
Analyzing Schedulability of Energy-oriented 
Distributed Real-time Embedded Software 

 
Liqiong Chen1, Guisheng Fan1,2 and Yunxiang Liu1+ 

1Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China 
Email: lqchen@sit.edu.cn 

2Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China 
3 Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai, China 

Email: gsfan@ecust.edu.cn, yxliu@sit.edu.cn 
Corresponding author :  yxliu@sit.edu.cn 

 
 
 

Abstract—As computer systems become increasingly inter-
networked, most of critical systems are distributed real-time 
embedded (DRE) system. A challenging problem faced by 
researchers and developers of DRE system is devising and 
implementing an effective method that can analyze 
requirements in varying operational conditions. In this 
paper, we analyze the requirements of DRE software and 
construct the corresponding energy consumption model, 
which is divided into fork module and leaf module based on 
its characteristics, and an energy consumption schema with 
time constrains is proposed for DRE software. The concept 
of critical task is presented according to the different 
position of task in the module, then constructing divide task 
set for module based on the characteristics of module and its 
critical task's position, the idle time allocation strategy and 
DVS adjustment method of sub task set are also advanced. 
Finally, a specific example is given to simulate the analysis 
process, the results show that the method can be a good 
solution to analyze DRE software. 
 
Index Terms—Distributed real-time and embedded system; 
Petri net; energy consumption; DVS; critical task 
 

I.  INTRODUCTION 

Distributed real-time embedded (DRE) systems are 
becoming increasingly widespread and important. Most 
of critical application is embedded systems that control 
physical, biological, or defense processes and devices [1]. 
For example, a typical networked DRE system will 
consist of multiple subsystems, which may involve 
combinations of both local and distributed deployment. In 
this environment, developers require an effective method 
that can help identify requirements and design defects 
before a commitment is made to a particular design 
strategy. In these early development phases, the cost 
effectiveness and ease of use of validation tools is 
significant, as well as the level of rigor supplied by the 
modeling language and environment. Besides meeting 
timing constraints, energy consumption has become a 
major consideration in DRE design. Even in an energy-
rich platform, energy consumption has raised a serious of 
concerns with respect to reliability and cost [2]. 

Power consumption is one of the critical design 
considerations for embedded systems. Reducing power 

consumption can extend battery lifetime of portable 
systems, decrease chip cooling costs, as well as increase 
system reliability. Dynamic voltage scaling (DVS)[3] is a 
popular technique for reducing energy consumption, 
especially in DRE systems where each component could 
take hundreds of cycles to execute. Based on the DVS 
technique, energy management schemes in real-time 
application have been extensively explored. Fewer works, 
however, have focused on energy management for DRE 
systems. Therefore, energy consumption has become a 
hot research in DRE software not only to reduce energy 
consumption but also to reduce associated cost. 

To address the schedulability of energy-oriented DRE 
systems, this paper makes three main contributions to the 
state of the art in DRE. First, it uses formal techniques in 
an accessible and cost-effective manner to support 
optimizing energy consumption of DRE systems. The 
approach is based on Petri nets, an established formal 
method which has been widely used to model and analyze 
concurrent and distributed systems. Second, we extend 
for Place Timed Petri net and propose an Hierarchical 
Distributed Real-time Embedded net (HDRE-net) model. 
A optimizing energy consumption schema by using DVS 
capability is advanced. Third, We propose the concept of 
critical task and divide task set for module based on 
critical task. The DVS adjustment method of task set and 
optimizing energy consumption steps of whole 
application are advanced, and its enforcement algorithm 
is also given. Finally, we explain the effectiveness and 
feasibility of method by using ELC sub system. 

II.  COMPUTATION MODEL 

A.  Definition of HDRE-net 
Timed Petri nets (TPN) is a mathematical formalism, 

which allows to model for the features present in most 
concurrent and real-time systems[4], such as concurrent, 
asynchronism and distribution, etc. Some recent 
researches indicate that TPN is powerful enough to 
describe behavioral features of DRE software. The basic 
concepts of it can refer to [5]. In this paper, we extend for 
TPN and establish a model for analyzing DRE software. 
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Definition 1: A tuple Σ=(TPN,I,γ,µ)  is called 
Distributed Real-time Embedded net (DRE-net) iff: 

   (1) TPN =(PN, C, M0) is a Timed Place Petri net; 
   (2) I⊂P is a special place, which is called the 

interface of Σ and denoted by the dotted circle; 
   (3) γ is the priority function of transition. γ(ti)=(αi,βi), 

where αi,βi are called the primary and secondary priority 
of transition ti; 

  (4) µ: T→N* is the unit energy consumption of 
transition,  the default value is 0. 

