
Internetware Structure Description and Research
of the Petri Net Method

Zhijian Wang

Information Science School, Guangdong University of Business Studies, Guanzhou, P.R.China
Email: zjian@gdcc.edu.cn

Yuping Hu1 2

1 Key Lab of E-Business and Information Security, Hangzhou Normal University, Hangzhou, P.R.China

2Guangdong Key Lab of Electronic Commerce, Guangdong University of Business Studies, Guanzhou, P.R.China
Email: okhyp@yahoo.com.cn

Shaohua Li

Information Science School, Guangdong University of Business Studies, Guanzhou, P.R.China
Email: sohually@163.com

Dingguo Wei

Information Science School, Guangdong University of Business Studies, Guanzhou, P.R.China
Email: weidg@scnu.edu.cn

Abstract—Architecture design and specification is more
important than algorithm or data structure establishment
for a complex system, existing Architecture Description
Languages are difficult to support the complete
Internetware developing process. Petri nets describe system
graphically and mathematically, provide a way to solve the
problems in Internetware description and development. In
this paper we investigate Internetware architecture
description methods, current application of Petri nets in
Internetware and the deficiency; present basic principles to
describe Internetware architecture using Petri nets, the
possible architecture model and architecture evolution
mechanisms; discuss subnet based Web services
composition description technologies; present the idea of
developing Internetware using Petri nets as a whole process
unified model. The Petri net method helps to transfer among
different stages of Internetware developing easily; the
smooth transition from architecture description to code
implementation makes sure a good design can deduce a
good realization.

Index Terms—Architecture Description Language (ADL);
Software architecture; Unified Modeling Language (UML);
Internetware; Petri nets

I. INTRODUCTION

Software systems were used to based on centralized
and close computing platforms, but now they are in the
passage from those traditional platforms to the Internet
based open ones[1]. From the viewpoint of technology,
software entities based on technologies including
software component distribute among different nodes in
Internet in an open and independent way, under an open
environment a software entity can be released in an
appropriate fashion, it can connect and cooperate with

other entities crossing different networks by using
corresponding protocols, these software entities form
Internetwares.

Traditional software developing methods aim at steady
structure systems, base on close and static platform. The
process of building such a system is orderly, compose of
system analysis and designing step by step according to
the aimed question, and thus the basic functions and
structure of the system are decided gradually. The
internet is open, alterable and dynamic, but a traditional
software developing method take none of these Internet
prosperities into account, so it is difficult to satisfy the
requirements of an Internetware, in which dynamic,
cooperation, accommodation and evolvement are greatly
desirable.

Component based software reuse is the necessary
technology of modern software engineering. Because the
network environment is open and dynamic, and
requirements of different users are individual, the
Internetwares are different from those traditional ones; an
Internetware should be able to apperceive the dynamic
change of surrounding environment and evolve
accordingly, by so that it can try its best to satisfy the
users with suitable functions, best performance and
creditability. By following certain cooperating protocols,
an Internetware can meet a group of different but
consistent targets in a dynamic environment. The
property of polymorphism helps Internetwares to provide
flexibility and individuation for different users.

Petri nets describe system behaviors not only
graphically but also mathematically, and thus reflect
properties such as parallel, synchronization and resource
sharing in a simple and intuitionistic way, and provide
powerful mathematical analyzing ability at the same time.

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1779

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.9.1779-1786

Petri nets are widely used in system simulation, workflow
modeling and many other fields, as an outstanding
modeling method, Petri nets provide a way to solve the
problems we met in Internetware description and
development.

The paper is arranged in the following way: section 2
investigates software architecture description methods
and current research about Internetware; section 3
analyzes current application of Petri nets in Internetware
and the main deficiency, and the possible way to solve
these questions; section 4 discusses the basic principles to
describe Internetware architecture, possible Internetware
architecture model, architecture evolution mechanisms
and how to design the reduction rules set; section 5
discusses subnet based Web service composition
description technologies, including how to ensue subnet’s
running ability, how to analyze and control component
complexity; the possibility to develop Internetware using
Petri nets as a whole process unified model is
investigated in section 6 and a few conclusions are given
in section 7.

