
Analyzing Schedulability of Energy-oriented
Distributed Real-time Embedded Software

Liqiong Chen1, Guisheng Fan1,2 and Yunxiang Liu1+

1Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, China
Email: lqchen@sit.edu.cn

2Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
3 Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai, China

Email: gsfan@ecust.edu.cn, yxliu@sit.edu.cn
Corresponding author : yxliu@sit.edu.cn

Abstract—As computer systems become increasingly inter-
networked, most of critical systems are distributed real-time
embedded (DRE) system. A challenging problem faced by
researchers and developers of DRE system is devising and
implementing an effective method that can analyze
requirements in varying operational conditions. In this
paper, we analyze the requirements of DRE software and
construct the corresponding energy consumption model,
which is divided into fork module and leaf module based on
its characteristics, and an energy consumption schema with
time constrains is proposed for DRE software. The concept
of critical task is presented according to the different
position of task in the module, then constructing divide task
set for module based on the characteristics of module and its
critical task's position, the idle time allocation strategy and
DVS adjustment method of sub task set are also advanced.
Finally, a specific example is given to simulate the analysis
process, the results show that the method can be a good
solution to analyze DRE software.

Index Terms—Distributed real-time and embedded system;
Petri net; energy consumption; DVS; critical task

I. INTRODUCTION

Distributed real-time embedded (DRE) systems are
becoming increasingly widespread and important. Most
of critical application is embedded systems that control
physical, biological, or defense processes and devices [1].
For example, a typical networked DRE system will
consist of multiple subsystems, which may involve
combinations of both local and distributed deployment. In
this environment, developers require an effective method
that can help identify requirements and design defects
before a commitment is made to a particular design
strategy. In these early development phases, the cost
effectiveness and ease of use of validation tools is
significant, as well as the level of rigor supplied by the
modeling language and environment. Besides meeting
timing constraints, energy consumption has become a
major consideration in DRE design. Even in an energy-
rich platform, energy consumption has raised a serious of
concerns with respect to reliability and cost [2].

Power consumption is one of the critical design
considerations for embedded systems. Reducing power

consumption can extend battery lifetime of portable
systems, decrease chip cooling costs, as well as increase
system reliability. Dynamic voltage scaling (DVS)[3] is a
popular technique for reducing energy consumption,
especially in DRE systems where each component could
take hundreds of cycles to execute. Based on the DVS
technique, energy management schemes in real-time
application have been extensively explored. Fewer works,
however, have focused on energy management for DRE
systems. Therefore, energy consumption has become a
hot research in DRE software not only to reduce energy
consumption but also to reduce associated cost.

To address the schedulability of energy-oriented DRE
systems, this paper makes three main contributions to the
state of the art in DRE. First, it uses formal techniques in
an accessible and cost-effective manner to support
optimizing energy consumption of DRE systems. The
approach is based on Petri nets, an established formal
method which has been widely used to model and analyze
concurrent and distributed systems. Second, we extend
for Place Timed Petri net and propose an Hierarchical
Distributed Real-time Embedded net (HDRE-net) model.
A optimizing energy consumption schema by using DVS
capability is advanced. Third, We propose the concept of
critical task and divide task set for module based on
critical task. The DVS adjustment method of task set and
optimizing energy consumption steps of whole
application are advanced, and its enforcement algorithm
is also given. Finally, we explain the effectiveness and
feasibility of method by using ELC sub system.

II. COMPUTATION MODEL

A. Definition of HDRE-net
Timed Petri nets (TPN) is a mathematical formalism,

which allows to model for the features present in most
concurrent and real-time systems[4], such as concurrent,
asynchronism and distribution, etc. Some recent
researches indicate that TPN is powerful enough to
describe behavioral features of DRE software. The basic
concepts of it can refer to [5]. In this paper, we extend for
TPN and establish a model for analyzing DRE software.

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1771

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.9.1771-1778

Definition 1: A tuple Σ=(TPN,I,γ,µ) is called
Distributed Real-time Embedded net (DRE-net) iff:

 (1) TPN =(PN, C, M0) is a Timed Place Petri net;
 (2) I⊂P is a special place, which is called the

interface of Σ and denoted by the dotted circle;
 (3) γ is the priority function of transition. γ(ti)=(αi,βi),

where αi,βi are called the primary and secondary priority
of transition ti;

 (4) µ: T→N* is the unit energy consumption of
transition, the default value is 0.

The distribution of token in each place at time θ is
called the marking of DRE-net model, denoted by M. The
marking M(p) denotes the number of tokens in the place p.
M=Ma ∪Mu, where Ma is the available tokens of M, Mu is
the unavailable tokens of M. For any x∈(P∪T), we
denote the pre-set of x as ●x={y|y∈ (P∪T)∧(y,x)∈F} and
the post-set of x as x●={y|y∈ (P∪T)∧(x,y) ∈F}. λ(ti)=
(αi

S,βi
S) is called the initial priority of transition ti.