The distribution of token in each place at time θ is 
called the marking of DRE-net model, denoted by M. The 
marking M(p) denotes the number of tokens in the place p. 
M=Ma ∪Mu,  where Ma is the available tokens of M, Mu is 
the unavailable tokens of  M.  For any x∈(P∪T), we 
denote the pre-set of x as  ●x={y|y∈ (P∪T)∧(y,x)∈F}  and 
the post-set of x as x●={y|y∈ (P∪T)∧(x,y) ∈F}. λ(ti)= 
(αi

S,βi
S) is called  the initial priority of transition ti. 

 Definition 2: A six tuple Ω=(Σ,Γ,TI,TA,PI,PA) is 
called Hierarchical Distributed Real-time Embedded Net 
(HDRE-net) model, where:  

(1) Σ is a DRE-net model, which describes the basic 
structure of Ω; 

(2) Γ={Γi|i∈Z*} is the finite set of DRE-net and 
HDRE-net, each element is called a page of Ω; 

(3) TI⊂T is the set of substituted operation, each page 
of HDRE-net corresponds to a substituted node and 
denoted by the double rectangle; 

(4) TA is the page allocation function, whose function 
is to allocate the page to the substituted node;  

(5) PI⊂P is the set of interface node, which describes 
the input and output of substituted node, and denoted by 
double circle; 

(6) PA is the mapping function of interface, which 
maps the interface node into the input and output of the 
operation. 

From the definition, we can get that DRE-net is a 
special case of HDRE-net, that is, Γ of HDRE-net model 
is empty. We will analyze the operation mechanism of 
HDRE-net model in the following. 

B.  Operation mechanism of HDRE-net 
Because the tokens in HDRE-net model include time 

factor, therefore, we will introduce the concept of wait 
time in this paper.  

Definition 3: Let Ω be a HDRE-net model, which 
reaches marking M at time θ, ∀Pi∈P, place Pi has j 
tokens in marking M, Pi

k is the kth token of Pi. Vector : 
TS(Pi)=(TSi

1,TSi
2,……,TSi

j)  is the wait time of place Pi, 
where TS(Pi

k)= max{ci-(θ-ξk),0}, TS(Pi) and TS(Pi
k) are 

the wait time of  Pi and Pi
k  

TS(Pi
k)=m explains the model must wait M time units 

before using token Pi
k. While TS(Pi

k)=0 represents the 
token is available. Recorded TS(M,θ) as the wait time set 
of places under marking M.  A triple S = (M, TE, TR) is 
called a state of Ω at time θ. Where M is marking, which 
describes the distribution of resources; TS(M, θ) is the 
time stamp of marking M, which depicts time properties 
of system.; TE is the energy consumption of reaching 

state S. Initial state S0=(M0, TS0, TE0), where TS0 is a zero 
vector, that is, all tokens are available in the initial state, 
TE0 = 0, which means the energy consumption of initial 
state is 0. 

Definition 4: Let Ω be a HDRE-net model, S is a state 
of Ω at time θ, for transition ti∈T, iff: 

(1) ∀pj∈P:pj∈•ti→Ma(pj)≥W(pj,ti), then transition ti is 
strong enabled under marking S, denoted by S[ti>, all 
strong enabled transitions under state S are denoted by set 
SET(S). 

(2) ∀pj∈P: pj∈•ti→M(pj)≥F(pj,ti)∧Ma<F(pj, ti), then 
transition ti is weak enabled under state S, denoted by 
S[ti≥, all weak enabled transitions under state S are 
denoted by set WET(S). 

The set ET(S)=SET(S)∪WET(S). If transition ti has 
weak enabled under state S and at least pass through ω 
time units to be strong enabled, then ω is called firing 
delay of transition ti under state S, denoted by FD(S,ti) 
From the definition, we can get that the firing delay of 
strong enabled transition is 0.  

Definition 5: Let Ω be a HDRE-net model, S is a state 
of Ω at time θ,  ∀ti∈ET(S),ω∈N*, the firing of transition ti 
is effective iff it meets one of the following conditions: 

(1) ti∈SET(S): αi≤min(αj)∧βi≤min(βk), where tj∈SET 
(S), tk∈U(ti) 

(2) ti∈WET(S): SET(M)=Φ∧ FD(S,ti)≤ min((FD(S,tj)), 
tj∈WET(S) 

 The set U(ti)={tk| tk∈SET(S) ∧αk=αi}. All the effective 
firing transitions under state S are denoted by FT(S).  