II. ARCHITECTURE DECSCRIBTION OF INTERNETWARES

Current research about Internetware focus on
following key questions: software model, architecture and
corresponding theory, software reliability and
creditability, quality of service and corresponding
evaluating method, software developing method and so
on. System architecture describes a kind of systems
universally, so the realization of a special system is in
fact the process of instantiating the given architecture. In
the age of structural programming, usually a system is
with limited scale, so software architecture is not
specially given attention to, because a favorable structure
is relatively easy to be obtained by structural designing,
concretely we usually use a top down method and pay
attention to the coupling among modules. But for those
large scale and complex systems, when all comes to all,
architecture design and specification is much more
important than the establishment of an algorithm or data
structures. Researching software architecture roundly and
in depth is the most efficient way to improve software
productivity and to maintain system.

Software architecture derives from software
engineering, when people begin to research software
architecture, basic ideas such as layered structure and
other technologies from computer architecture and
network architecture are used for reference. In recent
years the research of software architecture becomes
independent to that of software engineering and forms a
new study branch. Main contents in software architecture
research involve architecture description, style,
evaluation and formalization. Reuse, quality and
maintenance are the key factors to research software
architecture.

Software architecture description methods today are
divided into two types: formalization and visualization.
The formal descriptions use certain Architecture
Description Language (ADL), more than 20 ADLs have
been defined by researcher from different countries and

new ADLs continue to come up[1]. An ADL usually bases
on certain formalization theory such as CSP and
sequential logic, so it is born with strict syntax and
semantics that can support system description, analysis,
refinement and validation effectively. Because ADLs are
not intuitive, they are not widely used today. Visual
descriptions use traditional diagram composed by panes
and lines, they are intuitive but they can not describe
dynamic demands in an Internetware. Unified Modeling
Languages (UML) are designed with rich semantic,
universal, easy-to-understand and communicate, they are
the de facto industry standard for visual modeling
languages and are the most important visualization
methods. UMLs provides rich view from multiple
perspectives to describe a system, they can be effectively
used in software system modeling, analysis and design.

Booch gave out a UML based model description
including design view, procedure view, implementation
view, deployment views and user case view [2]. However,
UMLs are not good at describing elements such as
connectors in software architecture, they describe the
architecture in a non-formal or semi-formal way[2].

 Generally speaking, current ADLs support description
and analysis of either senior level abstraction of system
architecture, or a particular architectural style as C2[3],
usually different languages are used in criterion
specification and implementation, these characteristics
make it difficult to support architecture based software
developing effectively, for example by using UMLs[4].

Service Oriented Architecture (SOA) is researched in
order to combine different independent elementary
services into flexible and complex service, that’s Web
Services Composition (WSC), in this way software can
be reused. 3 requirements for description model of Web
service combination are presented in reference [5]:

 (1)The model owns adequate expression ability;
 (2)The model can be transformed to an operational

model directly;
 (3)The model does not depend on a specific

implementation language.

Figure 1. Extended service-oriented architecture:

1780 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

The extended SOA model (figure 1) in reference [6]
introduces a service composition layer in order to
improve WSC needs. Existing ADLs for WSC include:
Web Services Description Language (WSDL), Web
Services Flow Language (WSFL), Business Process
Execution Language for Web Services (BPEL4WS),
OWL-S (Ontology Language for Web Services), Web
Service Choreography Interface (WSCI) and so on, these
ADLs describe component features, functionalities and
their aggregation statically, they are unable to implement
system dynamic description and system verification [5] .

Kramer and Magee have performed a series of studies
in software architecture, they attempted to describe
system architectures clearly using traditional static ADLs,
and they did finish some related application in this way.
For dynamic applications similar to Web based service,
they present the concept of customizable management.
They defined a three-layer architecture, take the turns of
components controlling layer, changes managing layer
and goals managing layer from the bottom to the top. The
components controlling layer consists of a series of
components to achieve corresponding tasks; the changes
managing layer adjusts relationships between underlying
components quickly according to some preplanned
arrangements, so as to match the changes from
corresponding underlying components or from upper
layer targets [7]. In Kramer’s model the key question of
components controlling is to maintain the model’s
reliability and creditability in the process of adjusting
system dynamically, this is quite different from a static
system whose structural is stable and so its safety and
reliability are guaranteed during the system design
process.