 Definition 2: A six tuple Ω=(Σ,Γ,TI,TA,PI,PA) is
called Hierarchical Distributed Real-time Embedded Net
(HDRE-net) model, where:

(1) Σ is a DRE-net model, which describes the basic
structure of Ω;

(2) Γ={Γi|i∈Z*} is the finite set of DRE-net and
HDRE-net, each element is called a page of Ω;

(3) TI⊂T is the set of substituted operation, each page
of HDRE-net corresponds to a substituted node and
denoted by the double rectangle;

(4) TA is the page allocation function, whose function
is to allocate the page to the substituted node;

(5) PI⊂P is the set of interface node, which describes
the input and output of substituted node, and denoted by
double circle;

(6) PA is the mapping function of interface, which
maps the interface node into the input and output of the
operation.

From the definition, we can get that DRE-net is a
special case of HDRE-net, that is, Γ of HDRE-net model
is empty. We will analyze the operation mechanism of
HDRE-net model in the following.

B. Operation mechanism of HDRE-net
Because the tokens in HDRE-net model include time

factor, therefore, we will introduce the concept of wait
time in this paper.

Definition 3: Let Ω be a HDRE-net model, which
reaches marking M at time θ, ∀Pi∈P, place Pi has j
tokens in marking M, Pi

k is the kth token of Pi. Vector :
TS(Pi)=(TSi

1,TSi
2,……,TSi

j) is the wait time of place Pi,
where TS(Pi

k)= max{ci-(θ-ξk),0}, TS(Pi) and TS(Pi
k) are

the wait time of Pi and Pi
k

TS(Pi
k)=m explains the model must wait M time units

before using token Pi
k. While TS(Pi

k)=0 represents the
token is available. Recorded TS(M,θ) as the wait time set
of places under marking M. A triple S = (M, TE, TR) is
called a state of Ω at time θ. Where M is marking, which
describes the distribution of resources; TS(M, θ) is the
time stamp of marking M, which depicts time properties
of system.; TE is the energy consumption of reaching

state S. Initial state S0=(M0, TS0, TE0), where TS0 is a zero
vector, that is, all tokens are available in the initial state,
TE0 = 0, which means the energy consumption of initial
state is 0.

Definition 4: Let Ω be a HDRE-net model, S is a state
of Ω at time θ, for transition ti∈T, iff:

(1) ∀pj∈P:pj∈•ti→Ma(pj)≥W(pj,ti), then transition ti is
strong enabled under marking S, denoted by S[ti>, all
strong enabled transitions under state S are denoted by set
SET(S).

(2) ∀pj∈P: pj∈•ti→M(pj)≥F(pj,ti)∧Ma<F(pj, ti), then
transition ti is weak enabled under state S, denoted by
S[ti≥, all weak enabled transitions under state S are
denoted by set WET(S).

The set ET(S)=SET(S)∪WET(S). If transition ti has
weak enabled under state S and at least pass through ω
time units to be strong enabled, then ω is called firing
delay of transition ti under state S, denoted by FD(S,ti)
From the definition, we can get that the firing delay of
strong enabled transition is 0.

Definition 5: Let Ω be a HDRE-net model, S is a state
of Ω at time θ, ∀ti∈ET(S),ω∈N*, the firing of transition ti
is effective iff it meets one of the following conditions:

(1) ti∈SET(S): αi≤min(αj)∧βi≤min(βk), where tj∈SET
(S), tk∈U(ti)

(2) ti∈WET(S): SET(M)=Φ∧ FD(S,ti)≤ min((FD(S,tj)),
tj∈WET(S)

 The set U(ti)={tk| tk∈SET(S) ∧αk=αi}. All the effective
firing transitions under state S are denoted by FT(S).

Definition 6: Let Ω be a HDRE-net model, S is a state
of Ω at time θ, the model will reach a new state S' by
effectively firing enabled transition ti at time θ+ω,
denoted by S[(ti,ω)>S′, S' is called the reachable state of
S, the computation of M' , TS', TE’ are based on the
following rules:

(1) Computing marking:
∀Pj∈●ti∪ti

●,M′(Pj)=M(Pj)- W(Pj,ti)+W(ti,Pj)
(2) Computing wait time:
First, adding wait time to the new generated marking:
 TS′(Pi

k)=ci, Pi
k is generated when firing transition ti;

Second, modifying the wait time of tokens which are
generated before the firing of transition ti:

 TS′(Pi
k)=max{(TS(Pi

k)-ω),0},TS(Pi
k)≥0.

(3) Computing energy consumption:
TE0=TE’+FD(S, ti) ×µi

III. MODELING DRE SOFTWARE

A. Requirements of DRE software
DRE software can be regarded as a number of

modules; each module also contains a number of partially
ordered, serial or parallel implemented sub tasks [9, 10].
The function of DRE systems will be distributed to a
number of interrelated embedded devices, each device is
responsible for certain functions, and has certain
autonomy, but relies on the computation of other
embedded devices. Among them, DRE system has n
tasks; each task is composed by a series of interrelated
sub tasks set and a bus controller. The effective and

1772 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

reliable communication between tasks is done by bus and
bus controller. In this paper, we assume the
communication between tasks is done by Controller Area
Network (CAN).