Definition 6: Let Ω be a HDRE-net model, S is a state 
of Ω at time θ, the model will reach a new state S' by 
effectively firing enabled transition ti at time θ+ω, 
denoted by S[(ti,ω)>S′, S' is called the reachable state of 
S, the computation of M' , TS', TE’ are based on the 
following rules:  

(1) Computing marking:   
∀Pj∈●ti∪ti

●,M′(Pj)=M(Pj)- W(Pj,ti)+W(ti,Pj) 
(2) Computing wait time:  
First, adding wait time to the new generated marking: 
 TS′(Pi

k)=ci, Pi
k is generated when firing transition ti; 

Second, modifying the wait time of tokens which are 
generated before the firing of transition ti: 

 TS′(Pi
k)=max{(TS(Pi

k)-ω),0},TS(Pi
k)≥0. 

(3) Computing energy consumption: 
TE0=TE’+FD(S, ti) ×µi 

III.  MODELING DRE SOFTWARE 

A.  Requirements of DRE software 
DRE software can be regarded as a number of 

modules; each module also contains a number of partially 
ordered, serial or parallel implemented sub tasks [9, 10].  
The function of DRE systems will be distributed to a 
number of interrelated embedded devices, each device is 
responsible for certain functions, and has certain 
autonomy, but relies on the computation of other 
embedded devices. Among them, DRE system has n 
tasks; each task is composed by a series of interrelated 
sub tasks set and a bus controller. The effective and 
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reliable communication between tasks is done by bus and 
bus controller. In this paper, we assume the 
communication between tasks is done by Controller Area 
Network (CAN). 

 As DRE software has strong performance 
requirements such as predictability, efficiency, reliability 
and security, et al. Therefore, it is necessary to consider 
above characteristics when describe the requirements of 
DRE software. 

 Definition 7: DRE software requirement model is a 9-
tuple Ξ={TK,NT,RS,RL,CP,RT,D, En, MPS}: 

(1) TK, NT, RS  are the finite tasks set, module set and 
resource set, the jth task of module Ni is denoted by TKi,j; 

 (2) RL is the relation between tasks, which may be 
sequence(>), choice(+), parallel(||) and exclusive(◊); 

(3) CP:TK→(N*×N*×N*) is the attribution function of 
task, which describes the running time and priority of 
task; 

(4) RT:TK→RS* is the resource function of task, whose  
function is to assign necessary resources to each task, RS* 
represents the multiple set of resource, that is, a task can 
use multiple sources; 

 (5) D is the deadline of whole application； 
(6)En: TK→ N* is the unit energy consumption of task, 

the unit energy consumption of task TKi,j is denoted by ei,j ; 
(7) MPS:N→ (N*×N*) is the max and min supply 

voltage of module.  

B.  Modeling DRE software 
The model of task TKi,j is shown in Fig.1, where place 

pac
i,j

 describes the state of task TKi,j, and its delay time is 
equal to the running time of task TCi,j. While transition 
tst

i,j,  ten
i,j describe the beginning and termination 

operation of task, place ppa
i,j, pou

i,j describe the input and 
output parameters of task. And energy consumption of 
task TKi,j is regarded as firing energy consumption of 
transition ten

i,j, that is µ(ten
i,j) =ei,j. Transition tab

i,j, tac
i,j 

represent the operation of module has overtime. We 
introduce place pcn

i,j to control the running process of 
task.  

 

ji
pap ,

ji
stt ,

ji
ji

ac TCp ,
, ,

ji
ji

en et ,
, , ji

oup ,

ji
abt , ji

cat ,

ji
abp , ji

cap ,

ji
cnp ,

ji
trp ,

RSP

 
Fig. 1   HDRE-net Model of Task 

  Operator > represents the sequence relationship: If the 
firing of task TKi,j can lead to the firing of task TKi,k, then 
the relationships between task TKi,j and TKi,k is sequence. 
TKi,j is the forward task of TKi,k, while TKi,k is the 
afterward task of TKi,j. The set Forw(TKi,j), Back(TKi,j)⊂ 
TK are the forward and afterward task set of task TKi,j. 
The HDRE-net model of TKi,j>TKi,k is shown in Figure 
2(a), the substituted node TKi,j and TKi,k corresponds to 

the page of task TKi,j and TKi,k, while interface node Pi,j
pa , 

Pi,j
ou represent the input and output of substituted node 

TKi,j,  which are mapped into the interface pi,j
pa, pi,j

ou of 
task TKi,j. Because the relationship between task and 
substituted node is one by one, the substituted node is 
also called task in the following. In order to describe the 
sequence relationship, we introduce transition tou to 
transfer the result of task TKi,j to the input interface of 
task TKi,k.  