Reference [8] researched identity, capability, behavior
and other problem about system trustworthiness in an
Internet based virtual computing environment (iVCE),
proposed three mechanisms including inter domain
authorization management, reliable service delivery and
autonomous system collaboration, in order to provide
users with consistent, reliable and transparent services. A
system is represented as binary groups <AE.VEU>,
where AE is the set of autonomous elements, VEU is the
set of virtual execution units, and an execution is in fact
the instantiation of an autonomous element which is
assigned different parameters. Trustworthiness of an
element in AE is guaranteed by its definition which is a
triple group<i,c,b>. The structure of an IVEC system is a
three-layer model, bottom-up are the virtual resource
layer, the service layer and the user layer, the basic idea
is close to that of Kramer’s Model, however the middle
layer is described in more detail and the method is also
slightly different. Reference [9] defined an architecture
ComDeValCo including functions of component definition
and verifying, reference [10] gave a two-layer model
composed of the target layer and the control layer.

III. PETRI NET BASED ADL

To describe Internetware architecture using Petri nets,
capability and support like that of an ADL in software
architecture are required. To consider in a relative large

scope, the following functions should be provided:
software architecture description, design process support,
static and dynamic analysis capability, to support the
evolution of software architecture, support for software
architecture refinement, software architecture simulation
and running; architecture description, service discovery.
Structure evolution and component-based refinement are
problems to be solved in the first step.

Some researchers have begun to apply Petri nets in
Web services composition. Aalst presented WF_net, a
kind of SISO Petri net model for workflow modeling [11],
a WF_net needs to meet three basic requirements, and
those who meet these three conditions are said to be
soundness. WF_net has a large impact in workflow
researching field, and also has some applications in the
study of WSC nowadays [11, 12].

On the basis of WF-net, Hamadi and Benatallah
proposed 8 calculation rules for WSC [13]. Zhovtobryukh
improved Hamadi and Benatallah’s result, he classified
the calculation rules into seven types, that’s order,
exclusive, concurrent, repeat, out-of-sequence, parallel
with synchronous, refinement and etc [14]. In reference
[15] the BPEL described services are transformed into
colored Petri nets, coordinators (called mediator) are
introduced in model combination to realize services
composition. In reference [16] the service has been
transformed into a set of rules for Horn clause, user's
inputs and outputs were converted to facts and goals in
Horn clauses, so a problem of services combination is
transformed into a Horn clause logical reasoning
problem, this method is based on Zhovtobryukh’s goal
driven approach, but it’s a detailed implementation and is
more in-depth.

Generally speaking an Internetware structure should
contain a fundamental component layer and management
or control layers on it. As what we have discussed in
section II, current ADLs either support only description
and analysis of senior level abstraction of system
architecture, or use different languages in criterion
specification and system implementation; they are
difficult to support the complete software developing
process. An idea ADL should provide not only good
abstract expression ability, but also analysis and
reasoning ability in the stage of architecture designing.
It’s also a good idea to support the smooth transition from
architecture description to code implementation of
transition, so that a good design can deduce a good
realization. Petri nets possess all the capabilities
discussed above.

Software architecture is the first time map from system
requirements to system design elements, plays the role of
bridge between requirements and design. To define
system composition and system structure using Petri nets,
reflect relationship between system requirements and
system structure elements, some basic problems should
be solved in advance, these problems including:

 (1)the research of appropriate component model
structure, using a WCS oriented Petri net (WCS-net)
model to describe component structure, connection
between components, as well as the architecture

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1781

© 2011 ACADEMY PUBLISHER

configuration. It’s necessary to define a set of architecture
levels of grammar and explain its semantics in the
perspective of token, transition and arc constraint.

(2)the research of component control strategy and
implementation technology in the perspective of system
structure, environment interaction, dynamic strain and
trusted control, so as to implement static, dynamic
evolution of software structure.

(3) Provide efficient, reliable service discovery
algorithms to insure the efficiency, rationality and
trustworthiness in components combination. Different
from ordinary Petri nets, a WCS oriented Petri net should
provide the ability of transition service specification,
including detailed service information of subnet (a
combination of components) and the information profile
of underlying component services.

