
GPU accelerated 2-D staggered-grid finite
difference seismic modelling

Zhangang Wang1, Suping Peng1, Tao Liu2

1State Key Laboratory of Coal Resources and Mine Safety, China University of Mining and Technology, Beijing, China
Email: millwzg@163.com

2 School of Earth and Space Sciences, Peking University, Beijing, China

Email: liuluot@126.com

Abstract—The staggered-grid finite difference (FD) method
demands significantly computational capability and is
inefficient for seismic wave modelling in 2-D viscoelastic
media on a single PC. To improve computation speedup, a
graphic processing units (GPUs) accelerated method was
proposed, for modern GPUs have now become ubiquitous in
desktop computers and offer an excellent cost-to-
performance-ratio parallelism. The geophysical model is
decomposed into subdomains for PML absorbing conditions.
The vertex and fragment processing are fully used to solve
FD schemes in parallel and the latest updated frames are
swapped in Framebuffer Object (FBO) attachments as
inputs for the next simulation step. The seismic simulation
program running on modern PCs provides significant
speedup over a CPU implementation, which makes it
possible to simulate realtime complex seismic propagation in
high resolution of 2048*2048 gridsizes on low-cost PCs.

Index Terms—seismic, wave propagation, finite difference,
viscoelastic media, parallel algorithms, GPU

I. INTRODUCTION

The staggered-grid finite difference (FD) method has
long been a popular computational method for the
simulation of seismic waves propagating in geophysical
exploration. FD can solve geophysical models to identify
geological structures with arbitrary geometries comprised
of acoustic, elastic or even viscoelastic materials. The
main drawback of the FD method is that simulations with
large model spaces or long nonsinusoidal waveforms can
require a tremendous amount of floating point
calculations and run times. In recent years the spatial
parallelism on high-performance PC clusters makes it a
promising method for seismic numerical computing in
realistic (complex) media [1-3]. These implementations
are achieved through an explicit FD method by the
rational domain decomposition and considerable
communication between multiple CPUs. Each processor
solves the problem within its small subdomain and
communicates with neighboring processors to update
wavefield information at each time step. However, the
efficiency of parallel implementations is limited by the
computational load balance and the communication
between processors.

The most challenging problem is doubtlessly the
computational ability of the single node in the parallel
environment, which prompts a need to investigate
methods of increasing computational speed for these
simulations.

Modern GPUs have now become ubiquitous in desktop
computers and offer an excellent cost-to-performance-
ratio, exceeding the performance of general purpose CPU
by many times, due to their powerful and fully
programmable parallel processing architectures. In the
past few years, programmability of GPU and increased
floating point precision has allowed GPU to perform
general purpose computations. Applications include
numeric processing [4], pattern recognition [5], computer
vision and image processing [6].

In this article, we have proposed a new implementation
under the current GPU architecture to improve the real-
time FD simulation of wave propagation in viscoelastic
media. The rest of the paper is organized as follows. First,
an overview of using GPU for general purpose
computation is given. Next, we provide a brief
description of the viscoelastic staggered-grid FD method
with PML boundary conditions. Then, we present our
method for achieving real-time simulation of seismic
wave propagation on GPU in detail, including domain
decomposition and processing techniques. Finally the
experimental results and related discussion are given in
Section 5 and 6.

II. GENERAL PURPOSE COMPUTATION ON GPUS

For a few years now, GPUs have been used for general
purpose computation [7, 8]. In terms of their fully
programmable parallel processing architectures and raw
floating point computational capability, they are many
times more powerful than general purpose CPUs and
have much higher memory bandwidth.

GPUs are optimized for kernel-oriented data-parallel
implementation [9], or in other words, general purpose
computation on GPUs assumes all work is done in
parallel without any data interdependence. Explicit data
parallelism allows GPUs to largely exclude control logic
and to execute similar operations on large vectors or
streams of data in parallel, and data streaming with high-
speed memory interfaces eliminates the need for large on-
die caches.

Manuscript received January 7, 2010; revised March 20, 2010;
accepted July 1, 2010.