We can construct the model of TKi,j + TKi,k, TKi,j || TKi,k 
and TKi,j ◊ TKi,k in the similar way, which are shown in 
Fig.2(b)-(d). 
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paP ,jkft , rjkt ,

ji
paP ,

jiTK ,

ji
ouP ,

ki
paP ,

kiTK ,
ki

ouP ,

fi
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paP ,
jft , rjt ,
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ji
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ouP ,
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paP ,

kiTK , ki
ouP ,

jst ,

kst ,

jet ,

ket ,

RSp

 
Fig. 2   HDRE-net Model of basic Relation 

We will construct HDRE-net model of each module 
from bottom to up based on the relationships between 
task, as shown in Fig.3.  

i
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i
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1, piTK
1, pi
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stP ,

pmiTK ,

pmi
trP ,

i
i
d Dp ,

 Fig. 3   HDRE-net Model of Module Ni 
The operation process of module Ni is: the system will 

invoke the tasks in the module according to the 
relationship between task after initialing (tst

i), and setting 
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●tst
i =pst

i, tst
i● ={Ppa

i,j|Forw(TKi,j)=∅}; meanwhile, the 
local clock will begin to time, if all tasks can finish 
operating before the deadline Di, then invoking 
termination operation (ten

i) to make it be in the 
termination operation (pen

i), and setting tst
i● = pen

i, ●ten
i 

={Pou
i,j|Back(TKi,j)= ∅}, otherwise, the system will 

invoke the overtime handling operation(td
i) and do 

overtime handling for all tasks. The overtime handling of 
inner module is realized by introducing place pcn

i and 
transition tcn

i, which make ●pcn
i = td

i, pcn
i ●= tcn

i, ●tcn
i= pcn

i, 
tcn

i ●={Ptr
i,1, Ptr

i,2, …, Ptr
i,|NTi|}.   

According to the communication principle of CAN bus, 
the communication process of task TKi,j sending message 
to task TKg,f is abstracted as a communication task 
TKi,j→g,f. The HDRE-net model of task TKi,j→g,f is shown 
in Fig.4. Where place pou

i,j and ppa
g,f are the input and 

output interface of task, while place pb and ph describe the 
idle buffer and bus token resource. The process of 
communication task TKi,j→g,f is: getting data packet after 
beginning to operate(tst

i,j→g,f), and being in waiting for 
idle buffer (pgp

i,j→g,f); the system will release buffer and 
bus token (ten

i,j→g,f) after finishing sending data packet. 
The energy consumption of task TKi,j→g,f is regarded as 
firing energy consumption of transition ten

i,j→g,f, that is 
µ(ten

i,j→g,f )= ei,j→g,f. 

ji
wgpp , fg

pap ,

busp

fgji
fgji

ac mp ,,
,, , →

→

fgji
gbt ,, →

fgji
fgji

en et ,,
,, , →

→

ji
oup ,

fgji
stt ,, →

ji
wgbp ,

fgji
gpt ,, →

pp

Fig. 4   HDRE-net Model of Communication Process 
According to the requirement model and relationships 

between module, we can construct HDRE-net model of 
whole application from bottom to up, which is shown in 
Fig.5. Similarly, place pst, Pen are introduced to describe 
the initial and termination state of whole application, 
transition pst, pen are introduced to describe the initial and 
termination operation of whole application. Place Ptr

1, 
Ptr

2, … , Ptr
|NT| is the coordination input of module, 

interface node Pen
1, Pen

2, …, Pen
|N| are the failure output of 

module. Transition te,1, te,2 , …, te,|NT| are used to transfer 
the overtime info of each module to the coordination 
place pcn. If any one module has overtime, the system will  
invoke transition tcn to do overtime handling for all 
modules.  