Currently Petri nets based WSC researches lay stress
on indirect modeling, namely the transition from models
described using existing ADLs such as BPEL, to
corresponding models described by Petri nets, few
researches are performed in the field of direct modeling
by Petri nets. For component-based software service
description there are three key points: description of the
features of the service, service implementation, service
interface [5]. Most of the researches focus on model
implementation description, while service interfaces and
service features description are less involved.

The advantage of current research approach is that
researchers can make full use of existing WSC ADL
research results, and the dynamic modeling ability of
Petri nets, with these two together to solve problems
currently encountered in architecture modeling; but in the
long run this indirect modeling methods will reduce the
efficiency of system development and increase system
development costs, because you have to transform
between different models and different standards.
Another problem in current research is less attention was
paid to design specific service discovery and combination
algorithm according to features of Petri net model.

IV. SOFTWARE ARCHITECTURE MODEL

A. Basic Principle
To build architecture model using Petri nets,

components correspond to transitions (which can be
refined), the relationships between components, including
dependencies, invoke, collaboration, and so on, can be
represented by places and arcs, component clustering is
reflected by the hierarchical structure, different initial
states represent the generalization, system resource and
environmental constraints are represented by tokens in
natural, in this way the model can be calculated easily.
Based on the proposed model, the component-based
software evolution, including the operation of component
appending, deletion, modification, parameters adjustment
and associated relationship changes are also available,
also we can evaluate the result of a change or member’s
contributions, etc.

B. Architecture Model

As the extended SOA model in figure 1, service
composition layer can be introduced, in which the
components combination relationship model can be
established by WSC-nets, this layer can be further
decomposed into many sub layers if necessary. The
components are divided into atomic component and
composite component, an atomic component is the
fundamental structure corresponding to very simple
subnet which is unnecessary to be divided any longer, in
figure 2, the atomic component includes A, C, B2, B3,
B1.1 ,B1.2, B1.3, they are represented by dotted circles; a
composite component is composed by subnets by fusion
or in a hierarchical manner, in figure 2, the composite
component includes B and B1, they are represented by
real circles. The connections between components are
represented by arcs, in such a model, the links between
transition nodes can be physical, as the relationship
between upstream and downstream components in the
same physical system; but more commonly the nodes are
logically connected, because the corresponding node is
possible to be a composite component node, it may be a
non atomic components, in addition the corresponding
component may locate in certain other places, this is the
characteristics of WSC.

Figure 2. atomic components and composite components

Figure 3. logical connection vs. physical connection

In figure 2, the physical connections are represented by
real lines, like the connection between B1.1 and B1.2; the
logical connections are represented by dotted lines, like

Layer 3

Layer 2

Layer 1 A
B

C

B1

B2 B3

B1.1
B1.2 B1.3

Layer 3

Layer 2

Layer 1 A
B

C

B1

B2 B3

B1.1
B1.2 B1.3

1782 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

the connection between A, B and C. The actual physical
connection between components may need to go through
the model layer by layer and be implemented down to a
lower level like figure 3, here the logical connection
between A and C in figure 1 is realized by the physical
connections of A - B2 - B1.1 - B1.2 - B1.3 - B3 – C.

By establishing a layered service composition model
(corresponds to scheduling layer) with WSC-nets, a task
is decomposed layer-by-layer like figure 2; the Petri net
model forms a natural relationship diagram at different
levels. The service composition process is converted to
go through the graphs to find paths from input to output
or from output to input. Path discovery can be based on
an existing graph searching algorithm, including forward
searching or backtracking algorithm, they should be
redesigned or improved to make it suitable for WSC-nets
models. Thanks to the hierarchical model, the searching
operation is executed layer by layer and each search is
limited to the same logical hierarchy, so you can avoid
the traditional state space explosion problem when graph
searching algorithm are used in a complex model.

In a WSC-nets model, a regional locally centralized
control policy is adapted, each composite node manages
the service information and knowledge of its subnet
nodes, but in the same layer it is a distributed control
strategy, providing accurate information of components.
The connected arcs in a WSC-net model are divided into
logical connection arc and physically connected arc as we
have discussed above, typically the descriptions of
component library structure in a WSC-nets model
consists of logical connections, physical connections
between nodes are established only when members of
combination service are decided finally, the physical
connected parts constitute a subset of the original model.