 As DRE software has strong performance
requirements such as predictability, efficiency, reliability
and security, et al. Therefore, it is necessary to consider
above characteristics when describe the requirements of
DRE software.

 Definition 7: DRE software requirement model is a 9-
tuple Ξ={TK,NT,RS,RL,CP,RT,D, En, MPS}:

(1) TK, NT, RS are the finite tasks set, module set and
resource set, the jth task of module Ni is denoted by TKi,j;

 (2) RL is the relation between tasks, which may be
sequence(>), choice(+), parallel(||) and exclusive(◊);

(3) CP:TK→(N*×N*×N*) is the attribution function of
task, which describes the running time and priority of
task;

(4) RT:TK→RS* is the resource function of task, whose
function is to assign necessary resources to each task, RS*
represents the multiple set of resource, that is, a task can
use multiple sources;

 (5) D is the deadline of whole application；
(6)En: TK→ N* is the unit energy consumption of task,

the unit energy consumption of task TKi,j is denoted by ei,j ;
(7) MPS:N→ (N*×N*) is the max and min supply

voltage of module.

B. Modeling DRE software
The model of task TKi,j is shown in Fig.1, where place

pac
i,j

 describes the state of task TKi,j, and its delay time is
equal to the running time of task TCi,j. While transition
tst

i,j, ten
i,j describe the beginning and termination

operation of task, place ppa
i,j, pou

i,j describe the input and
output parameters of task. And energy consumption of
task TKi,j is regarded as firing energy consumption of
transition ten

i,j, that is µ(ten
i,j) =ei,j. Transition tab

i,j, tac
i,j

represent the operation of module has overtime. We
introduce place pcn

i,j to control the running process of
task.

ji
pap ,

ji
stt ,

ji
ji

ac TCp ,
, ,

ji
ji

en et ,
, , ji

oup ,

ji
abt , ji

cat ,

ji
abp , ji

cap ,

ji
cnp ,

ji
trp ,

RSP

Fig. 1 HDRE-net Model of Task

 Operator > represents the sequence relationship: If the
firing of task TKi,j can lead to the firing of task TKi,k, then
the relationships between task TKi,j and TKi,k is sequence.
TKi,j is the forward task of TKi,k, while TKi,k is the
afterward task of TKi,j. The set Forw(TKi,j), Back(TKi,j)⊂
TK are the forward and afterward task set of task TKi,j.
The HDRE-net model of TKi,j>TKi,k is shown in Figure
2(a), the substituted node TKi,j and TKi,k corresponds to

the page of task TKi,j and TKi,k, while interface node Pi,j
pa ,

Pi,j
ou represent the input and output of substituted node

TKi,j, which are mapped into the interface pi,j
pa, pi,j

ou of
task TKi,j. Because the relationship between task and
substituted node is one by one, the substituted node is
also called task in the following. In order to describe the
sequence relationship, we introduce transition tou to
transfer the result of task TKi,j to the input interface of
task TKi,k.

We can construct the model of TKi,j + TKi,k, TKi,j || TKi,k
and TKi,j ◊ TKi,k in the similar way, which are shown in
Fig.2(b)-(d).

ji
paP ,

jiTK ,
ji

ouP , ki
paP ,

kiTK ,

ki
ouP ,

out

ji
paP ,

jiTK ,
ji

ouP ,

ki
paP , kiTK , ki

ouP ,

fi
ouP ,

ri
paP ,jkft , rjkt ,

ji
paP ,

jiTK ,

ji
ouP ,

ki
paP ,

kiTK ,
ki

ouP ,

fi
ouP , ri

paP ,
jft , rjt ,

kft ,
rkt ,

ji
paP ,

jiTK ,

ji
ouP ,

ki
paP ,

kiTK , ki
ouP ,

jst ,

kst ,

jet ,

ket ,

RSp

Fig. 2 HDRE-net Model of basic Relation

We will construct HDRE-net model of each module
from bottom to up based on the relationships between
task, as shown in Fig.3.

i
stp

i
abt

i
abp

ji
stt ,

i
trp

1,qi
stP

1,qiTK
1, pi

enP

pmi
enP ,

i
contp

i
exp

i
enp

i
dt

i
eht

i
ent

i
cnp

qni
stP ,

i
cnt

qni
trP ,

1,qi
trP

qniTK ,

1,qi
enP

qni
enP ,

1, pi
stP

1, piTK
1, pi

trP

pmi
stP ,

pmiTK ,

pmi
trP ,

i
i
d Dp ,

 Fig. 3 HDRE-net Model of Module Ni
The operation process of module Ni is: the system will

invoke the tasks in the module according to the
relationship between task after initialing (tst

i), and setting

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1773

© 2011 ACADEMY PUBLISHER

●tst
i =pst

i, tst
i● ={Ppa

i,j|Forw(TKi,j)=∅}; meanwhile, the
local clock will begin to time, if all tasks can finish
operating before the deadline Di, then invoking
termination operation (ten

i) to make it be in the
termination operation (pen

i), and setting tst
i● = pen

i, ●ten
i

={Pou
i,j|Back(TKi,j)= ∅}, otherwise, the system will

invoke the overtime handling operation(td
i) and do

overtime handling for all tasks. The overtime handling of
inner module is realized by introducing place pcn

i and
transition tcn

i, which make ●pcn
i = td

i, pcn
i ●= tcn

i, ●tcn
i= pcn

i,
tcn

i ●={Ptr
i,1, Ptr

i,2, …, Ptr
i,|NTi|}.