Based on the constructed  HDRE-net model, we will 
allocate priority to transition: in the HDRE-net model of 
task, the primary priority of transitions are equal to the 
priority of the corresponding task, while the priority of 
transition that introduced to describe process is (0,0), and 
the priority of substituted node is (0,0); the secondary 
priority of transition is divided into 5 grades according to 
its importance, the priority of transition βS(ten

i,j) = 1, 
βS(tab

i,j)=βS(tca
i,j) = 0, βS(tc

i,j) =βS(tg
i,j) = 2, βS(tr

i,j) = 3, 
βS(tst

i,j) = 4, βS(td
i,j) = 5; while the secondary priority of 

transition tab
i,j and tca

i,j is the highest, which is used to 

describe overtime handling, for example, if the task is in 
the initial position, then aborting it, if the task is in the 
active position, then canceling it. 

stp

stt
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stP
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1
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Fig. 5   HDRE-net Model of Whole Application 
The primary priority of transitions in communication 

task TKi,j→g,f are equal to the priority of recipient task, that 
is TPg,f; the secondary priority of transition in task TKi,j is 
divided into 6 grades according to its importance, the 
priority of transition ten

i,j, tc
i,j, tg

i,j, tr
i,j, tst

i,j, td
i,j is 

incremental. The secondary priority of transitions in 
communication task TKi,j→g,f are divided into 5 grades 
according to its importance, the priority of transition 
ten

i,j→g,f, tgb
i,j→g,f, tgp

i,j→g,f, tst
i,j→g,f, td

i,j is incremental.  

IV.  OFFLINE DVS SCHEDULING OF DRE 
SOFTWARE 

A.  Diving task set for module 
In this section, we will analyze the characteristics of 

task and module, then proposing the concept of 
communication task and critical task. 

Let Ω be a HRDE-net model, ∀TKi,j, TKg,f∈ TK, i≠ g, if 
there exists communication task TKi,j→g,f between task 
TKi,j and TKg,f, then task TKi,j is the communication 
forward task of TKg,f, while TKg,f is the communication 
afterward task of TKi,j, the communication forward and 
afterward task set are denoted by ConF(TKi,j) and 
ConB(TKi,j); meanwhile, module Ng is the directly 
afterward module of Ni, the set Next(Ni) is denoted as the 
directly afterward module set of module Ni; if the inner 
tasks of module don't output parameters to other module, 
then the module is leaf module, otherwise it is the fork 
module; the module that need interact with external 
module (other modules) is called critical tasks; the 
moment that module receive the outputs of other 
module's task is called critical point. 

We will divide the task set of leaf module Ni according 
to the critical point set of module. We may set task TKi,j 
and TKi,k of module Ni need the output of other module, 
and task TKi,j is the forward task of TKi,k. Then the task 
set NTi of module Ni is divided into three sub set: the task 
set before task TKi,j is denoted by Fbeg(TKi,j), the total 
running time is Starti,j; the task set in the middle of task 
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TKi,j and TKi,k is denoted by Bet{TKi,j, TKi,k}, and running 
time is Starti,k - Starti,j; the task set after task Starti,j is 
denoted by Bbeg(TKi,j), the total running time is D- 
Starti,j.  

Fork module is divided into communication forward 
task and non-communication forward task according to 
whether the fork module need the parameters. We will 
divide fork task set into two type of fork module in the 
following. 

We will firstly model for the fork module of non-
communication forward module. Let task TKg,k of module 
Ng need output parameters to the task TKi,j of module Ni, 
while task TKg,r need output parameters to the task TKp,q 
of module Np. And the dynamic voltage of task in module 
Ni and Np have finished adjusting, TKg,k is operated before 
the beginning of TKg,r, we can divide task set NTg of 
module Ng into three sub set, which is shown in Fig.6(a). 
The task set before the termination of task TKg,k is 
denoted by Fend(TKg,k), and the total running time is 

Endg,k, where Endg,k = Starti,j - mg,k→i,j; the task set 
between the termination of task TKg,k and TKg,r is denoted 
by Fbet(TKg,k, TKg,r), and running time is Endg,r - Endg,k, 
where Endg,r = Startp,q - mg,r→p.q; the task set after the 
termination of task TKg,r is denoted by Bbeg(TKi,j), and 
running time is D-Endg,k. 