1554 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.8.1554-1561

This paradigm of data-parallel computing also implies
that the internal computation is split up among the
available fragment processors and the user-programmable
shaders cannot control the order in which fragments are
processed, and we have to utilize the "address", the
coordinates (pixel coordinates) in the target texture where
an individual dataflow will end up. Our implementation
of the seismic wave propagation that uses the parallel
processing capabilities for general tasks undergo the
typical phases as described in Section 4. Fig.1 contains an
abstract view of the hardware rendering pipeline and data
streaming.

Programmable parallel processors—GPUs have two
types of programmable processors: vertex and fragment
processors [7, 9].

Vertex processors handle streams of vertices
(composed of positions, colors, normal vectors and other
attributes), which are elements that compose 3D
geometric models. Vertex processors apply vertex shader
programs to transform each vertex based on its position
relative to the viewpoint.

The fragment processors apply fragment shader
programs to each output pixel to determine its final color.
Vertex and fragment processors are fully programmable
and can execute an instruction simultaneously on four

different values. That’s because graphics primitives are
either positions (x, y, z, w) or colors (red, green, blue,
alpha).

Shader programs can be used to iterate over the
elements of a stream (stored in a texture), processing
them automatically with the instructions in the parallel
computing body. The amount of parallelism in this
computation depends on the number of processors on the
GPU.

The rasterization stage executes the fundamental step
of transforming the geometry into discrete pixel-based
ones by generating pixel-like entities called fragments for
screen pixel locations covered by geometry. The
rasterizer is not user-programmable, but the rasterizer can
be thought of as an address interpolator and a data
amplifier because it generates many pixels from a few
vertices.

Render-to-texture functionality is essential for
scientific computing. To achieve feedback on the GPU,
render-to-texture must be used to write (render) the
results of a fragment program to a texture memory for
further processing in a subsequent rendering pass. The
OpenGL extension FrameBuffer Object (FBO)
implements direct feedback of GPU output to input
without going back to the host processor.

Fig.1. The hardware rendering pipeline implemented in GPUs can be mapped to the stream model. The steam formulation of non-graphics

applications expresses all data as streams and computational stages. The first User-programmable part on the pipeline processes vertex primitives, the
second part operates on fragment (pixel) data. FrameBuffer Object (FBO) allows reusing the framebuffer content as a texture for off-screen feedback
in render-to-texture pass.

III. THEORY

Explicit finite difference methods have been widely
used to simulate seismic wave propagation, because of
their ability to accurately model seismic waves in
complex media. Early researches on FDM for elastic
wave modeling in complex media gradually formulated
finite difference schemes based on a system of high-order

coupled elastic equations where the variables were
stresses and velocities [10, 11, 12], rather than
displacements [13, 14] and used a staggered-grid method
[15], for staggered-grid operators are more accurate than
standard grid to perform first derivatives for high
frequencies close to the Nyquist limit [16]. In such
studies, however, the earth’s anelastic behaviours such as
fluid-saturation and viscosity have been ignored and
synthetic seismograms fail to model attenuation and

Ve
rt

ex

Pr
og

ra
m

R
as

te
riz

at
io

n

G
eo

m
et

ry

A
ss

em
bl

y/
C

lip

C

om
po

si
te

Fr
am

eB
bf

fe
r

Vertex Processor Fragment Processor

Render-to-Texture

CPU GPU

Bind Textures

O
pe

nG
L

A
pp

lic
at

io
n

Fr
ag

m
en

t
Pr

og
ra

m

FBO

Read/Write

1D/2D/3D Textures

Geometry
Stream

Pixel
Stream

Fragment
Stream

Vertex
Stream

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1555

© 2011 ACADEMY PUBLISHER

dispersion of seismic waves. Day and Minster [17] made
the first attempt to incorporate anelasticity into a 2-D
time-domain modeling methods by applying a Pade
approximant method. An efficient approach [18] was
proposed based on the rheological model called
“generalized standard linear solid” (GSLS), which was
shown to explain experimental observations of wave
propagation through earth materials [19]. Then a
staggered grid finite difference technique [20] was
proposed based on the GSLS to model the propagation of
seismic waves in 2D/3D viscoelastic media. A staggered-
grid FD method bases on Biot’s equations [21] was given
to simulate wave propagation in poroacoustic media [22].