According to the communication principle of CAN bus,
the communication process of task TKi,j sending message
to task TKg,f is abstracted as a communication task
TKi,j→g,f. The HDRE-net model of task TKi,j→g,f is shown
in Fig.4. Where place pou

i,j and ppa
g,f are the input and

output interface of task, while place pb and ph describe the
idle buffer and bus token resource. The process of
communication task TKi,j→g,f is: getting data packet after
beginning to operate(tst

i,j→g,f), and being in waiting for
idle buffer (pgp

i,j→g,f); the system will release buffer and
bus token (ten

i,j→g,f) after finishing sending data packet.
The energy consumption of task TKi,j→g,f is regarded as
firing energy consumption of transition ten

i,j→g,f, that is
µ(ten

i,j→g,f)= ei,j→g,f.

ji
wgpp , fg

pap ,

busp

fgji
fgji

ac mp ,,
,, , →

→

fgji
gbt ,, →

fgji
fgji

en et ,,
,, , →

→

ji
oup ,

fgji
stt ,, →

ji
wgbp ,

fgji
gpt ,, →

pp

Fig. 4 HDRE-net Model of Communication Process
According to the requirement model and relationships

between module, we can construct HDRE-net model of
whole application from bottom to up, which is shown in
Fig.5. Similarly, place pst, Pen are introduced to describe
the initial and termination state of whole application,
transition pst, pen are introduced to describe the initial and
termination operation of whole application. Place Ptr

1,
Ptr

2, … , Ptr
|NT| is the coordination input of module,

interface node Pen
1, Pen

2, …, Pen
|N| are the failure output of

module. Transition te,1, te,2 , …, te,|NT| are used to transfer
the overtime info of each module to the coordination
place pcn. If any one module has overtime, the system will
invoke transition tcn to do overtime handling for all
modules.

Based on the constructed HDRE-net model, we will
allocate priority to transition: in the HDRE-net model of
task, the primary priority of transitions are equal to the
priority of the corresponding task, while the priority of
transition that introduced to describe process is (0,0), and
the priority of substituted node is (0,0); the secondary
priority of transition is divided into 5 grades according to
its importance, the priority of transition βS(ten

i,j) = 1,
βS(tab

i,j)=βS(tca
i,j) = 0, βS(tc

i,j) =βS(tg
i,j) = 2, βS(tr

i,j) = 3,
βS(tst

i,j) = 4, βS(td
i,j) = 5; while the secondary priority of

transition tab
i,j and tca

i,j is the highest, which is used to

describe overtime handling, for example, if the task is in
the initial position, then aborting it, if the task is in the
active position, then canceling it.

stp

stt
1

stP

1N

1
enP

||NT
enP

contp

dmp

enp

dt

ent
……

cnp

1
exP

||NT
stP

||NTN ||NT
exP

cnt

||NT
trP

1
trP

……

1,et

|,|NTet

Dpd ,

Fig. 5 HDRE-net Model of Whole Application
The primary priority of transitions in communication

task TKi,j→g,f are equal to the priority of recipient task, that
is TPg,f; the secondary priority of transition in task TKi,j is
divided into 6 grades according to its importance, the
priority of transition ten

i,j, tc
i,j, tg

i,j, tr
i,j, tst

i,j, td
i,j is

incremental. The secondary priority of transitions in
communication task TKi,j→g,f are divided into 5 grades
according to its importance, the priority of transition
ten

i,j→g,f, tgb
i,j→g,f, tgp

i,j→g,f, tst
i,j→g,f, td

i,j is incremental.

IV. OFFLINE DVS SCHEDULING OF DRE
SOFTWARE

A. Diving task set for module
In this section, we will analyze the characteristics of

task and module, then proposing the concept of
communication task and critical task.

Let Ω be a HRDE-net model, ∀TKi,j, TKg,f∈ TK, i≠ g, if
there exists communication task TKi,j→g,f between task
TKi,j and TKg,f, then task TKi,j is the communication
forward task of TKg,f, while TKg,f is the communication
afterward task of TKi,j, the communication forward and
afterward task set are denoted by ConF(TKi,j) and
ConB(TKi,j); meanwhile, module Ng is the directly
afterward module of Ni, the set Next(Ni) is denoted as the
directly afterward module set of module Ni; if the inner
tasks of module don't output parameters to other module,
then the module is leaf module, otherwise it is the fork
module; the module that need interact with external
module (other modules) is called critical tasks; the
moment that module receive the outputs of other
module's task is called critical point.