Second, we will model for fork module of 
communication forward module. The corresponding 
model is shown in Fig.6(b), we can divide task set NTg of 
module Ng into three sub set: The task set before the 
termination of task TKg,k is Fbeg(TKg,k), and total running 
time is Startg,k, where Startg,k = Starti,j - mg,k→i,j; the task 
set between the termination of task TKg,k and TKg,r is 
Fbet(TKg,k, TKg,r), and running time is Endg,r - Startg,k, 
where Endg,r = Startp,q - mg,r→p,q; the task set after the 
termination of task TKg,r is Bbeg(TKi,j), and running time 
is D-Endg,k. 
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jiStartD ,−
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kgEnd ,
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qpStartD ,−
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kgrg EndEnd ,, −
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Fig. 6   Cross Module Task Set Division Example of Fork Module 

B.  DVS adjust for task set 
We will allocate idle time to task according to its 

characteristics, let the deadline of all modules be D, the 
steps of allocating idle time are as following: 

(1) Calculating running time of the longest path by 
combining time reachability graph, we may set it be 
TCmax; 

(2) Computing idle time: Drem = D - TCmax; 
(3) Adjusting running time of the longest path, 

assuming that the path is composed by task TKi,q1, 
TKi,q2, …, TKi,qm, then:  

∑
=

+=
qm

qj
jijiremjiji eeDTCTC

1
,,,

'
, /*  

(4) Combining the process of diving task set, we can 
get running time of other tasks. 

Let the total running time of task set SubT = {TKi,q1, 
TKi,q2, …, TKi,qm} ⊆ NTi be DSubT, we will dynamically 
adjust supply voltage of task in SubT, the specific steps: 

(1) Computing idle time: ∑
=

−=
qm

qj
jiSubTrem TCDD

1
, ; 

(2) Recomputing running time of each task: according 
to the relationship between unit energy consumption and 

voltage, we will allocate running time based on the 
proportion of energy consumption. 

The adjusted running time of task TKi,j is: 

∑
=

+=
qm

qj
jijiremjiji eeDTCTC

1
,,,

'
, /*  

(3) Computing the adjusted probability of task's 

running time Ti,j: '
,

,
,

ji

ji
ji TC

TC
ETC = ; 

(4) Computing new supply voltage of task TKi,j: 
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= ; 

 (5) Computing new unit energy consumption of task 
TKi,j: from the formula: 
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we can get new energy consumption of task TKi,j is: 

i

ji
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jiji V

V
ETC

ee
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,

,
,,

'
*1*'= ; 

(6) Computing the beginning and termination time of 
task TKi,j: 

∑
−

=

=
1

1
,, ''

j

k
kiji TCStart    

'' ,,, jijiji TCStartEnd +=  

B.  Optimizing energy consumption and enforcemen 
Based on the state space of HDRE-net model, the 

energy consumption optimization of whole application is:  
(1) Constructing the state space of each module; (2) 
Dividing task set for each module; (3)Computing running 
time of task set; (4) Adjusting  DVS for task set; (5) 
Computing energy consumption of whole application: 

    ∑∑
=

||

1

||

,, ''*
NT

i

NT

j
jiji

i

TCe  

 For the bounded HDRE-net, because its reachability 
state set R(S0) is a finite set, therefore, R(S0) is viewed as 
a vertex set, and the direct reachability relationship 
between states is viewed as arc set, and the transition is 
marked in the corresponding arc, which constructs a 
directed arc. The directed graph is called Timed 
Reachable Graph in HDRE-net model. We can analyze 
state change, transition firing sequence and execution 
time of system by using Timed Reachable Graph, thus 
getting the related properties of HDRE-net model. 

 According to the construction algorithm of Petri net 
reachability graph, we can construct HDRE-net model. 
Based on the state space, we will use a heuristic 
algorithm energy consumption for DRE software. The 
algorithm will firstly compute running time of the longest 
path by combining with the requirement model and state 
space,  then gradually optimizing energy consumption of 
other tasks, we will do following operation for module set 
TNT: 

    Step 1: Computing the largest leaf module set NoB= 
NoB(TNT), then doing Step 2; 

    Step 2: If NoB(TNT)≠∅, then arbitrary choosing 
module Ni∈NOB, NOB = NoB - Ni, and doing Step 3, 
otherwise doing Step 6; 

    Step 3: Computing critical task set Crut(Ni) of 
module Ni; 

    Step 4: If Sub(NTi) ≠∅, then arbitrary choosing task  
set Subj∈Sub(NTi), Sub(NTi) = Sub(NTi) - Subj; and doing 
Step 5, otherwise doing Step 2; 

    Step 5: Computing critical task's beginning time of 
Subj by combining with the path of state space, then 
computing running time of whole task set Subj, and 
dynamically adjusting each task in task set Subj according 
to DVS adjustment method of task set, then doing Step 4; 

    Step 6: Let TNT = TNT - NOB(TNT), then doing 
next operation. 