The velocity-stress formulation of differential
equations used in this article can be found in [20] and
[23].

A. Staggered-grid Finite difference formulation

The first-order velocity-stress equations of viscoelastic
wave propagation are given by

()

() 2

() 2

1
[(1)() 2 (1)]

1
[(

s
xy yx

xy

p s
y yxx x

xx

p s
yy yx x

yy

p s
y yxx x

xx

p
yy

yy

vv

t y x

v vv

t x y y

vv v

t x y x

v vv

t x y y

t

ε

σ

ε ε

σ σ

ε ε

σ σ

ε ε

σ σ σ

ε

σ σ

σ τ
μ γ
τ

σ τ τ
π μ γ
τ τ

σ τ τ
π μ γ
τ τ

γ τ τ
γ π μ

τ τ τ
γ τ

γ π
τ τ

∂ ∂∂
= + +

∂ ∂ ∂

∂ ∂∂ ∂
= + − ⋅ +

∂ ∂ ∂ ∂

∂ ∂∂ ∂
= + − ⋅ +

∂ ∂ ∂ ∂

∂ ∂∂ ∂
= − + − + − − ⋅

∂ ∂ ∂ ∂

∂
= − + −

∂
1)() 2 (1)]

1
[(1)()]

1
[]

1
[]

s
yx x

s
xy yx

xy

xyx xx
x

y xy yy
y

vv v

x y x

vv

t y x

v
f

t x y

v
f

t x y

ε

σ

ε

σ σ

τ
μ
τ

γ τ
γ μ

τ τ
σσ

ρ
σ σ

ρ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨

∂∂ ∂⎪ + − − ⋅⎪ ∂ ∂ ∂
⎪
∂ ∂⎪ ∂

= − + − +⎪ ∂ ∂ ∂⎪
⎪ ∂∂ ∂
⎪ = + +
∂ ∂ ∂⎪

⎪∂ ∂ ∂⎪ = + +
⎪ ∂ ∂ ∂⎩

 (1)

The moduli i π, μ can be expressed as

0

2 2

0

0

1

1
1

p
p

v R
iw

iw
σ

ε
σ

π ρ
τ

τ
τ

=
+

+

,
0

2 2

0

0

1

1
1

s
s

v R
iw

iw
σ

ε
σ

μ ρ
τ τ
τ

=
+

+

 (2)

Where vP0, vS0 denote the phase velocity at the centre
frequency of the source(w0) for P- and S-waves,
respectively. The symbol R denotes the real part of the
complex variable. The constants of stress relaxation times
for both P-and S-waves, can be calculated by quality
factor Q and angular frequency w.

2

1 1 1
()

1 ppw QQστ = −
+

 (3)

2

1p

wε
σ

τ
τ

= , 2

1s s

s

w Q

wQ w
σ

ε
σ

τ
τ

τ
+

=
−

 (4)

A second-order centered difference scheme is applied
to approximate the time derivatives, and a fourth-order
staggered scheme with centered differences to

approximate the spatial derivatives. From Eqs.1, for

examples,
n
xyσ
+

，
n

xyr
+

 and
1n

xv +

 can be approximated as:
(,)(,) (,) (,)

(,) (,) ()
(,)

 ((,) (,))
2

np n
yn n x

xy xy

n n
xy xy

v i ji j i j v i j
i j i j

y xi j

r i j r i j

ε

σ

τ π τ
σ σ

τ
τ

+ −

+

++ + + + +
+ + + +

+ +

−

∂⋅ ∂
= + +

∂ ∂

+ +

 (5)

1(,) (1) ((1) (,)

2 (,) 2 (,)

(,)(,) (,)(,)
 (1) ())

(,) (,)

n n
xy xy

ns n
yx

r i j r i j
i j i j

v i ji j v i ji j

y xi j i j

σ σ

ε

σ σ

τ τ
τ τ

ττ μ
τ τ

+ + + − − + +
+ + + +

++ + ++ +

+ + + +

= + − ⋅ −

∂∂⋅
− ⋅ +

∂ ∂

 (6)

 1
(,) (,)

(,) (,) ()
(,)

n n
xyn n nxx

x x x

i j i j
v i j v i j f

y xi j

σ στ
ρ

+ +

+
+ +

+ + +
+

∂ ∂
= + + +

∂ ∂
 (7)

Where i, j, k, n are the indices for the three spatial
directions and time, respectively.τ denotes the size of a
timestep.

