
Towards the Rapid Application Development
Based on Predefined Frameworks

Dongjin Yu

School of Computer, Hangzhou Dianzi University, Hangzhou, China
Email: yudj@hdu.edu.cn

Abstract—The development of large or medium-sized
domain application systems usually involves intensive
workforce due to its complexity. Reuse of existing
components, especially those architectural ones, could
dramatically reduce the production cost and improve the
quality. However, the problems related with making and
adapting reusable components among different systems
often inhibit the introduction of reuse. Fortunately, domain-
oriented application systems, especially those data-centric
ones, usually share similar behaviors no matter what they
server for. This paper extracts the common behaviors
existing in different domains and introduces the templates
based application framework, called RADF. RADF provides
application skeletons and confines domain specific coding in
predefined templates of classes and configuration files. The
proprietary behavior of domain specific applications could
be realized via simply filling codes in these templates. RADF
not only consolidates the programming paradigm and
provides the supporting classes for default behaviors
expected in different domains, but also allows manually
extending and reassembling these supporting classes. Four
cases of RADF-based development have proved that RADF
helps rapid application development with significantly
reduced number of manually-coded source lines.

Index Terms—application systems, framework, rapid
development, templates, domains, software reuse

I. INTRODUCTION

The domain-oriented application software, or simply
application, is designed to process data and support a
specific organizational function or process, such as
inventory management, payroll or market analysis. The
development of application has accounted for the major
part of global software development. With the increased
severity of market competition, more and more
companies nowadays demand for lower software
production and maintenance costs, faster delivery of
systems and increased software quality. Reuse-based
software engineering is a software engineering strategy
where the development process is geared to reusing
existing software. For reuse-based approach, software
components have to be discovered in library, understood
and, sometimes, adapted to work in a new environment.
However, due to the business diversities, well defined
components with high reusability are always hard to be
created, especially when reusing components across
domains.

Rapid Application Development (RAD) is another
approach to software development aimed at fast delivery

of applications. It often involves the use of database
programming and development support tools such as
screen and report generators. RAD is most suitable for
generating of repeated routine codes, but not for the
production of more complicated structural or business
logic codes.

The domain-oriented application software usually
contains a great number of lines of codes, many of which
merely handle the data operations such as registering,
querying and updating. Moreover, the interaction process
is almost similar, no matter which line of business it deals
with. For instance, data should be located before they are
ready to be modified, and could not be allowed to be
deleted unless it is confirmed.

Software architecture involves the structure and
organization by which system components and
subsystems interact to form systems and the properties of
systems that can best be designed and analyzed at the
system level [1]. Good software architecture is critically
important for successful software development. It has a
profound influence on all technical decisions [2]. The
Rapid Application Development Framework, or simply
RADF, presented in this paper aims to make application
development more efficiently and effectively by means of
architectural reuse. With the help of predefined
architectural skeletons and coding templates, RADF
consolidates the programming paradigm, but allows
manually coding to satisfy domain specific requirements.
If the development is confined within the structure and
conventions specified by RADF, the programming
process is nothing more than filling out templates of 7
supporting class and 3 configuration files. In this way,
RADF ensures the consistency of application framework
and the quality of application itself. More importantly,
RADF dramatically reduces manually-coded source lines,
which eventually increases the software development
productivity.

The rest of the paper is organized in the following
manner. Section 2 analyzes the common behaviors
usually occurred in data-centric application systems.
Section 3 introduces the framework of RADF in detail,
especially its unique features compared with Struts. The
programming paradigm and related process model when
using RADF are illustrated in section 4 and 5 respectively.
Section 6 presents successfully implemented cases. After
the evaluation of RADF discussed in Section 7, Section 8
offers related works. Finally, the last section provides
concluding remarks and future research directions.

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1795

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.9.1795-1804

II. FREQUENT OCCURRED BEHAVIORAL SKELETONS OF
APPLICAION SYSTEMS

The application system that provides business services
is usually composed of a number of separate programs
which run on different nodes. Although they are designed
to help people perform diverse types of works,
application systems, especially those data-centric systems,
share similar behaviors. In other words, no matter which
lines of business they server for, the operation processes
fall inevitably in data manipulation such as record
creating, retrieving, updating and deleting iteratively,
although the business logics behind could be totally
different.

RADF summarizes 17 pieces of skeletons of
behavioral scenarios which usually occur under different
contexts of business domains (Table 1). In practice, most
domain-oriented business logics are expected to be
accomplished inside the edit-like or update-like scenarios
by changing data status or triggering stored procedures.
Instead of realizing specific behavioral scenarios, RADF
provides programming templates for these scenarios.
When developing real application systems, codes could
be filled in these templates to fulfill specific domain
requirements.

The behavioral skeletons given in Table 1 could be
further described with UML activity diagrams. Fig. 1
gives the examples of FLTREC, QRYREC, UPDREC
and CRTMID, where the swim lanes are used to separate
manual actions or system actions.

Under certain circumstances, some scenarios are
invoked as sub activities of others. For example,
QRYREC and UPDREC invoke FLTREC, denoted by
rake symbols in Fig. 1.