V. EXPERIMENTS 

In order to better describe the above modeling process 
and explain the correctness of analysis process, we use an 
actual case - Electronic Toll Collection (ETC) as an 
example. ETC system is an advanced system which 
consists of high-tech equipment and software such as 
electronics technology, computer technology, 
communications and network technology, and can 
achieve the function of automatically charging the cost of 
road without stopping vehicle. Strictly speaking, ETC 
application is the typical DRE software. 
    The workflow of ELC system is: the system will 
display traffic light once starting to operate, then 
informing lane computer to send start-up instructions to 
antenna controller when trigger coil  detects the passage 
of vehicles. The read information from OBE will send to 
data processing center for data processing and charging. 
If success, then charge information screen will display 
“charge successfully, the amount of consumption”; the 
system mainly adopt camera and capture on the spot, and 
traffic police department will do the corresponding 
handling. The general distance of charging is 30m. The 
design speed of ETC lanes is 40km/h, then handling time 
of whole applications is 0.09s. 

According to the actual requirements, we can divide 
the whole application into four function modules. Module 
1 responses for controlling auxiliary equipment, including 
traffic lights, display  screen, lever and coil; Module 2 
responses for reading OBE data. Module 3 responses for 
processing charged data; And module 4 responses for 
capturing peccancy vehicles. Because module 3 need 
handle a large number of data, ARM9 is used  in this 
module, the rest modules use 8051 Single-Chip. All 
modules use SJA100 as bus controller. According to the 
structure of ELC sub system, and combining with the 
functions of each module, we can divide task set for each 
function module, the attributes of task including: deadline, 
the ways of accessing resource, required resource, 
running time. The required preemptive task and deadline 
are shown in table I, the resource mainly includes buffer, 
communication buffer and bus token(where time unit 
TTU is 2ms, the unit energy consumption is mw). The 
energy consumption of whole ELC sub system is 740J, 
because the total running time of ELC sub system is 
34.5TTU, the rest time for optimizing energy 
consumption is 10.5TTU, let the increased unit of 
running time be 0.1TTU. The max and min supply 
voltage of Module 1, 2, 3, 4 is 3.3V and 0.8V, while 
module 3 is 5V and 1.2V. 

We can model for task, module and communication 
process, and construct the HDRE-net model of ELC sub 
system by merging the corresponding interface. Because 
the task has less conflict, the using of priority can reduce 
the corresponding level, and the communication buffer is 
set to 3. 
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Table I  Requirement of Task in ELC Sub-System 

TK TC UE TK TC UE TK  TK TC UE TK TC UE TK  

TK1,1 1 2 TK2,1 1 3 TK3,1 4 TK1,5 1 4 TK2,5 3 5 TK3,5 7 

TK1,2 1 3 TK2,2 1 5 TK3,2 5 TK1,6 2 8 TK2,6 1 4 TK3,6 4 

TK1,3 2 4 TK2,3 1 5 TK3,3 4 TK1,7 2 5 TK2,7 3 10 TK3,7 6 

TK1,4 1 4 TK2,4 3 5 TK3,4 5 TK1,8 2 5 TK2,8 1 5 TK3,8 4 

TK4,1 1 2 TK1,4→2,1 0.5 2 TK3,9 15 TK4,4 2 5 TK3,7→2,6 0.5 2 TK3,7→2,6 2 

TK4,2 3 20 TK2,5→3,2 0.5 2 TK2,5→3,2 2 TK4,5 2 5 TK3,8→4,1 0.5 2 TK3,8→4,1 2 

TK4,3 3 20 TK3,7→1,5 0.5 2 TK3,7→1,5 2         

  According to the division method of module's task set, 
we can divide task set for each module, and computing 
new running time of each task by computing increase 
time of each task set, the computed  running time, supply 

voltage and unit energy consumption are shown in Table 
II. The optimized energy consumption is 525.07319, the 
optimization probability is 0.70955835. 

Table II   Energy Consumption Properties of Task 

Task TC' Vdd e' Task TC' Vdd e' Task TC' Vdd e' 