The discretion of the spatial differential operator, for
example, is given:

(,) 1
(1 ((1,) (,)) 2 ((2,) (1,)))

v i j
c v i j v i j c v i j v i j

x l

+∂
= ⋅ + − + ⋅ + − −

∂
 (8)

 Where l denotes grid spacing and c1, c2 denote the
differential coefficients.

B. PML absorbing boundary condition

In order to simulate an unbounded medium, an
absorbing boundary condition (ABC) must be
implemented to truncate the computational domain in
numerical algorithms. The paraxial approximation [24]
was used to make the boundary transparent to outgoing
waves. Since the highly effective perfectly matched layer
(PML) method [25] for electromagnetic waves was
proposed, the PML has been widely used for finite-
difference and finite-element methods [26, 27]. The
effectiveness of the PML for elastic waves in solids and
the zero reflections from PML to the regular elastic
medium were proved [28, 29].

In this work, we exploit the elastic wave formulation in
the ABC region, not considering the viscosity. For the
first-order velocity equations:

1
()xyx xxv

t x y

σσ
ρ

∂∂ ∂
= +

∂ ∂ ∂ (9)
The PML equations in x direction are obtained:

1
1

2

1
()

1

x xx
x

xyx

v
d x v

t x

v

t y

σ
ρ

σ
ρ

⎧∂ ∂
+ ⋅ = ⋅⎪ ∂ ∂⎪

⎨ ∂∂⎪ =⎪ ∂ ∂⎩ (10)

Then velocity in x direction becomes
1 2

x x xv v v= + . Similar
equations can be obtained in the same way for other
components in Eqs.1. The outgoing waves are absorbed
by the PML via high attenuation.

IV. IMPLEMENTATION ON GPUS

A. Overview

To compute the staggered-grid FD and PML equations
on graphics hardware, we divide the geophysical model
into regions represented as textures with the input and

1556 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

output parameters. Fig.2 shows the division of a 2D
model into a collection of regions. Two sets of alternating
textures binding with a FBO are used to represent the
parameters for computing frame at time t and t+1
respectively. All the other input-only variables are stored
similarly in 2D textures. To update FBO textures at each
time step, we render quadrilaterals (regions) mapped with

the textures in order, so that a fragment program running
at each texel computes the FD equations. After each
frame, FBO attachments are swapped and the latest
updated textures are then used as inputs for the next
simulation step (loops go on). The simulation is totally
implemented using the current fragment and vertex
processing stages of the GPU.

Fig.2. Implementation of staggered grid FD method with PML conditions on GPUs. Vertex processing switches computing regions and render

quadrilaterals (regions) mapped to textures; fragment program run at each texel for computing frame at time t and t+1. FBO attachments are swapped
and the latest updated textures are then used as inputs for the next simulation step (loops go on).

B. Domain decomposition

 The computational domain is divided into an interior
region and PML regions. The outgoing waves are
absorbed by the PML via high attenuation. For 2D model,
the size of the interior region is N1*N2, denoting the
interior part of the whole textures, where N1 = width-
2*NBC, N2 = Height-2*NBC. PML region covers 8
blocks and can be divides three types based on the
different computing process: PML1, processing
absorbing condition both in x and z direction, with the
size NBC*NBC; PML2, processing absorbing condition

only in z direction, locating in top and bottom of the
whole region and the size is N1*NBC; PML3, processing
absorbing condition only in x direction, locating in left
and right of the whole region and the size is NBC*N2.
The vertex processors will transform on computational
domains and the rasterizer will determine all the pixels in
the output buffer they cover and generate fragments.