III. RADF: THE RAPID APPLICATION DEVELOPMENT
FRAMEWORK

Generally speaking, the application framework is
implemented as a set of concrete and abstract classes that
are specialized and instantiated to create an application
[3]. RADF, as one of well organized application
frameworks, provides the general structure that would
form the basis of a family of applications. Moreover,
different with traditional frameworks such as Struts
(http://struts.apache.org/) and Spring
(http://www.springsource.org/), RADF goes one more
step forward. It presents the programming templates and
coding conventions. In other words, RADF consists of
frozen spots and hot spots.

TABLE I. FREQUENT OCCURRED BEHAVIORAL SKELETONS
SUMMARIZED FROM DIFFERENT APPLICATION SYSTEMS

ID Behavioral
Skeleton Name Explanation

CRTMID Create with
manual ID

Add single record with manually
selected ID. The ID duplicity
should be avoided.

CRTAID Create with
auto-ID

Add single record with auto
generated ID.

CRTBMI Create in batch
with manual
IDs

Add multiple records with
manually selected IDs. The ID
duplicity should be avoided.

CRTBAI Create in batch
with auto-IDs

Add multiple records with auto
generated IDs.

CRTMND Create Master
and Detail

Add single master record and its
related detail records.

LCTSRI Locate Single
Record with ID

Locate the only record matched
with the given ID.

FLTREC Filter Records Search and present overview list
of one or more records matched
with given conditions.

QRYREC Query Records Filter records and present the
detail of specific one when
required.

UPDREC Update Records Filter records and modify/delete
the specific one when required.

EDTREC Edit Records Filter records and present the
detail of specific one for
modifying when required.

DELREC Delete Records Filter records and delete the
specific one when required.

EDTBCH Edit in Batch Filter records and edit together.
DELBCH Delete in Batch Filter records and delete multiple

chosen records together.
EDTSEQ Edit in

Sequence
Locate one record and edit its
fields step by step (page by page).

SUMREC Summarize
Records

List the required fields with
aggregation in groups and whole.

EDTMND Master and
Detail Edit

Locate the master and edit its
detail.

QRYMND Master and
Detail Query

Locate the master and present the
master and all its detail.

Give Condition

Filter Records

Present Records List

Records Overview

Filter Records

Choose Records

<<iterative>>
Show Record Detail

Filter Records

<<Manual Operation>> <<System Operation>>

<<Manual Operation>> <<System Operation>>

Filter Records

Choose Records

Show Record Detail

Confirm DeletionModify Record

Confirm Modifying

[delete][modify]

Commit

<<Manual Operation>> <<System Operation>>

B) Query Records: QRYREC

C) Update Records: UPDREC

A) Filter Records: FLTREC

Enter ID data

Check Duplicity

Fill Fields Confirm Creation

Commit[existed]
[not existed]<<System Operation>>

D) Create with manual ID: CRTMID

<<Manual Operation>>

Figure 1. Requirements of FLTREC, QRYREC, UPDREC and

CRTMID illustrated in UML activity diagrams.

1796 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

The frozen spots define the basic components and the
relationships between them, which remain unchanged
(frozen) in any instantiation of the application framework.
On the other hand, hot spots represent those parts of the
software framework that relates to individual software
systems. Hot spots are designed to be specific and can be
adapted to the needs of the domains.

RADF lies between standard JavaEE/J2EE platforms
and specific application systems (Fig. 2). More
specifically, RADF runs directly on JavaEE/J2EE
platforms, but realizes the application skeleton and
fulfills the general application requirements.

Different with some existing code generators,
development based on RADF allows manually coding or
even extending the framework to address domain
problems, which gives programmers much more
flexibilities. In addition, development based on RADF
does far more than traditional component based software
development. By consolidating the architecture through
predefined templates, RADF guarantees the quality of
applications to be developed.

Similar to many traditional frameworks, RADF adapts
the well-known Model-View-Controller structure.
However, RADF has some different features (Fig. 3).

A. The View Layer
The client, or the view layer, could either run in Web

browsers or take the form of desktop application. For
desktop clients, user interactions could be issued through
button clicks or menu selections, whereas for Web
applications, they appear as GET and POST HTTP
requests. Both types of clients simply communicate with
RADF via HTTP. For desktop clients, however, the
requests and responses would be encapsulated in SOAP-
formatted messages. Thus, the message parsers are
indispensable on both client side and server side for
desktop applications.

RADF offers general-purposes JSP tag library, which

helps reusing GUI components. Typical tags include
Pager Tag rendering selected records page by page,
Operator Tag showing current operator, Code List Tag
giving the name list mapped to different codes, and etc.
These tags are frequent reused among different
applications and make their graphic interfaces look
similar.

Besides, RADF provides the invocation chain for all
filters that perform filtering tasks on the request to a
resource. Filters that have been realized in RADF are
Authentication Filters, Logging Filters, Encryption Filters
and Auditing Filters.

B. The Model Layer
The business logics are encapsulated in Business

Process Objects, or simply BPOs, which are reflected by
the embedded service locator in RADF. Moreover, BPOs
could be arranged in the tree-like calling chain, where
fine grained objects are assembled to accomplish coarse
grained logic. RADF has two types of BPOs, i.e. general
BPOs and BSImp’s.

General BPOs deal with indivisible logic, whereas
BSImp’s assemble related general BPOs to fulfill
complicated logic. In general, BSImp’s implement
Façade interfaces, invoked by action methods.
Transaction integrity is guaranteed inside one single
method of BPOs. However, recursive transactions or
transactions across multiple requests are not allowed.