We will divide the task set of leaf module Ni according
to the critical point set of module. We may set task TKi,j
and TKi,k of module Ni need the output of other module,
and task TKi,j is the forward task of TKi,k. Then the task
set NTi of module Ni is divided into three sub set: the task
set before task TKi,j is denoted by Fbeg(TKi,j), the total
running time is Starti,j; the task set in the middle of task

1774 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

TKi,j and TKi,k is denoted by Bet{TKi,j, TKi,k}, and running
time is Starti,k - Starti,j; the task set after task Starti,j is
denoted by Bbeg(TKi,j), the total running time is D-
Starti,j.

Fork module is divided into communication forward
task and non-communication forward task according to
whether the fork module need the parameters. We will
divide fork task set into two type of fork module in the
following.

We will firstly model for the fork module of non-
communication forward module. Let task TKg,k of module
Ng need output parameters to the task TKi,j of module Ni,
while task TKg,r need output parameters to the task TKp,q
of module Np. And the dynamic voltage of task in module
Ni and Np have finished adjusting, TKg,k is operated before
the beginning of TKg,r, we can divide task set NTg of
module Ng into three sub set, which is shown in Fig.6(a).
The task set before the termination of task TKg,k is
denoted by Fend(TKg,k), and the total running time is

Endg,k, where Endg,k = Starti,j - mg,k→i,j; the task set
between the termination of task TKg,k and TKg,r is denoted
by Fbet(TKg,k, TKg,r), and running time is Endg,r - Endg,k,
where Endg,r = Startp,q - mg,r→p.q; the task set after the
termination of task TKg,r is denoted by Bbeg(TKi,j), and
running time is D-Endg,k.

Second, we will model for fork module of
communication forward module. The corresponding
model is shown in Fig.6(b), we can divide task set NTg of
module Ng into three sub set: The task set before the
termination of task TKg,k is Fbeg(TKg,k), and total running
time is Startg,k, where Startg,k = Starti,j - mg,k→i,j; the task
set between the termination of task TKg,k and TKg,r is
Fbet(TKg,k, TKg,r), and running time is Endg,r - Startg,k,
where Endg,r = Startp,q - mg,r→p,q; the task set after the
termination of task TKg,r is Bbeg(TKi,j), and running time
is D-Endg,k.

jiTK ,

jiStartD ,−

jiStart ,

kgTK ,

rgEndD ,−

kgEnd ,

rgTK ,

qpTK ,

qpStartD ,−

qpStart ,

kgrg EndEnd ,, −

jikgTK ,, →

qprgTK ,, →

jiTK ,

j,iEndD −

j,iEnd

k,gTK

rgEndD ,−

k,gStart

rgTK ,

qpTK ,

qpStartD ,−

qpStart ,

k,gr,g StartEnd −

k,gj,iTK →

qprgTK ,, →

Fig. 6 Cross Module Task Set Division Example of Fork Module

B. DVS adjust for task set
We will allocate idle time to task according to its

characteristics, let the deadline of all modules be D, the
steps of allocating idle time are as following:

(1) Calculating running time of the longest path by
combining time reachability graph, we may set it be
TCmax;

(2) Computing idle time: Drem = D - TCmax;
(3) Adjusting running time of the longest path,

assuming that the path is composed by task TKi,q1,
TKi,q2, …, TKi,qm, then:

∑
=

+=
qm

qj
jijiremjiji eeDTCTC

1
,,,

'
, /*

(4) Combining the process of diving task set, we can
get running time of other tasks.

Let the total running time of task set SubT = {TKi,q1,
TKi,q2, …, TKi,qm} ⊆ NTi be DSubT, we will dynamically
adjust supply voltage of task in SubT, the specific steps:

(1) Computing idle time: ∑
=

−=
qm

qj
jiSubTrem TCDD

1
, ;

(2) Recomputing running time of each task: according
to the relationship between unit energy consumption and

voltage, we will allocate running time based on the
proportion of energy consumption.

The adjusted running time of task TKi,j is:

∑
=

+=
qm

qj
jijiremjiji eeDTCTC

1
,,,

'
, /*

(3) Computing the adjusted probability of task's

running time Ti,j: '
,

,
,

ji

ji
ji TC

TC
ETC = ;

(4) Computing new supply voltage of task TKi,j:

2
min

2

,

0
min

,

0
min

,)()
2

(
2

' i

ji

i
i

ji

i
iji

dd V
ETC
V

V
ETC
V

VV −+++=

where i

ii
i

V
VV

V
max

2
minmax

0
)(−

= ;

 (5) Computing new unit energy consumption of task
TKi,j: from the formula:

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1775

© 2011 ACADEMY PUBLISHER

2
max

2

2
max

2

*1

maxmax
V
V

ETCVfC

VfC
e
e

dd

VL

ddVL

V

V dddd ==
α

α
,

we can get new energy consumption of task TKi,j is:

i

ji
dd

ji
jiji V

V
ETC

ee
max

,

,
,,

'
1'= ;

(6) Computing the beginning and termination time of
task TKi,j:

∑
−

=

=
1

1
,, ''

j

k
kiji TCStart

'' ,,, jijiji TCStartEnd +=

B. Optimizing energy consumption and enforcemen
Based on the state space of HDRE-net model, the

energy consumption optimization of whole application is:
(1) Constructing the state space of each module; (2)
Dividing task set for each module; (3)Computing running
time of task set; (4) Adjusting DVS for task set; (5)
Computing energy consumption of whole application:

 ∑∑
=

||

1

||

,, ''*
NT

i

NT

j
jiji

i

TCe

 For the bounded HDRE-net, because its reachability
state set R(S0) is a finite set, therefore, R(S0) is viewed as
a vertex set, and the direct reachability relationship
between states is viewed as arc set, and the transition is
marked in the corresponding arc, which constructs a
directed arc. The directed graph is called Timed
Reachable Graph in HDRE-net model. We can analyze
state change, transition firing sequence and execution
time of system by using Timed Reachable Graph, thus
getting the related properties of HDRE-net model.