C. Data representation

For 2D viscoelastic FD schemes of Eqs.1, computation
on interior region at each frame is to get PX, PZ, PXZ, VX,

COLOR_ATTACHMENT[1-N]

Vz-Texture[1-N]

Vx-Texture[1-N]

P-Texture[1-N]

Frame t Frame t+1

Vz-Texture[N]

Vx-Texture[N]

P-Texture[N] P_FBO

VX_FBO

VZ_FBO

COLOR_ATTACHMENT[N] Swap

glDrawBuffer

N=1-N
ReadOnly WriteOnly

Interior Region PML_3

PML_2 PML_1

PML_2 PML_1

Height-2*NBC

Width -2*NBC

X

 Fragment processing

Vertex processing

Z

0

Each wave propagation step:
 Fragment programs run on the

Vertex computational region

PML_3

PML_1

PML_1

NBC

(B)

(A)

NBC

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1557

© 2011 ACADEMY PUBLISHER

VZ, RX, RZ and RXZ; computation on PML regions needs
two extra components for PX, PZ, PXZ, VX or VZ on each
of 4 absorbing boundaries. Considering the time t and t+1,
there are actually (8+5*2*4)*2 = 96 arrays storing these
components to run in the whole process.

In order to reduce to the number of textures and to
switch computational domain quickly, 16 textures are
used to store interior stress-velocity parameters, called
whole- texture with the size width*height as shown in
Fig.3, width and height denoting grid-point numbers in x
and z direction respectively. It equals the size of the
rendering viewport. The input seismic parameters Vp, Vs,
Qp, Qs, ρ are also stored in whole- texture. 5*2 extra
textures, called x-direction-texture, are used to express all
velocity and stress parameters in x absorbing direction;
and the size of each texture is (2*NBC, height), NBC
defining the gridpoints of the absorbing boundary. In our
work, NBC is 10. Simultaneously, there are 5*2 extra
arrays in z absorbing direction, called z-direction-texture,
and the size is (width, 2*NBC).There are actually another
20 arrays at time t+1.

From above analysis, the memory requirements
MEMREq for 2D viscoelastic modelling is obtained by,

 22 1024/)**(FzDNBCNCNMEMREg ∗+∗= (11)

where the total number C of the whole-texture is 21
and the total number D of x-and z- direction- texture is 40.
Fz of float size equals 4 bytes.

Table1 shows 2D viscoelastic model which is only less
than 10242 or 20482 gridsizes can be supported on current
GPUs directly, since graphics video memory size is about
256-512M in general and the texture maximum size is
40962.

TABLE I
MEMORY REQUIREMENTS FOR 2D VISCOELASTIC MODEL

Gridsize(N2) Memory Requirements

5122 22.56M

10242 87.12 M

20482 342.25 M

40962 1356.50 M

D. Rendering

To update textures at each time step, we render
quadrilaterals (regions) in order to generate fragments
mapped with those textures described above. Vertex
domain in interior region operates on whole-texures;
PML2 runs on x-direction-textures and switches viewport
twice on the left and right half of the texture. PML3 runs
on z-direction-textures and switches viewport twice on
the top and bottom half of the texture. PML1 runs on
either z-direction-textures or x-direction-textures.

In our approach, velocity and stress fields are
staggered in spatial and time domain. Therefore, the
velocity field is updated after the stress field is updated
and the priority of subdomains processing is interior
region, PML2 (3), PML3 (2), PML1.

Fig.3. Three texture types at each time step: whole-texture denotes the all computational domain; x-direction-texture and z-direction-texture store

absorbing results in x-and z-direction.

E. Fragment processing

The results of each step are written to a two-
dimensional memory location called framebuffer. But the
characteristics of the GPU prohibit the usage of the buffer
for reading and writing operations at the same time.
Fortunately, the OpenGL extension FrameBuffer Object
(FBO) allows reusing the framebuffer content as a texture
for further processing in a subsequent rendering pass and
the “ping-pong" method allows two buffers swap their
role after each write operation [9]. In order to generate
and store intermediate results for each simulating step on
GPUs, our strategy is to bind each texture that is rendered
to onto one attachment on an assigned FBO; two textures

binding on the same FBO are used to represent one
stress-velocity component at time t and t+1, respectively.
The pseudo FBO initialization codes for each component
are given as follows.