Figure 3. RADF: the Rapid Application Development Framework.

Figure 2. JavaEE platforms, RADF, and specific application

systems.

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1797

© 2011 ACADEMY PUBLISHER

Data access logics are fulfilled by predefined Data
Access Objects, or simply DAOs. Different with BPOs,
DAOs are entity-oriented, which roughly means that each
entity corresponds one DAO Supporting class containing
data inserting, updating, deleting and querying methods.
Moreover, DAO Supporting classes could be further
extended to support complicated data access logic, such
as querying records from multiple tables.

SQL statements used for data manipulation could be
configured in property files, where delimiters are
introduced to represent placeholders of query parameters.
Under simplest circumstances, RADF-based development
means no more than configure the SQL templates and fill
the required parameters.

C. The Control Layer
The controller in RADF translates interactions with the

view into actions to be performed by the model, which
may include activating business processes or changing
the state of the model. Based on the user interactions and
the results of the model actions, the controller responds
by selecting an appropriate view.

In RADF, the control layer interacts with the model
layer by calling methods of façade, the interface of BPO.
The invoking parameters are packaged in the object of
RequestMessage while the results are packaged in the
object of ResponseMessage. RequestMessage includes
the head part preserving session information such as
current operator, and the body part preserving entity
information in hashed map. Meanwhile, the head part of
ResponseMessage is mainly used to preserve the calling
status and error messages (if any). It is not necessary for
developers to resolve ResponseMessage, which is
automatically done by RADF. Like RequestMessage, the
information in the body part of ResponseMessage, as the
returned result, is preserved in the form of hashed map.
Therefore, through pre-defined RequestMessage and
ResponseMessage, RADF consolidates the interface
between the Actions and BPOs.

D. Start-up of RADF
When RADF-based applications boot up, global

parameters, business services and database connections
are automatically loaded and configured in Servlet
contexts. Later when necessary, they are fetched directly
from running contexts, instead of persistent files or

databases. RADF allows hot deployments of global code-
name pairs and parameters, meaning updated values
would propagate to Servlet contexts immediately when
administrators have done the modification.

Besides, concrete BPOs are located and loaded when
RADF-based applications start up. In this way, BPOs are
ready to be used in the memory if requested in future.

IV. PROGRAMMING PARADIGMS IN RADF

The development process, especially for development
of data-centric applications, could be significantly eased
if RADF is employed. RADF-based development only
requires creating 7 classes and configuring existent 3
global configuration files no matter what specific domain
requirements are. Moreover, both the classes and the
configuration files have their predefined templates which
stereotype and thus simplify the development of
application.

The classes involved during the process of RADF-
based development are shown in Fig. 4.

1) ActionForm: The POJO class which represents an
HTML form that the user interacts with over one or more
pages. String-formatted properties should be provided to
hold states of the form with getters and setters to access
them. ActionForms can be stored in either the session or
request scope.

2) BEO: The class which stores fields of business
entities and IDs mapped to actual SQL statements for
database manipulations. Different with ActionForm,
fields of BEO could have variable types such as Date,
Double, or Integer.

3) Façade: The interface which defines all the business
methods to be implemented. BSImp or BPO
implementing Façade are reflected and loaded while
booting up the application.

4) BSImp: The business service class which
accomplishes domain functions. Under certain
circumstances, BSImp would assemble several BPOs to
accomplish more complicated functions.

5) BPO: The business service class which deals with
atomic domain functions. BPO is optional and its
behavior could be modeled together with BSImp if the
related domain function is simple enough.

Figure 4. The classes involved when programming based on RADF. Dotted rectangles represent RADF-predefined classes, while solid rectangles

represent need-to-create classes according to domain contexts.

1798 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

6) Action: The control class which processes a request,
via its execute method, and return an ActionForward
object that identifies where control should be forwarded
(e.g. a JSP, Tile definition, Velocity template, or another
Action) to provide the appropriate response. Action
populates BEOs with ActionForm, wraps BEO into
RequestMessage, calls the required method in BSImp
with RequestMessage and gets the returning message in
ResponseMessage.

7) DAO: The class which provides an abstract
interface to some type of database or persistence
mechanism, related to the basic data manipulation such as
adding, deletion, modifying and querying.

RADF normalizes the package structure of
applications. Thus, RADF-based applications could be
divided into several sub-applications according to
different sub-domains, and each sub-application contains
7 packages of classes with names complying with
predefined conventions (Table 2).

Besides above 7 classes, some configuration should be
made in following 3 existent configuration files.

1) Action mapping file: The XML-formatted file which
defines how each request URI should be mapped to an
appropriate Action, similar to struts-config.xml in Struts.

2) SQL statements file: The property file which maps
the SQL statement ID with actual SQL statement itself.
With the given ID and arguments, the whole statement
could be located, rendered and submitted.

3) Service mapping file: The XML-formatted file
which pairs interfaces of façades with corresponding
concrete classes. If necessary, concrete classes could be
simply replaced with newer versions if the latter meets
with interfaces of façade.

V. PROCESS MODELS

Two types of process model could be adopted during
RADF-based development: Moderate Model and Fast
Model. Which process model is actually more suitable
depends on the team structure, and to which extent team
members are familiar with RADF.