 According to the construction algorithm of Petri net
reachability graph, we can construct HDRE-net model.
Based on the state space, we will use a heuristic
algorithm energy consumption for DRE software. The
algorithm will firstly compute running time of the longest
path by combining with the requirement model and state
space, then gradually optimizing energy consumption of
other tasks, we will do following operation for module set
TNT:

 Step 1: Computing the largest leaf module set NoB=
NoB(TNT), then doing Step 2;

 Step 2: If NoB(TNT)≠∅, then arbitrary choosing
module Ni∈NOB, NOB = NoB - Ni, and doing Step 3,
otherwise doing Step 6;

 Step 3: Computing critical task set Crut(Ni) of
module Ni;

 Step 4: If Sub(NTi) ≠∅, then arbitrary choosing task
set Subj∈Sub(NTi), Sub(NTi) = Sub(NTi) - Subj; and doing
Step 5, otherwise doing Step 2;

 Step 5: Computing critical task's beginning time of
Subj by combining with the path of state space, then
computing running time of whole task set Subj, and
dynamically adjusting each task in task set Subj according
to DVS adjustment method of task set, then doing Step 4;

 Step 6: Let TNT = TNT - NOB(TNT), then doing
next operation.

V. EXPERIMENTS

In order to better describe the above modeling process
and explain the correctness of analysis process, we use an
actual case - Electronic Toll Collection (ETC) as an
example. ETC system is an advanced system which
consists of high-tech equipment and software such as
electronics technology, computer technology,
communications and network technology, and can
achieve the function of automatically charging the cost of
road without stopping vehicle. Strictly speaking, ETC
application is the typical DRE software.
 The workflow of ELC system is: the system will
display traffic light once starting to operate, then
informing lane computer to send start-up instructions to
antenna controller when trigger coil detects the passage
of vehicles. The read information from OBE will send to
data processing center for data processing and charging.
If success, then charge information screen will display
“charge successfully, the amount of consumption”; the
system mainly adopt camera and capture on the spot, and
traffic police department will do the corresponding
handling. The general distance of charging is 30m. The
design speed of ETC lanes is 40km/h, then handling time
of whole applications is 0.09s.

According to the actual requirements, we can divide
the whole application into four function modules. Module
1 responses for controlling auxiliary equipment, including
traffic lights, display screen, lever and coil; Module 2
responses for reading OBE data. Module 3 responses for
processing charged data; And module 4 responses for
capturing peccancy vehicles. Because module 3 need
handle a large number of data, ARM9 is used in this
module, the rest modules use 8051 Single-Chip. All
modules use SJA100 as bus controller. According to the
structure of ELC sub system, and combining with the
functions of each module, we can divide task set for each
function module, the attributes of task including: deadline,
the ways of accessing resource, required resource,
running time. The required preemptive task and deadline
are shown in table I, the resource mainly includes buffer,
communication buffer and bus token(where time unit
TTU is 2ms, the unit energy consumption is mw). The
energy consumption of whole ELC sub system is 740J,
because the total running time of ELC sub system is
34.5TTU, the rest time for optimizing energy
consumption is 10.5TTU, let the increased unit of
running time be 0.1TTU. The max and min supply
voltage of Module 1, 2, 3, 4 is 3.3V and 0.8V, while
module 3 is 5V and 1.2V.

We can model for task, module and communication
process, and construct the HDRE-net model of ELC sub
system by merging the corresponding interface. Because
the task has less conflict, the using of priority can reduce
the corresponding level, and the communication buffer is
set to 3.

1776 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

Table I Requirement of Task in ELC Sub-System

TK TC UE TK TC UE TK TK TC UE TK TC UE TK

TK1,1 1 2 TK2,1 1 3 TK3,1 4 TK1,5 1 4 TK2,5 3 5 TK3,5 7

TK1,2 1 3 TK2,2 1 5 TK3,2 5 TK1,6 2 8 TK2,6 1 4 TK3,6 4

TK1,3 2 4 TK2,3 1 5 TK3,3 4 TK1,7 2 5 TK2,7 3 10 TK3,7 6

TK1,4 1 4 TK2,4 3 5 TK3,4 5 TK1,8 2 5 TK2,8 1 5 TK3,8 4

TK4,1 1 2 TK1,4→2,1 0.5 2 TK3,9 15 TK4,4 2 5 TK3,7→2,6 0.5 2 TK3,7→2,6 2

TK4,2 3 20 TK2,5→3,2 0.5 2 TK2,5→3,2 2 TK4,5 2 5 TK3,8→4,1 0.5 2 TK3,8→4,1 2

TK4,3 3 20 TK3,7→1,5 0.5 2 TK3,7→1,5 2

 According to the division method of module's task set,
we can divide task set for each module, and computing
new running time of each task by computing increase
time of each task set, the computed running time, supply

voltage and unit energy consumption are shown in Table
II. The optimized energy consumption is 525.07319, the
optimization probability is 0.70955835.