In each rendering pass, glBindFramebufferEXT() is

used to active the assigned FBO, and glDrawBuffer()

glGenFramebuffersEXT(1,&m_fbo);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_fbo);
FOR each N = 0, 1

setupTexture (Texture[N], Width, Height)
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
COLOR_ATTACHMENT[N],
GL_TEXTURE_RECTANGLE_ARB, Texture[N], 0);

END FOR

2*NBC

Z

X 2*NBC

Height

(A) Whole-texture (B) Absorbing in x –direction-texture (C)Absorbing in z- direction- texture

PX, PZ, PXZ, VX, VZ,

RX, RZ, RXZ PX, PZ, PXZ, VX, VZ

Width

1558 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

used to switch attachment points, making sure the current
texture is to be written. To update FBO textures at each
time step, we render quadrilaterals (regions) mapped to
the computational domain in order, so that a fragment
program running at each texel computes the FD equations.
After each frame, FBO attachments are swapped and the
latest updated textures are then used as inputs for the next
simulation step while N = 1- N (N = 0, 1).

Alternatively, when data demand for simulating

exceeds the capacity of the graphics video memory, the
intermediate results can be transferred out into the host
memory and for each frame be reloaded into the texture
memory, and thus the video memory bottleneck is
alleviated.

V. NUMERICAL EXAMPLES

We have experimented with our GPU accelerated
method implemented using C++/OpenGL and Cg shader
language on a PC with Intel Core(TM)2 Duo E7400
2.8GHz, 2G main memory. The graphics chip is NVidia
GeForce 9800GT with 512M video memory and 550MHz
core frequency. The OS is Windows XP. All the results
related to the GPU are based on 32-bit single-precision
computation of the rendering pipeline. For comparison,
we have also implemented a software version of the
seismic simulation using single-precision floating point,
and we have measured their performance on the same
machine.

Two samples are used. One is a three-layer model
(model1) and another is similar to Kelly model [14]
(model2). The source is located at the top of the medium
(Fig.4) and propagates downwards ricker wave with a
dominant frequency of approximately 50 Hz.

The Models are discretized in various grid resolutions
as shown in table2. The computation runs 2000 steps on
both GPU and CPU, respectively. Note that the FD
simulation is known to handle arbitrary models in
accuracy. We show only the speedup of the method on
the GPU.

The results for the two models are plotted in Fig.5. The
time of viscoelastic wave simulation is defined as a
function of the grid size. In order to compare the
performance, GPU based method do not transfer the
velocity-stress field or the parameters between the main
memory and the graphics memory. The time spent on
advecting and rendering the regions is negligible with
respect to the simulation. The time of staggered-grid FD

method is only dependent on the grid size, independent
on geology structure complexity, which is shown in both
GPU (Fig. 5a) and CPU (Fig.5b) based implementation.

The performance of the GPU based implementation
increases significantly with the increasing number of the
gridpoints. The speedup factor, which is defined as the
ratio of CPU’s time to GPU’s time on the same grid size,
increases from about 2 (1282) to 50 (20482), illustrated in
Fig. 5c. That is mainly due to the advantages of GPU’s
parallel computing, and the staggered grid FD method is
amenable to an implementation by the rendering pipeline.
For the simulation only runs in several minutes,
geophysicists can use the new method to visualize the
each frame of the computing process in real time, which
helps to analysis the wave propagations easily.

(a) Model1: Three layer model

Vp=1200① Vs=800 Qp=80 Qs=60 ρ=1.4

Vp=2440② Vs=1330 Qp=100 Qs=90 ρ=2.2

③Vp=3210 Vs=2389 Qp=219 Qs=190 ρ=2.3

④Vp=3500 Vs=2173 Qp=200 Qs=170 ρ=2.5

⑤Vp=3225 Vs=1800 Qp=294 Qs=220 ρ=2.5

⑥Vp=3822 Vs=2980 Qp=490 Qs=340 ρ=2.6

⑦Vp=4785 Vs=3800 Qp=450 Qs=400 ρ=3.4
(b) Model2: Modified Kelly model

Fig. 4 Two test models: both are the same size of 2500m*2500m.