A. Moderate Process Model
For the Moderate Process Model, the priority is given

to the simple and error-prone functions units existed in
application bottom. A steady bottom layer will greatly
reduce subsequent testing time. General speaking, the
Moderate model could be introduced if the majority of
team members are not familiar with RADF or have
limited development experience.

Step 1: Design the conceptual data model and write
BEO for each business entity.

Step 2: For each BEO, write following five fixed data
accessing methods in the related DAO: doCreate(),
doDelete(), doUpdate(), getAllRecords(), and doFind().

Step 3: Write BPO for each entity class and connect
BPO with related DAO.

Step 4: Define Façade interface and all action classes.
Step 5: Write BSImp classes which implement Façades,

and modify BPO if necessary.
Step 6: Implement Action classes.
Step 7: Elaborate front pages and connect them with

relative action methods.
Among above steps, the first three are the most

important ones since the well-programmed BEOs and
BPOs would lead to fewer errors afterwards. Meanwhile,
Step 5 and Step 6 are comparatively complicated. Step 7,
however, involves large amount of workload, although it
is not difficult.

Generally speaking, it is quite easy to control each step
in Moderate model. Moreover, the application bottom
could be solidly built without much deviation. However,
Moderate model spends much more time, compared with
the Fast Model illustrated later.

B. Fast Process Model
Fast Process Model focuses on parallel operations in

order to reduce potentially duplicated activities.
Nevertheless, it challenges both team leader and team
members. Fast Process Model is most suitable if the
majority of team members is familiar with RADF or has
rich development experience.

In Fast Process Model, the project team should be
divided into two groups. The members from first group
are expected to be quite familiar with business domain or
good at designing, while the others in second group could
be less experienced. The number of members in first
group would probably be double that of in second group.

Step 1: The first group writes Action classes according
to the page documents, and defines necessary Façades. At
the same time, the second group writes the entity classes.
Entity classes should be finished earlier than Action
classes, because entity classes are expected to be used in
Action classes.

Step 2: The first group defines BSImp skeletons (not
fully implemented), while the second group writes the
five database access methods as doCreate(), doDelete(),
doUpdate(), getAllRecords(), and doFind(), and then
defines BPO skeletons.

TABLE II. CONVENTIONS OF PACKAGE STRUCTURES IN RADF
Package Classes in Package

org.radf.apps.[sub-application-name].form POJO class with names of [XXX]Form

org.radf.apps.[sub-application-name].action Extends org.radf.plat.util.action.ActionSupport, with names of [XXX]Action

org.radf.apps.[sub-application-name].facade Extends org.radf.plat.util.FacadeSupport, with names of [XXX]Façade

org.radf.apps.[sub-application-name].imp Extends org.radf.plat.util.imp.IMPSupport, with names of [XXX]IMP

org.radf.apps.[sub-application-name].bpo Extends org.radf.plat.util.bpo.BPOSupport, with names of [XXX]BPO

org.radf.apps.[sub-application-name].dao Extends org.radf.plat.util.dao.DAOSupport, with names of [XXX]DAO

org.radf.apps.[sub-application-name].entity Extends org.radf.plat.util.entity.EntitySupport, with names of [XXX]Entity

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1799

© 2011 ACADEMY PUBLISHER

Step 3: The first group connects front pages with
Action methods for the desired control flows. Meanwhile,
the second group elaborates BSImp’s and BPOs as
needed.

In Fast Process Model, the two groups advance from
different sides toward BSImp and BPO, which are the
core of application. The flexible allocation of human
resources according to individual’s ability and experience
improves the team’s efficiency, because the experienced
members are allocated to complete complicated tasks and
the others are allocated to complete tasks with heavy
workload but less difficulty.

VI. CASE STUDIES

Multiple templates, such as action templates, BPO
templates, façade templates, entity templates and SQL
templates are involved during the process of RADF-based
development. Codes are added in the templates to meet
with domain requirements. The following is the
programming case for manipulating Configuration Items
in the development of ITIL-compliant Maintenance
Platform (ITILMP) based on RADF. The management of
configuration is one of the key functions in ITILMP.
According to Information Technology Infrastructure
Library, Configuration Management controls not only the
aspects covered by Asset Management, but also identifies
the nature and importance of relationships between assets.

In ITILMP, Records of Configuration Items are stored
in table TBLITSMCI containing fields such as ID, name,
type, location, version, description, status, and supplier.
The class of Tblitsmci, as the entity class corresponding
to table of TBLITSMCI, keeps instances of configuration
items and SQL keys mapped to actual SQL statements.

The interface of CIFacade, as one of the façades in the
application, encapsulates all necessary methods dealing
with manipulation of Configuration Items. The following
code fragment gives the definition of CIFacade, created
by filling underlined codes in the façade template. Here,
the non-underlined codes are from the Façade template

public interface CIFacade {
public ResponseMessage printCI(

RequestMessage request);
public ResponseMessage saveCI(

RequestMessage request);
public ResponseMessage modifyCI(

RequestMessage request);
public ResponseMessage deleteCI(

RequestMessage request);
}
The class of CIImp realizes CIFacade to provide the

actual implementation. As an illustrative example, the
codes for saving one configuration item record are listed
as the following. Here, tblitsmci_select and
tblitsmci_insert are mapped to actual SQL statements of
querying and adding records in SQL property file
respectively. Again, only those underlined codes should
be filled according to the BPO template.

public ResponseMessage saveCI(RequestMessage
reqenv) throws AppException {

ResponseMessage resenv = new
ResponseMessage();