Table II Energy Consumption Properties of Task

Task TC' Vdd e' Task TC' Vdd e' Task TC' Vdd e'

TK1,1 1.18 2.99 1.54 TK2,3 1.46 2.6

6
2.77 TK3,5 2.50 4.38 4.91

TK1,2 44 1.01 0.02 TK2,4 3.46 3.0

3
3.99 TK3,6 2.43 4.45 2.93

TK1,3 2.36 2.99 3.07 TK2,5 3.46 3.0

3
3.99 TK3,7 2.65 4.24 3.84

TK1,4 1.36 2.76 2.46 TK2,6 4.18 1.6

7
0.48 TK3,8 11.33 2.28 0.32

TK1,5 7.75 1.38 0.22 TK2,7 10.94 1.7

5
1.46 TK3,9 16.00 2.06 0.77

TK1,6 8.75 1.64 0.46 TK2,8 3.38 1.8

1
0.49 TK4,1 1.19 2.98 1.52

TK1,7 28 1.07 0.06 TK3,1 2 5 4 TK4,2 4.88 2.51 9.34

TK1,8 28 1.07 0.06 TK3,2 1.54 3.9

0
2.53 TK4,3 4.88 2.51 9.34

TK2,1 1.27 2.86 2.04 TK3,3 1.43 4.0

6
2.27 TK4,4 2.47 2.91 3.57

TK2,2 1.46 2.66 2.77 TK3,4 1.54 3.9

0
2.53 TK4,5 2.47 2.91 3.57

Using the method proposed by Schmitz[7] and Yan[8],
the optimized energy consumption is 577 and 618, which
are higher than the method proposed in this paper, the
comparison results are shown in Fig.7. The application
results of Schmitz's method show that the proposed
method can not only describes the characteristics of DRE
software, but also can effectively reduce energy
consumption.

Fig. 8 Comparision Results of Optimization Method

VI. Related Works

 The method that used to analyze energy consumption
of DRE system are given in [9-11]. In[9], the authors
addresses the problem of static and dynamic variable
voltage scheduling of multi-rate periodic task graphs and
aperiodic tasks in heterogeneous DRE systems.
Reference[10] uses a comprehensive traffic description
function at nodes and provides adequate information
about the worst-case traffic behavior anywhere in the
distributed network, thereby enhancing the system power
management capabilities. A similar approach is given in

[11], the authors incorporate a fault tolerance mechanism
into DRE systems in order to utilize the available
dynamic slack to maintain checkpoints and provide for
rollbacks on faults. Previous approaches have relied on
scaling down the supply voltage to reduce power
consumption. However, supply voltage scaling can affect
the performance. P.Paul et al[12, 13] used task graph to
describe tasks and relations between tasks in DRE
systems. More specifically, it discussed the schedulability
analysis of DRE systems, and introduced several design
optimization problems characteristic of this class of
systems. The proposed method in this paper is easier to
use because of the high abstraction level offered by using
Petri nets. In addition, using the related tools of Petri net
is also more suitable for DRE system.

Although the non-formal methods has made some
corresponding results in the design of DRE systems, but
they may cause some of the semantic ambiguity, in order
to solve this problem, there has been some formal
methods: G. Madl et al[14] used Time Automata (TA) to
model various components of the non-preemptive real-
time distributed embedded systems and converted the
system scheduling problem into TA state reachability. As
the TA model implied the existence of global clock, it
unfits for modeling the Distributed Systems. V. Marcel et
al[15] used the time extended of Vienna Development
Method (VDM++) to stipulate DRE systems, and used
VDM verification tools to verify the properties of system.
However, comparing with other formal methods, the
VDM may be more difficult to understand and grasp for

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1777

© 2011 ACADEMY PUBLISHER

developers. A resource-based time Petri Net is proposed
in [16] to model the DRE systems and analyzed the
corresponding semantic, properties. In our work, it allows
user to describe and model on the non-function of DRE
system by using Petri net, which can be helpful in
analyzing its performance, and they didn't describe the
communication between modules which is the key issue
of DRE systems.

VII. Conclusion

 In this paper, we have proposed a HDRE-net to model
and analyze energy consumption of DRE software. This
approach is based on a formal model, Petri net, that
allows to consider different components of DRE software.
According to the characteristics of module, we divide it
into leaf module and fork module, then dividing task set
for module based on the concept of critical task; the DVS
adjustment method of task set and energy consumption
steps of whole application are advanced, its enforcement
algorithm is also given. Finally, we explain the
effectiveness and feasibility of the method by ELC sub
system. Comparing with other related works, the
advantages of this paper are: Constructing energy
consumption model of DRE software; proposing new idle
time allocation method and offline DVS scheduling of
DRE model.

