||S · · · ||SP

′

i ||S · · · ||SPn) |

Pi

a(w)
−−−→ P ′

i , a(w) 6∈ S
}

+
∑{

τ.(P1||S · · · ||SP
′

i ||S · · · ||SP
′

j · · · ||SPn) |

Pi
l
−→ P ′

i , Pj
l
−→ P ′

j , i < j, l ∈ S
}

Otherwise, if we omit the parameter ofw by dropping allw
from the formula, the expansion law becomes

P ∼
∑

⊕

{
a(t).(P1||S · · · ||SP

′

i ||S · · · ||SPn) |

Pi
a
−→ P ′

i , a(t) 6∈ S, t = tmin

}

+
∑

⊎

{
a(t).(P1||S · · · ||SP

′

i ||S · · · ||SPn) |

Pi

a(t)
−−→ P ′

i , a(t) 6∈ S
}

+
∑{

τ.(P1||S · · · ||SP
′

i ||S · · · ||SP
′

j · · · ||SPn) |

Pi
l
−→ P ′

i , Pj
l
−→ P ′

j , i < j, l ∈ S
}

Thus, we know that∼(t,w) is orthogonal extension of process
algebras both timed and priority. 2

D. Recursiveness

In this section, we study the equivalent relationship about
recursive behavior in our language.
Definition 5.13 For strong bisimulation relationships under
timed-priority execution policy.E ∼(t,w) F if, for all indexed
setsP̃ of processes,E{P̃ /X̃} ∼(t,w) F{P̃ /X̃}.

We also useẼ ∼(t,w) F̃ to represent component-wise
congruence betweeñE and F̃ .

Proposition 5.14If Ã
def
= P̃ , thenÃ ∼(t,w) P̃ .

Proof: By the operational semantics ofCongruence, we see
that for all i, Ai andPi have exactly the same derivatives, and
the result follows directly. 2

Now we are ready to show that∼(t,w) is preserved by
recursive definition.
Proposition 5.15Let Ẽ and F̃ contain variablesX̃ at most.

Let Ã
def
= Ẽ{Ã/X̃}, B̃

def
= F̃{B̃/X̃} and Ẽ ∼(t,w) F̃ . Then

Ã ∼(t,w) B̃.
Proof: We shall deal only with the case of single recursion
equations, thus replacing̃E, F̃ , Ã, B̃ byE,F,A,B. So assume

E ∼(t,w) F , A
def
= E{A/X}, andB

def
= F{B/X}
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It will be enough to show thatS is a strong bisimulation up
to ∼(t,w), where

S = {(G{A/X}, G{B/X}) | G contains at most the

variableX}

For then, by takingG ≡ X , it follows thatA ∼(t,w) B.
To show this, it will be enough to prove that
If G{A/X}

a
−→ P ′ then, for someQ′ andQ′′,

G{B/X}
a
−→ Q′′ ∼(t,w) Q

′, with (P ′, Q′) ∈ S
We shall prove the above formula by transition induction, on

the depth of the inference by which the actionG{A/X}
a
−→ P ′

is inferred. We argue by cases on the form ofG:
Case 1 G ≡ X . Then G{A/X} ≡ A, so A

a
−→ P ′,

hence alsoE{A/X}
a
−→ P ′ by a shorter inference. Hence,

by inductionE{B/X}
a
−→ Q′′ ∼(t,w) Q

′, with (P ′, Q′) ∈ S.
But E ∼ F , so F{B/X}

a
−→ Q′′′ ∼(t,w) Q′, and

since B
def
= F{B/X}, G{B/X} ≡ B

a
−→ Q′′′ ∼(t,w)

Q′, with (P ′, Q′) ∈ S are required.
Case 2G ≡ a·G′. ThenG{A/X} ≡ a·G′{A/X}, soP ′ ≡

G′{A/X}; alsoG{B/X} ≡ a ·G′{B/X}
a
−→ G′{B/X} and

clearly (G′{A/X}, G′{B/X} ∈ S) as required.
Case 3G ≡ G1 ⊕G2 andG ≡ G1 ⊎G2.
This is simpler than the following case, and we omit the

proof.
Case 4 G ≡ G1||SG2. Then G{A/X} ≡

G1{A/X}||SG2{A/X}. There are three cases for the
actionG{A/X}

a
−→ P ′, according to whether it arises from

one or other component alone or from a communication.
We shall treat only the case in whicha ∈ S, and
G1{A/X}

a
−→ P ′

1, G2{A/X}
a
−→ P ′

2 whereP ′ ≡ P ′
1||SP

′
2.

Now each component action has a shorter inference, so by
induction G1{A/X}

a
−→ Q′′

1 ∼(t,w) Q′

1, with (P ′

1, Q
′

1) ∈ S

andG2{A/X}
a
−→ Q′′

2 ∼(t,w) Q
′

2, with (P ′

2, Q
′

2) ∈ S.
Hence, settingQ′ ≡ Q′

1||SQ
′
2 and Q′′ ≡ Q′′

1 ||SQ
′′
2

G{B/X} ≡ G1{B/X}||S G2{B/X}
τ
−→ Q′′ ∼(t,w) Q

′.
It remains to show that(P ′, Q′) ∈ S. But (P ′

i , Q
′
i) ∈

S(i = 1, 2) so for someHi, P ′
i ≡ Hi{A/X} and Q′

i ≡
Hi{B/X}(i = 1, 2); thus if we setH ≡ H1||SH2 we have
(P ′, Q′) ≡ (H{A/X}, H{B/X}) ∈ S.

Case 5G ≡ G1 \ L, or G1[R]
These cases are simpler thanCase 4, and we omit the proof.
Case 6 G ≡ C, a process Constant with associated

definition C
def
= R. then, sinceX does not occur,G{A/X}

andG{B/X} are identical withC and hence both havea-
derivativeP ′; clearly (P ′, P ′) ≡ (P ′{A/X}, P ′{B/X}) ∈ S

2

V. CONCLUSIONS

Process algebra withtimed-priority executing policy is
equipped with the ability of specifying complex behaviors of
concurrent systems, esp. for web servers.

Researchers of process calculi have extended in some as-
pects, e.g., PEPA [16], SPAs [15], [17], probabilistic PAs [19],
[25], [23], [27] and so on. Among all of them, there is only
one common default executing policy:maximum progress.

However, one default policy is not enough to specify all
behaviors of complex systems. Based on this, we proposed a
process algebra with timed-priority executing policy. Actions
in this process algebra are equipped with parameters of priority
w and timet.

For a(t, w), parametert represents time limitation, andw
represents its priority. New action structurea(t, w) makes it
more flexible for system to schedule its services/behaviors.

Compared with other process languages, there are some
changes in our language: we refined choice composition+
into internal choice⊕ and external choice⊎. As timed-
priority executing policy affects the behaviors of internal
choice composition and parallel composition, we construct
algorithms for them under the definitions.

After giving out operational semantics of our language,
we proposed axioms for its operators. Equivalence relations
are important in the study of process algebras, based on
the analysis of timed-priority, we defined strong bisimulation,
weak bisimulation and expansion law for the process language
in this paper.

Through the study of process algebra withtimed-priority
executing policy, we found out that there were some changes
in the operational semantics according to the timed-priority
executing policy. However, all axioms for operators in this
language remained unchanged.

In this paper, we also proved that equivalent relations as
strong bisimulation, weak bisimulation and expansion law are
all orthogonal extensions of process algebras both on time and
priority.
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