HashMap map = (HashMap) reqenv.getBody();
//get business entity object
Tblitsmci tblitsmci = (Tblitsmci) map.get("beo");
 Connection con = DBUtil.getConnection();
DBUtil.beginTrans(con);
 if (null==tblitsmci.getCiid()

|| "".equals(tblitsmci.getCiid())) {
throw new AppException(

"Null ID Not Allowed!");
}
//set SQL statement ID of record querying
 tblitsmci.setFileKey("tblitsmci_select");
 if (getCount(con, tblitsmci, 0) > 0) {

throw new AppException("Same ID Existed!");
}
//set SQL statement ID of record adding
tblitsmci.setFileKey("tblitsmci_insert");
store(con, tblitsmci, null, 0);
DBUtil.commit(con);
HashMap retmap = new HashMap();
retmap.put("ciid", tblitsmci.getCiid());
retmap.put("workString",

"Inserted one CI record!");
resenv.setBody(retmap);
return resenv;

}
Similar to action classes in Struts, the class of

CIAction parses the form bean, delegates the control flow
to the appropriate methods in CIImp and determines the
next page. Below is the code fragment pertinent to saving
request, with the non-underlined codes from the Action
template.

public ActionForward saveNewCI(ActionMapping
mapping, ActionForm form, HttpServletRequest request,
HttpServletResponse res) throws Exception {

CIForm cf = (CIForm)form;
Tblitsmci tblitsmci = new Tblitsmci();
//transfer properties from ActionForm to BEO
ClassHelper.copyProperties(cf, tblitsmci);
//locate the service
CIFacade facade

= (CIFacade) getService("CIFacade");
RequestMessage requestMessage

= new RequestMessage();
EventResponse returnValue = new

EventResponse();
HashMap<String, Object> mapRequest

= new HashMap<String, Object>();
mapRequest.put("beo", tblitsmci);
requestMessage.setBody(mapRequest);
//invoke method in the BSImp
ResponseMessage resEnv

= facade.saveCI(requestMessage);
returnValue = processRevt(resEnv);
if (returnValue.isSucessFlag()){

super.saveSuccessfulMsg(request,
"Configuration Item added successfully!");

//determines the next successful page

1800 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

return mapping.findForward("newci");
}else {

//determines the next failure page
return mapping.findForward("backspace");

}
}
The SQL statements of tblitsmci_select and

tblitsmci_insert in SQL property file are as following.
Here, both : and ! are delimiters to represent placeholders
of query parameters.

tblitsmci_select
= select * from tblitsmci where ciid=:ciid!

tblitsmci_insert
= insert into tblitsmci (ciid, ciname, citype,

cilocation, cidescription, cistate, civersion,
 cisupplier) values (:ciid!, :ciname!, :citype!,
 :cilocation!, :cidescription!, :cistate!,
 :civersion!, :cisupplier!)

VII. EVALUATION OF RADF-BASED DEVELOPMENT

RADF has been successfully employed to reconstruct
several applications formally based on Struts. In addition
to ITIL-compliant Maintenance Platform (ITILMP)
introduced in previous section, other recent examples
include Labor Market Management Information System
(LMMIS), Audiphones Manufacturing Management
Information System (AMMIS) and Labor Market
Decision Support System (LMDSS). LMMIS, ITILMP
and AMMIS are data-centric applications which mainly
focus on data manipulation, while LMDSS is model-
centric and therefore involves intensive computation. The
survey was conducted to compare the number of classes
and the number of lines of code needed to be written with
Struts 1.1 or with RADF. It is generally accepted that an
application with fewer number of classes or number of
lines of code indicates that it is relatively easier to be
built, and vice verse. Fig 5 gives the numbers of classes
and lines of codes of 4 applications based on Struts 1.1
and RADF. Automatically generated POJO, such as form
beans and entity classes, are not counted in.

More accurate comparisons could be further made
among manually coded KLOC (thousands of lines of
code), manually filled KLOC, and auto generated KLOC
respectively. If two manually filled lines are assumed to
be equal to one manually coded line plus one auto
generated line when considering programming workloads,
the actual cut-off rates of source lines could be
calculated as following.

()
() ()gfcfg

ama

MMMMM
MMMCR

+++=
+=

5.0

Here, mM stands for the number of equivalent

manually coded lines, aM for equivalent auto generated

lines, cM for manually coded lines, fM for manually

filled lines, and gM for auto generated lines.
The survey finds that total lines of codes of RADF-

based development are not greatly reduced compared

with that of Struts-based development. However, if
following RADF, approximately 27.10% codes of data-
centric applications could be generated automatically,
although the difference is not so obvious for model-
centric applications such as LMDSS. Table 3 gives the
cut-off rates of above 4 applications based on RADF.

VIII. RELATED WORKS

Software reuse enables developers to leverage past
accomplishments and facilitates significant improvements
in software productivity and quality [4]. Software reuse
has been practiced since programming began. Active
areas of reuse research in the past twenty years include
reuse libraries, domain engineering methods and tools,
reuse design, design patterns, domain specific software
architecture, generators, and measurement [5].