C. Architecture Evolution

The decision controller is the core part of a system; it
is designed not only to meet the needs of users’ different
targets, but also to select a correct treatment plan in case
of a system error, or the re-composition of components.
At the same time the decision controller is responsible for
assembling components in the same node, deciding
synchronization and collaboration mechanisms among
different sites. In a Petri net model, the change of the
system structure, or the relationship adjustment among
components, is represented as subnets fusion, or re-
fusion. According to the features of applications, the
main operations are fusions of places; the fusion of
transitions takes place mainly on the occasion of
function-oriented reorganization.

Target changes of upper layers will result in the policy
of change management layer to be added, deleted or
modified. Kramer suggested a number of requirements on
how to describe targets in his model, but gave no answer
for the problems occurred to meet these requirements. In
a Petri net model, system targets are represented by
different tokens, so modification of a target is actually the
process to assign a different initial state for the model, if
the given tokens are different, different paths are selected,
this in fact indicates different evolutionary scenario. Past

research of Petri nets based knowledge expression helps
to solve this problem, a control strategy is represented as
a rule, and the evolution process can be realized through
forward and reverse deduction of rules.

D. Reduction Rules Design

The design of reduction rule set has to achieve a
reasonable balance between model transformation
capabilities (the completeness) and usability in
application; current SISO subnet based transformation
rules restrict the application greatly because of too strict
restrictions. Abstraction and refinement are inverted
operations of reduction rules in two opposite directions to
expand or compress net model respectively. Existing
research results of basic reduction rules, such as self
circulation elimination, continuous place or transition
elimination, equivalent place or transition elimination,
can be viewed as the reduction of simple subnets, the
design of the reduction rules set is actually the expansion
and extension of existing rules, to find out restriction
rules for the more larger size subnets. Our previous
studies show that some MIMO subnets can be
transformed into a transition or a place; if certain
conditions are met, some MIMO subnets can be
translated into corresponding SISO subnets, or solve such
problems by coloring.

V. SUBNET BASED WEB SERVICES COMPOSITION

Components are reusable software elements that can be
used to construct different software system. The open
software production based on components came up into
being because of the needs from large-scale industrial
software production. The software development process
is divided into two stages: reusable component
production and component composition, details to solve
individual problem in program design is shielded
gradually. The main task of component production
industry is to produce a large amount of reusable
components to solve different problems; Component
assembly industry’s task is to produce required software
systems based on those mature components available. A
component composes of two parts: component interface
and component body, component body implements
various features of the component, it can be realized by
popular technologies today; the component interface
supports component assembly. The concept “component”
is divided into component class and component instance,
a instance is generated by assigning parameters for
corresponding component class, appropriate application
software are constructed through instance assembly and
control.

In a Petri net model, a component corresponds to a
subnet. Although Petri nets have become an important
modeling method today and are widely used, modeling
complex systems with common Petri nets (for example,
the P/T net) directly in a large and complex system will
certainly result in model state space explosion. To
overcome this problem, the first method is to simplify
model through transformations under particular
application environment, or other transformations which

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1783

© 2011 ACADEMY PUBLISHER

can maintain certain important properties, so as to reduce
the state space and simplify the analysis process.
Hierarchy and modularization technology is the other
effective method, through abstraction step by step and
simulation block by block, the complexity of system
design can be greatly reduced, this is the core idea in
structural design. From the perspective of software
engineering, the hierarchy and modularization method is
much more promising; it can popularize Petri nets to
more wide area and high level application, this method
lies in subnet technology.

The proposed subnet structure should meet the
requirement of hierarchical modeling in Internetwares,
the component subnet based WCS-net is defined on that.
The research of WCS-net can base on the existing subnet
research, combined with the concepts of interface
standardization and subnet normalization proposed by us
in reference[21], taking subnet’s external environment
and basic internal structure and design requirements into
account at the same time. The component subnet should
meet the following conditions:

(1) The restrictions for object system are relatively
relaxed compared with existing research results so as to
increase modeling flexibility;

(2) Component subnet based operations, including
abstract, refinement and the fusion between subnets,
maintain the necessary properties of the model so that the
reliability and trustiness of service composition are
ensured.