 The study of DRE software is still underway at
present. Our current research is focused on exploring
formal method as means to improve its mapping into
DRE's architecture. The following two aspects are the
main work in the next phase: (1) further improves this
method, consider the fault-tolerant of each task to
assurance system's schedulability; (2) developing the
corresponding tools to support the modeling.

ACKNOWLEDGMENT

This paper is supported by key Foundation of Shanghai
Educational Committee (07ZZ164, 06OZ016), Foundation of
Shanghai Institute of Technology (YJ2004-05) and key subject
of Shanghai Institute of Technology (Computer science and
technology), Fund of Key Laboratory of Shanghai Science
and Technology (09DZ2272600), the Open Research
Foundation Institute of Technology of China under Grant No.
YJ2009-17.

REFERENCES

[1] C. E. Pereira, L. Carro. “Distributed Real-time Embedded
Systems: Recent Advances, Future Trends and Their
Impact on Manufacturing Plant Control,” Annual Reviews
in Control, 2007, 31(1). pp. 81-92.

[2] R. Mishra, N. Rastogi, Z. Dakai, D. Mosse. “Energy aware
scheduling for distributed real-time systems,” In:
Proceedings of 2003 International Conference on Parallel
and Distributed Processing Symposium, 2003, p21.

[3] R. Min, T. Furrer, A. Chandrakasan. “Dynamic voltage
scaling techniques for distributed microsensor networks,”
IEEE Computer Society Annual Workshop on VLSI. 2000,
pp.43.

[4] J. Sifakis. “Using Petri nets for performance evaluation,”
In: Proceedings of the Third International Symposium on
Measuring, Modelling and Evaluating Computer Systems.

The Netherlands: North-Holland Publishing Co. 1977. pp.
75-93.

[5] T. Murata. “Petri nets: properties, analysis and
application,” In: Proceedings of the IEEE. 1989,77(4). pp.
40-581.

[6] K. Etschberger. “Controller Area Network-Basics,
Protocols, Chips and Applications,” IXXAT Press.
Weingarten, Germany.2001.

[7] M. T.Schmitz, B. M. Al-Hashimi, P. Eles. “Iterative
schedule optimization for voltage scalable distributed
embedded systems,” ACM Transactions on Embedded
Computing Systems. 2004, 3(1). pp.182-217.

[8] L. Yan, J. Luo, N. K.Jha .“ Joint dynamic vltage scaling
and adaptive body biasing for heterogeneous distributed
real-time embedded systems”. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems. 2005, 24(7):1030-1041.

[9] J. Luo, N. K.Jha. “Static and dynamic variable voltage
scheduling algorithms for real-time heterogeneous
distributed embedded systems”. In: Proceedings of the
2002 Conference on Asia South Pacific Design
Automation/VLSI Design. Washington, DC, USA: IEEE
Computer Society. 2002. pp. 719-726.

[10] R. N. Mahapatra, W. Zhao. “An energy-efficient slack
distribution technique for multimode distributed real-time
embedded systems”. IEEE Transactions on Parallel and
Distributed Systems. 2005, 16(7): 650-662.

[11] S. Acharya, R. Mahapatra. “A dynamic slack management
technique for real-time distributed embedded systems”.
IEEE Transactions on Computers, 2008, 57(2): 215-230.

[12] P. Pop, P. Eles, Z. Peng, T. Pop. “Analysis and
optimization of distributed real-time embedded systems”.
ACM Transactions on Design Automation of Electronic
Systems. 2006, 11(3): 593-625.

[13] P. Pop, K. H.Poulsen, V. Izosimov, P. Eles. “Scheduling
and voltage scaling for energy/reliability trade-offs in
fault-tolerant time-triggered embedded systems”. In:
Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system
synthesis. ACM: New Yor, 2007: 233-238.

[14] G. Madl, S. Abdelwahed, D. C. Schmidt. “Verifying
distributed real-time properties of embedded systems via
graph transformations and model checking”. Real-Time
Systems. 2006, 33(1-3): 77-100.

[15] M. Verhoef, P. G. Larsen, J. Hooman. “Modeling and
validating distributed embedded real-time systems with
VDM++”. FM 2006: Formal Methods. Springer,
2006,4085.

[16] H. T. Zhang, Y. F. Ai. “Time analysis of scheduling
sequences based on Petri nets for distributed real-time
embedded systems”. In: Proceedings of the 2nd
IEEE/ASME International Conference on Mechatronic and
Embedded Systems and Applications. IEEE Computer
Society, 2006:1-5.

Liqiong Chen. She was born in 1982, Ph. D. candidate. Her

research interests include distributed computing, embedded
systems and formal methods.

Guisheng Fan. He was born in 1980, Ph. D. candidate. His

research interests include service oriented computing,
distributed computing and formal methods.

Yunxiang Liu. He was born in 1967, professor, Ph. D.
supervisor, IEEE senior member. His research interests include
software engineering, information security and formal methods.

1778 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