An important approach to reuse and one tightly
coupled to the domain engineering process is generative
reuse [6]. Generative reuse is done by encoding domain
knowledge and relevant system building knowledge into
a domain specific application generator. New systems in
the domain are created by writing specifications for them
in a domain specific specification language. The
generator then translates the specification into code for
the new system. In this sense, RADF is roughly for
generative software reuse. However, it is more like a
framework than a tool, and it allows manual intervention
and thus extends flexibility.

As for frameworks, there exist hundreds or even
thousands employed in domain application development.
As many applications run on JavaEE/J2EE platform and
function from web sites, following discussion mainly
focus on Java Web frameworks.

Figure 5. The numbers of classes and lines of codes of 4
applications based on Struts 1.1 and RADF.

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1801

© 2011 ACADEMY PUBLISHER

Shan and Hua classified various existing Java Web

application frameworks into 5 categories as Request-
based Framework, Component-based Framework, Hybrid
Framework, Meta Framework and RIA-based Framework
[7]. According to the taxonomy, the Request-based
Framework, like Struts or Beehive, uses controllers and
actions that directly handle incoming requests, whereas
the Component-based Framework, like JSF and Tapestry,
abstracts the internals of the request handling and
encapsulates the logic into reusable components. The
Hybrid Framework combines the features of both request-
based and component-based frameworks. The Meta
Framework, or the framework of frameworks, has a set of
core interfaces for common services and a highly
extensible backbone for integrating components and
services. Typical Meta Frameworks include Spring and
Keel. Finally, the RIA-based Framework uses client-side
container models, like Direct Web Remoting, or Echo2.

Almost all these Java Web frameworks, no matter
which category they belong to, have their presentation
layers and model layers. As for the presentation layer,
many researchers focus on the fast development of web
application. Page-centric Web development usually
structures an application into individual scripts, each
responsible for processing a user request and generating a
response. This imposes a go-to hardwiring of the control
flow because each page must know what comes next.
Another issue with Web presentation frameworks is the
limited support they provide for composing multiple parts
on the same page. The Seaside framework
(www.seaside.st) [8] provides a uniform, pure object-
oriented view for Web applications. By exploiting
Smalltalk’s dynamic nature and reflective capabilities,
Seaside offers ways to have multiple control flows active
simultaneously on the same page. WISBuilder [9], based
on Generative Programming paradigms, is another worth-
mentioned framework which facilitates the development
of Web-based Information Systems. Systems based on
WISBuilder could be specified by two XML-based
languages: WSML language that uses XSL to transform
the views, navigation and user’s access into HTML, and
WAML language that uses XSL to transform the

applications specification into HTML, embedding PHP
and JavaScript instructions for executing specific tasks.

Interactive web forms can be created with
Asynchronous Javascript and XML (Ajax) programming.
However, Ajax programming is complex in a way that
the model-view-controller (MVC) code is not clearly
separated. A variety of frameworks have been developed
to simplify Ajax programming. Google Web Toolkit,
ASP.NET Ajax, Yahoo UI Library, Dojo, Prototype, and
DWR are among the popular list. These frameworks
typically provide the JavaScript engines and server
libraries to save programming efforts in coding
sophisticated web UIs and Ajax messaging. In addition to
above popular Ajax frameworks, there still exist some
other web form frameworks without Ajax programming.
For instance, Webformer, presented in [10], focuses on
RAD of web forms using its Web Form Application
Language that provides MVC specification for web forms,
and the Webformer Compiler that generates the runtimes
of the web forms from their models. In [11], a web
framework is provided to support multimodal web
applications.

As for the model layer, a domain model, represented
by specific domain classes, is usually needed to describe
the core data and their behavior. When a model is well
designed, a developer can then focus more rapidly on
views of the software, since they are what users care
about the most. In [12], Michał Lentner and Kazimierz
Subieta introduce an object-oriented environment for
rapid database application development, called ODRA.
Based on the declarative high level object-oriented
language SBQL (Stack-Based Query Language), ODRA
provides functionality common to the variety of popular
technologies in a single universal, easy-to-learn
application programming environment. Domain Model
Lite, described in [13], is another framework that
facilitates the definition and the use of graphical domain
models in a restricted way, which minimizes the number
of decisions that a domain model designer must make.

Framework-based software development has been
proven a useful technique to develop an application.
However, the development of a large application
framework itself is considered complex due to its large
size and the vague requirements. Methodologies or
patterns such as Inversion of Control, Aspect Oriented
Programming are frequently used when developing
application frameworks. High performance is another key
quality that general application frameworks care most. In
order to balance flexibility and performance qualities,
which are in trade-off, many projects need to analyze the
performance of the employed application framework.
Budi Kurniawan and Jingling Xue compare and evaluate
the ease of application development and the performance
of the three design models (Model 2, Struts, and JSF) by
building three versions of an online store application
using each of the three design models, respectively [14].
They find that it is most rapid to build Web applications
using JSF. Model 2 applications are the least rapid but
give the best performance. Struts applications sit in the
middle of the other two design models in both

TABLE III. NUMBER OF MANUALLY-CODED AND AUTO-GENERATED
SOURCE LINES OF APPLICATIONS BASED ON RADF.

App.
Manually

Coded
KLOC (Mc)

Manually
Filled KLOC

(Mf)

Auto
Generated

KLOC (Mg)

Cut-off
Rate

ITILMP 38.96 5.81 13.40 28.03%

LMMIS 90.31 16.19 18.59 21.33%

AMMIS 18.70 4.23 7.65 31.94%

[Average] 49.32 8.74 13.21 27.10%

LMDSS 50.07 2.76 4.42 10.13%

1802 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

comparisons. Many methods could be employed to
evaluate the performance of framework. For instance, in
[15], Yonghwan Lee et al. show how much the
performance of framework is affected by changing
schemes of the framework at the cost of flexibility.