Under reasonably conditions, transformation on
component based subnet should guarantee the
equivalence between subnet and corresponding transition,
that is, the model preserves original important properties
such as boundedness, safeness, deadlock-free, etc. before
and after its model transformation. Criterions for
component subnet should be decided elaborately
according to appropriate subnet characteristics; the non-
standard subnet should be transformed into standard
subnet using specific methods if possible. It’s also
important to define operations including component
subnet abstraction and transition refinement, decide basic
rules for WCS-net based direct system modeling method.

Existing research results usually have a more
demanding requirements, that is, the system should be
fully recovered after a complete routine running. A
reasonable assumption is that the system returns to the
original state or a state equivalent to that in some form
after a loop runs, namely it only requires that the system
has to be recoverable; in fact you can find even the
recovery is not required for many systems, there exists
too many normal system who has some irreversible
states. So the more fundamental requirement is: in an
external environment meeting the requirements, the
system can always run successfully, this indicates the
independence of modules. Simply put, in premise of
trustiness, subnet needs to have the ability to run
continuously, if a past running will result in subnet state
changes and such changes make the system lose its
processing power, then the design is unsuccessful.

A. Ensuring Subnet’s Running Ability
Subnet’s persisting running ability essentially requires

subnets and transitions output in the same way if their
inputs are same; it indicates the equivalence between
subnet and transition in the process of abstract or
refinement, it also indicates that the subnet can be trusted.
The first step is to do is to make sure that the interface
and service is consistent before and after transition/subnet
substitution, namely the "likeness", realized by interface
standardization and subnet normalization, this is
especially important for relatively complex interfaces or
external environment. Compared with subnet abstraction,
transition refinement is more complex because there
usually exist different refining scenarios, so there are a
number of possible choices and this brings uncertainty, it
is critical to make reasonable refinement principle.

“Similar behavior” is based on "Likeness", which aims
to keep as much properties of the original model as
possible for the transformed model, such as boundedness,
aliveness, etc. Nevertheless, because the subnet is fired
step by step, it is impossible to achieve absolute
equivalence between transition and subnet, so the
question is, to what extent and how to realize the relative
equivalence between the two. The difference between
subnet and transition is caused by the "half-triggered"
state, by “half-triggered" state analysis and loopback
testing analysis, we can solve the problem of “similar
behavior”. Take practical application, for example
production route analysis into account, the resulted
Internetware oriented subnet structure — the component
subnet can be obtained.

Aliveness of subnet does not guarantee that the subnet
can run continually because the refined model (or the
model before abstraction) is more complex, the models
may enter the multiple-time-fired but uncompleted state
relative to the pre-refinement (or post-abstraction) state,
this brings resource competition and lead to certain
uncompleted firing sequence. Therefore, although the
component subnet does not emphasize recoverability, it
must be deadlock free.

B. Component Complexity Analysis and Control

The reason to research component based subnet
structure is to reduce the complexity of the Petri net
model and avoid state space explosion. Reasonable
modularization is based on careful analysis of business
process, it is necessary to ensure the module with
reasonable granularity, meanwhile the complexity of
subnet is reasonably too, complexity evaluation methods
such as Halstead and graph analysis method of Petri nets
can be used here to assess the complexity of modules. For
the development of new component, the basic module
division principles of high cohesion and low coupling
should be insisted, and to put forward suitable subsystem
partitioning algorithm to decide the range of subnet.

Clustering is a possible way to solve the problem of
automatic subnet division; the algorithm should be
designed according to the known principles of subnet
division. Combined with the module complexity
assessment results, weight of different parameters can be

1784 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

adjusted according to system running results. For existed
components in the lower level, the upper layer model can
use methods including target decomposition and service
matching, and take factors such as efficiency, complexity
into account, so as to reach a balance between fan and
depth. A trusted complex software model can be
established by elaborate design of basic structure,
behavior pattern, run mechanism, evolution rule and
trusted guarantee mechanism.