TK1,1 1.18 2.99 1.54 TK2,3 1.46 2.6

6
2.77 TK3,5 2.50 4.38 4.91 

TK1,2 44 1.01 0.02 TK2,4 3.46 3.0

3
3.99 TK3,6 2.43 4.45 2.93 

TK1,3 2.36 2.99 3.07 TK2,5 3.46 3.0

3
3.99 TK3,7 2.65 4.24 3.84 

TK1,4 1.36 2.76 2.46 TK2,6 4.18 1.6

7
0.48 TK3,8 11.33 2.28 0.32 

TK1,5 7.75 1.38 0.22 TK2,7 10.94 1.7

5
1.46 TK3,9 16.00 2.06 0.77 

TK1,6 8.75 1.64 0.46 TK2,8 3.38 1.8

1
0.49 TK4,1 1.19 2.98 1.52 

TK1,7 28 1.07 0.06 TK3,1 2 5 4 TK4,2 4.88 2.51 9.34 

TK1,8 28 1.07 0.06 TK3,2 1.54 3.9

0
2.53 TK4,3 4.88 2.51 9.34 

TK2,1 1.27 2.86 2.04 TK3,3 1.43 4.0

6
2.27 TK4,4 2.47 2.91 3.57 

TK2,2 1.46 2.66 2.77 TK3,4 1.54 3.9

0
2.53 TK4,5 2.47 2.91 3.57 

Using the method proposed by Schmitz[7] and Yan[8], 
the optimized energy consumption is 577 and 618, which 
are higher than the method proposed in this paper, the 
comparison results are shown in Fig.7. The application 
results of Schmitz's method show that the proposed 
method can not only describes the characteristics of DRE 
software, but also can effectively reduce energy 
consumption. 

 
Fig. 8  Comparision Results of Optimization Method 

VI.  Related Works 

    The method that used to analyze energy consumption 
of DRE system are given in [9-11]. In[9], the authors 
addresses the problem of static and dynamic variable 
voltage scheduling of multi-rate periodic task graphs and 
aperiodic tasks in heterogeneous DRE systems. 
Reference[10] uses a comprehensive traffic description 
function at nodes and provides adequate information 
about the worst-case traffic behavior anywhere in the 
distributed  network, thereby enhancing the system power 
management capabilities. A similar approach is given in 

[11], the authors incorporate a fault tolerance mechanism 
into DRE systems in order to utilize the available 
dynamic slack to maintain checkpoints and provide for 
rollbacks on faults. Previous approaches have relied on 
scaling down the supply voltage to reduce power 
consumption. However, supply voltage scaling can affect 
the performance. P.Paul et al[12, 13] used task graph to 
describe tasks and relations between tasks in DRE 
systems. More specifically, it discussed the schedulability 
analysis of DRE systems, and introduced several design 
optimization problems characteristic of this class of 
systems. The proposed method in this paper is easier to 
use because of the  high abstraction level offered by using 
Petri nets. In addition, using the related tools of Petri net 
is also more suitable for DRE system. 

Although the non-formal methods has made some 
corresponding results in the design of DRE systems, but 
they may cause some of the semantic ambiguity, in order 
to solve this problem, there has been some formal 
methods: G. Madl et al[14] used Time Automata (TA)  to 
model various components of the non-preemptive real-
time distributed embedded systems and converted the 
system scheduling problem into TA state reachability. As 
the TA model implied the existence of global clock, it 
unfits for modeling the Distributed Systems. V. Marcel et 
al[15] used the time extended of Vienna Development 
Method (VDM++) to stipulate DRE systems, and used 
VDM verification tools to verify the properties of system. 
However, comparing with other formal methods, the 
VDM may be more difficult to understand and grasp for 
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developers. A resource-based time Petri Net is proposed 
in [16] to model the DRE systems and analyzed the 
corresponding semantic, properties. In our work, it allows 
user to describe and model on the non-function of DRE 
system by using Petri net, which can be helpful in 
analyzing its performance, and they didn't describe the 
communication between modules which is the key issue 
of DRE systems. 

VII.  Conclusion 

  In this paper, we have proposed a HDRE-net to model 
and analyze energy consumption of DRE software. This 
approach is based on a formal model, Petri net, that 
allows to consider different components of DRE software. 
According to the characteristics of module, we divide it 
into leaf module and fork module, then dividing task set 
for module based on the concept of critical task; the DVS 
adjustment method of task set and energy consumption 
steps of whole application are advanced, its enforcement 
algorithm is also given. Finally, we explain the   
effectiveness and feasibility of the method by ELC sub 
system. Comparing with other related works, the 
advantages of this paper are: Constructing energy 
consumption model of DRE software; proposing new idle 
time allocation method and offline DVS  scheduling of 
DRE model. 

  The study of DRE software is still underway at 
present. Our current research is focused on exploring 
formal method as means to improve its mapping into 
DRE's architecture. The following two aspects are the 
main work in the next phase: (1) further improves this 
method, consider the fault-tolerant of each task to  
assurance system's schedulability; (2) developing the 
corresponding tools to support the modeling. 
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