The main objective of application framework is to
promote the reuse of both design and code in the
development of new applications. The use of a
framework will significantly decrease the amount of time
taken for developing new applications. However, new
framework users often find that the documentation
provided along with a framework is usually not very
effective for new users. In order to come up with new
solutions to new problems posed by the framework users,
Hajar Mat Jani et al. propose documentation approach
which reuses previously documented cases [16]. This
requires the documentation system to be capable of
understanding and learning from past experiences.

Finally, many specific application frameworks have
been developed in certain domains. For instance,
Weidong Liao and Benjamin J. Koonse present the JMEI
(Java Mathematical Engine Interface) which is a layered
Java application framework for providing mathematical
computing services for the Internet/Web [17]. Fortunata,
as a wiki-based framework, could facilitate the
management and publication of semantic data in web-
based applications [18]. Other examples include
application frameworks used to construct manufacturing
systems [19], cooperative design systems [20],
availability management system [21], decision support
systems [22], and so on.

IX. CONCLUSIONS

The ultimate purpose of domain engineering and
systematic software reuse is to improve the quality of the
products and services that a company provides and,
thereby, maximize profits [5]. Framework-based
application development has been proven a useful
technique to develop the domain oriented applications.
RADF provides application skeletons and confines
domain specific coding in predefined templates of classes
and configuration files. The proprietary behavior of
domain-oriented applications could be therefore realized
via simply filling out these templates. RADF not only
consolidates the programming paradigm and provides the
supporting classes for default behaviors expected in
different domain-oriented applications, but also allows
manually extending and reassembling these supporting
classes. In this way, RADF helps the rapid development
of application systems with possible consistent qualities.

In 2006, Mary Shaw and Paul Clements pointed that
previous 15 years or so had been software architecture’s
golden age [23]. RADF references many other well-
known frameworks flourishing in this period. However,
we are still considering upgrading RADF. Future work
mainly focuses on the following three issues.

1) Promotion of performance.
RADF relies heavily on reflections of classes when

instantiating BSImp’s. Current version of RADF reflects
all BSImp’s when it boots up. Theoretically, reflections

would decrease the performance. For large applications,
however, it would take intolerable time to get RADF-
based applications started. To make things worse, the
reflected classes would then keep enormous space all the
time. To promote the performance of RADF, we are
currently considering to instantiate BSImp’s in multiple
batches.

2) Migration to Service-oriented Architecture
Service-oriented computing promotes the idea of

assembling application components into a network of
services that can be loosely coupled to create flexible,
dynamic business processes and agile applications that
span organizations and computing platforms. We are now
upgrading RADF to support the interactions of SCA-
compliant services with the help of Apache Tuscany.

3) Current development of applications based on
RADF requires filling codes in generated templates of
sources. It is likely that programmers would carelessly
misuse the templates, since both filled codes and
generated codes are mixed together. Accordingly, the
RADF plug-in in Eclipse IDE is now being designed in
order to facilitate the RADF-based development process.

ACKNOWLEDGMENT

The work is supported by the Foundation of Key
Science and Technology Projects (No. 2008C11099-1),
the Natural Science Foundation (No. Y6090312) of
Zhejiang province of China, and the Science Foundation
of the Hangzhou Dianzi University (No. KYS055608069).

Many have contributed to the work demonstrated in
this paper. The requirement and initial idea was
developed by Jianwei Shao in Zhejiang Institute of
Computing Technology. Pei Zhang and Rongyong Ruan
helped construct the final version of RDAF. Jiangchen
Qiu presented many valuable suggestions gathered from
several development cases based on RADF. Special
thanks are dedicated to all above mentioned ones and also
the reviewers of the paper.

REFERENCES

[1] Philippe Kruchten, Henk Obbink, and Judith Stafford,
“The Past, Present, and Future of Software Architecture”,
IEEE Software, pp. 22-30, March/April 2006.

[2] Joseph F. Maranzano, Sandra A. Rozsypal, Gus H.
Zimmerman, Guy W. Warnken, Patricia E. Wirth, and
David M. Weiss, “Architecture Reviews: Practice and
Experience”, IEEE Software, pp. 34-43, March/April 2005.

[3] Ian Sommerville, “Software Engineering, Eighth Edition.
Pearson Education Limited”, Pearson Education Limited,
pp. 427, 2007.

[4] Richard W. Selby, “Enabling Reuse-Based Software
Development of Large-Scale Systems”, IEEE Transactions
on Software Engineering, Vol. 31, No. 6, pp. 495-510,
June 2005.

[5] William B. Frakes and Kyo Kang, “Software Reuse
Research: Status and Future”, IEEE Transactions on
Software Engineering, Vol. 31, No. 7, pp. 529-536, July
2005.

[6] Polster Franz J., “Reuse of Software Through Generation
of Partial Systems”, IEEE Transactions on Software
Engineering, Vol. SE-12, No. 3, pp. 402-416, 1986.