VI. DEVELOP INTERNETWARE USING PETRI NETS AS
UNIFIED MODEL

Through our previous studies we find Petri nets works
well in different system layers, take the A3 model for
Enterprise-Informatization System[17] as an example, Petri
nets are widely used from automatically control to
operation management and enterprise decision, in every
different level there exists successful applications. To
solve a problem the realization of corresponding system
includes some or all of the processes from requirements
analysis, system design, system implementation, system
analysis to system testing. But generally speaking, the
characteristic of current Petri net applications is that they
are widely used but focused on the lower layers
application of the A3 model and there lack a unified
standard.

On the basis of existing related research and
application, we can present a generic method for Petri
nets based systems analysis and design. Analysis and
design specifications should be decided by integrating
both direct and indirect modeling methods, the methods
we raised in our previous studies to analyze module
feature, data completeness and consistency based on the
associated matrix forms the basis to do so[18,19].

It’s true that the lifecycle of Internetwares differs from
the traditional concept of life-cycle, for Internetwares it
takes on a “big life-cycle” concept [20], but the
applications of Petri nets in previous research still
contribute to the development of Internetwares, the
unified Petri net model in all system stages makes it more
friendly and efficient to realize the repetitious of various
stages in the “big life-cycle” development process.

VII. CONCLUSION

In above sections we discuss the idea of how to solve
problems met in Internetware development today by Petri
net method. Although people mainly regard Petri nets as
a small scale tool for modeling, simulation and analysis
of specific problems, we believe this view can be
changed in a long term, Petri nets can be used as a
systematic engineering method for system development.
System analysis and design based on the same model can
solve the problems of disjointedness between different
stages, through the research of Petri nets based system
modeling and analysis methods we can realize the long
term target of natural transition among different stages of
Internetware developing, including system analysis,
design, implementation and running. Coexistence of
different technologies, different methods and different

models in the same system is the main obstacle to realize
system integration, a unified Petri nets based model and
tool provide a key to overcome this problem. The idea of
“same system uniform model, same model multiple
functions” will improve system efficiency and reliability
greatly. Taking full advantage of the Petri nets, that’s the
combination of straightforward presentation skills and the
mathematical analysis ability, provides an effective
method for Internetwares development.

ACKNOWLEDGMENT

Project supported by the Natural Science Foundation
of Guangdong Province (Grant No. 8451032001001610),
Natural Science Foundation of Guangdong Province
(Grant No. 0630970).

REFERENCES

[1] L.C.Tian, L.Zhang, B.S.Zhou, “Analysis of the Current
Status of Architecture Description Languages”, Computer
Science, 2005, vol 32(2), pp.109-113.

[2] G. Booch, I.Jacobson, J.Rumbaugh, “Unified Modeling
Language”, version 1.0, Rational Software Corporation,
1997.

[3] L.J.Osterweil “Formalisms to Support the Definition of
Processes”, Journal of Computer Science and Technology
24(2): 198–211 Mar. 2009

[4] X.Y.Zhu, Z.S.Tang, “A Temporal Logic-Based Software
Architecture Description Language XYZ／ADL”, Journal
of Softwar,2003,vol. l4(4),pp.713~72.

[5] M.ter.Beek, A.Bucchiarone, S.Gnesi, “A Survey on
Service Composition Approaches: From Industrial
Standards to Formal Methods”, Technical report, 2006.

[6] M.P.Papazoglou, D.Georgakopoulos, “Service-oriented
computing”, Communications of the ACM, 2003,
vol.46(10),pp.25–28.

[7] J.Kramer, J.Magee, “A rigorous architectural approach to
adaptive software engineering”, Journal of Computer
Science and Technology,2009,vol.24(2),pp.183–188.

[8] H. M. Wang, Y. B. Tang, G.Yin, “Trustworthiness of
Internet-based Software”, Science in China (Series F),
2006, vol.49(6),pp.755-773.

[9] Bazil Parv, Simona Motogna, “Comdevalco- A Framework
for Software Component Definition, Validation, and
Composition”, Studia Univ. Babes-Bolyai, 2007,LII(2),
pp.59-68.

[10] J.Lv, X.X.Ma, X.P.Tao, “Research and development of
Internetware”, Science in China (Series E) , 2006,
vol.36(10), pp.1037-1080.