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1803

© 2011 ACADEMY PUBLISHER

[7] Tony C. Shan and Winnie W. Huam, “Taxonomy of Java
Web Application Frameworks”, Proc. of IEEE
International Conference on e-Business Engineering, IEEE
Computer Society, pp. 378-385, 2006.

[8] Stéphane Ducasse, Adrian Lienhard and Lukas Renggli,
“Seaside: A Flexible Environment for Building Dynamic
Web Applications”, IEEE Software, pp. 56-63,
September/October 2007.

[9] Angel Israel Ortiz-Cornejo, Heriberto Cuayahuitl and
Carlos Perez-Corona, “WISBuilder: A Framework for
Facilitating Development of Web-Based Information
Systems”, Proceedings of the 16th IEEE International
Conference on Electronics, Communications and
Computers, pp. 46-51, 2006.

[10] David W.L. Cheung, Thomas Y.T. Lee, and Patrick K.C.
Yee, “Webformer: A Rapid Application Development
Toolkit for Writing Ajax Web Form Applications”, In: T.
Janowski and H. Mohanty (Eds.) ICDCIT 2007, LNCS
4882, Springer-Verlag Berlin Heidelberg, pp. 248-253,
2007.

[11] Polymenakos Lazaros C., Soldatos John K., “Multimodal
web applications: Design issues and an implementation
framework”, International Journal of Web Engineering
and Technology, Vol. 2, No. 1, pp. 97-116, 2005.

[12] Michał Lentner and Kazimierz Subieta, “ODRA: A Next
Generation Object-Oriented Environment for Rapid
Database Application Development”, In: Y. Ioannidis, B.
Novikov, and B. Rachev (Eds.) ADBIS 2007, LNCS 4690,
Springer-Verlag Berlin Heidelberg, pp. 130-140, 2007.

[13] Dzenan Ridjanovic, “Rapid Development of Web
Applications with Web Components”, In: K. Elleithy (ed.)
Advances and Innovations in Systems, Computing Sciences
and Software Engineering, Springer-Verlag Berlin
Heidelberg, pp. 99-103, 2007.

[14] Budi Kurniawan and Jingling Xue, “A Comparative Study
of Web Application Design Models Using the Java
Technologies”. In: J.X. Yu, X. Lin, H. Lu, and Y. Zhang
(Eds.) APWeb 2004, LNCS 3007, Springer-Verlag Berlin
Heidelberg, pp. 711-721, 2004.

[15] Yonghwan Lee, Junaid Ahsenali Chaudhry, Dugki Min,
Seungkyu Park, and Duckwon Chung, “A Comparative
Performance Analysis of CBD Application Framework
with JBean Application Framework for Improved
Distributed Application Development”, Proc. of Intelligent
Pervasive Computing 2007, pp76-79, 2007.

[16] Hajar Mat Jani and Sai Peck Lee, “Applying Case Reuse
and Rule-Based Reasoning (RBR) in Object-Oriented
Application Framework Documentation: Analysis and
Design”, Proc. of 2008 Conference on Human System
Interactions, pp. 597-602, 2008.

[17] Weidong Liao and Benjamin J. Koonse, “A Layered Java
Application Framework for Supplying Mathematical
Computing Power to the Distributed Environment”, Proc.

of 31st IEEE Software Engineering Workshop, pp. 279-283,
2007.

[18] Mariano Rico, David Camacho, and Óscar Corcho. “A
contribution-based framework for the creation of
semantically-enabled web applications”, Information
Sciences, Volume 180, Issue 10, pp. 1850-1864, 2010.

[19] Sai Peck Lee, Siew Khim Thin, and Hong Song Liu,
“Object-oriented Manufacturing Application Framework”,
Proc. of 34th International Conference on Technology of
Object-Oriented Languages and Systems, pp. 253-262,
2000.

[20] Yan Cao, Hua Chen, Lina Yang, and Yanli Yang,
“Distributed Cooperative Design System Development
Based on XML and J2EE Platform”, Proc. of International
Symposium on Information Engineering and Electronic
Commerce, pp. 622-625, 2009.

[21] Chae Heung Seok, Cui Jian Feng, Park Jin Wook, Park Jae
Geol, and Lee Woo Jin, “An object-oriented framework
approach to flexible availability management for
developing distributed applications”, Journal of
Information Science and Engineering, Vol. 25, No. 4, pp.
1021-1039, 2009.

[22] Efremov Roman, and Insua David Ríos, “An experimental
study of a web-based framework for group decision
support with applications to participatory budget
elaboration”, International Journal of Technology, Policy
and Management, Vol. 7, No. 2, pp. 167-177, 2007.

[23] Mary Shaw, and Paul Clements, “The Golden Age of
Software Architecture”, IEEE Software, pp. 31-39,
March/April 2006.

AUTHOR BIOGRAPHY

Dongjin Yu is currently a professor at
Hangzhou Dianzi University, China. He
received his BS and MS in Computer
Applications from Zhejiang University,
and PhD in Management from Zhejiang
Gongshang University. His current
research efforts focus on information
systems and software engineering,
especially the novel approaches to
constructing large enterprise systems
effectively and efficiently by emerging

advanced information technologies. The concern of his research
closely relates with real applications of e-government and e-
business. He has led a number of government funded projects,
including the Rapid Application Development Framework,
OLAP Middleware, and Service-based Decision Support
Systems. He is also the vice director of Institute of Intelligent
and Software Technology of Hangzhou Dianzi University.

1804 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