[11] W.M.P. van der Aalst, K.Bisgaard Lassen, “Translating
Unstructured Workflow Processes to Readable BPEL:
Theory and Implementation”, Information and Software
Technology, 2008, vol.50(3), pp.131-159.

[12] Niels Lohmann, Peter Massuthe, Christian Stahl, and
Daniela Weinberg, “Analyzing Interacting WS-BPEL
Processes Using Exible Model Generation”, Data Knowl.
Eng., 2008,vol.64(1),pp.38-54.

[13] R. Hamadi and B. Benatallah, “A Petri Net-based Model
for Web Service Composition”, 14th Australian Database
Conference (ADC 2003), Adelaide, South Australia, 2003.

[14] Dmytro Zhovtobryukh, “A Petri Net-based Approach for
Automated Goal-Driven Web Service Composition”,
Simulation, 2007, vol.83(1),pp.33–63.

[15] W.Tan, Y.S.Fan, M.C.Zhou, “A Petri net-based method for
compatibility analysis and composition of Web services in

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1785

© 2011 ACADEMY PUBLISHER

business process execution language”, IEEE Transactions
on Automation Science and Engineering, 2009,
vol.6(1),pp. 94~106.

[16] X.F.Tang, C.J.Jiang, Z.J.Ding,C.Wang, “A Petri Net-
Based Semantic Web Service Automatic Composition
Method”, Journal of Software,2007,vol.18(12),pp.2291-
3000.

[17] Z.J.Wang, Z.X.Cai, “A Petri Net Based Unified Modeling
Method for Enterprise-Informatization System”, Control
Conference(CCC 2007), Zhangjiajie, China, pp.791-795.

[18] Z.J.Wang, Z.X.Cai, “Indirect Modeling Method by
Translating IDEF0 Model into Petri Net Model”, Journal
of System Simulation, 2008,vol.20（15）,pp.3915-3919.

[19] Z.J.Wang, Z.X.Cai, “Function/Data Analysis Method
Based on Petri Net”, Computer Integrated Manufacturing
Systems, 2008,vol.14（6）,pp: 1194-1199.

[20] F.Q.Yang, “Thinking on the Development of Software
Engineering Technology”, Journal of Software, 2005,
vol.16(1),pp.1-7.

[21] Z.J.Wang, D.G.Wei, “Modeling Complex System Using T-
subnet Based Hierarchical Petri Nets”, Journal of
Computers, 2009, vol. 4(9), pp.829-836.

Zhijian Wang was born in Changsha, Hunan Province,
China in 1970. He obtained his Ph.D. degree in Control Theory
and Control Engineering from Central South University in 2007
in China.

He is presently a professor of Computer Science in
Information Science School, Guangdong University of Business
Studies, Guangzhou, China. He is also the senior member of
China Computer Federation. His current research interests
include Petri nets, software engineering, and Computer
Integrated Manufacturing Systems.

Yuping Hu was born in 1969, he received his B.S. degree in
celestial survey from Chinese Academy of Science, China , in
1996 and his Ph.d. degree in computer science from Huazhong
University of Science and Technology, Wuhan , China in
2005.He is currently pursuing the postdoctoral research in
computer applications from Central South University ,
Changsha , China .

Dr.Hu is a professor in the Guangdong Province Key Lab of
EC Market Application Technology, Guangdong University of
Business Studies, Guangzhou, China. His current research
interests include digital watermarking, image
processing,multimedia and network security.

Shaohua Li was born in Ganzhou, Jiangxi Province, China

in 1964. He obtained his M.S. degree in Computer Graphics
from Beijing University of Aeronautics & Astronautics in 1987
in China.

He is presently a associate professor of Computer Science in
Information Science School, Guangdong University of Business
Studies, Guangzhou, China. He is also the senior member of
China Computer Federation. His current research interests
include Parameterized Complexity and algorithm design &
analysis.

Dingguo Wei was born in Hunan Province, China in 1964.

He obtained his Ph.D. degree in Computer Software and Theory
from Fudan University in 2003 in China.

He is presently a professor of Computer Science in
Information Science School, Guangdong University of Business
Studies, Guangzhou, China. He is also the senior member of
China Computer Federation. His current research interests
include Petri nets, software engineering, and Electrical business.

1786 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