On the other hand, GPU based method improves more
requirements of graphics card to use the programmable
shaders. Now, only the latest nVidia or ATI card
(Geoforce 6 above) can support the method. In additon,
the available grid size is limit by the GPU texture
maximum size. Now, the texture maximum size is 40962,
so difference grid will not surpass the maximum size and
the simulation accuracy is restricted. Graphics video
memory size is about 256-512M in general, which limit
the computing resources and only less than 20482 grid
sizes can be supported directly.

glBindFramebufferEXT (GL_FRAMEBUFFER_EXT, m_fbo);
glDrawBuffer (COLOR_ATTACHMENT[N]);
cgGLBindProgram (m_cgprog);
DrawRegion();

Vp =2600m/s Vs =1800 Qp =120 Qs= 110 ρ= 2.4g/cm3

Vp = 3050 Vs = 2400 Qp = 230 Qs= 220 ρ= 2.7

Vp = 4000 Vs = 3300 Qp = 350 Qs= 267 ρ=3.0

2500m

2500m

②

⑤

⑦

①

④ ③

⑥

TABLE 2
FD PROPERTIES OF THE GRID MODEL

Gridsize(N2) △X*△Z T/△T

2562 10m*10m 2s/1ms
5122 5m*5m 2s/1ms
10242 2.5m*2.5m 1s/0.5ms
20482 1.2m*1.2m 0.5s/0.25ms

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1559

© 2011 ACADEMY PUBLISHER

0

10

20

30

40

50

60

128 256 512 1024 2048

S
p
e
e
d
u
p
(
C
P
U
/
G
P
U
)

CPU/GPU

 1282 2562 5122 10242 20482
(c) Gridsize

0

2000

4000

6000

8000

10000

1 2 3 4 5

T
i
m
e
(
s
)

Model1

Model2

0

40

80

120

160

200

1 2 3 4 5

T
i
m
e
(
s
)

Model1

Model2

1282 2562 5122 10242 20482 1282 2562 5122 10242 20482
(a) Gridsize (b) Gridsize

VI. CONCLUSION

We have presented a GPU accelerated staggered-grid
finite difference method to simulate the seismic
propagation in 2D viscoelastic media model with
complex earth structure geometry. The physical model is
divided into subdomains for PML absorbing conditions
and the implementation is totally implemented using the
current fragment and vertex processing stages on GPUs.
The simulation program runs on Modern PCs with
popular low-cost GPUs, yet it is much faster than CPU-
based simulation. Our experimental results have shown

that the GPU version is significantly faster (for example,
3-50 times faster) for large grid sizes of 2D Models. The
method makes it possible to simulate realtime complex
seismic propagation in high resolution of 10242 – 20482
gridsizes on low-cost PCs.

Our future work will focus on GPU accelerated 3D
staggered-grid FD in real seismic media and in order to
overcome the imitation of video memory capacity, we
will setup a high performance parallel environment with
multiple GPUs and CPUs, in which CPUs are used to
partition computing task and pass messages between
tasks and GPUs are appointed to solve the FD equations.

Fig.5. Comparative Analysis of GPU and CPU based staggered-grid FD method: (a) GPU based method using model1 and model2, (b) CPU based

method using model1 and model2, (c) speedup analysis by CPU/GPU using model1.

ACKNOWLEDGMENT

The work was supported by China Postdoctoral
Foundation (No.20090450466) and the National Key
Basic Research and Development (973) Program of
China (Grant No. 2010CB732002, 2009CB724601,
2005CB221505).

REFERENCES

[1] T. Bohlen, “Parallel 3-D viscoelastic finite difference
seismic modelling,” Computers & Geosciences, vol. 28,
no.8, pp.887–899, October 2002

[2] D.H. Sheen, K. Tuncay, C.E. Baag, and P. J. Ortoleva,
“Parallel implementation of a velocity-stress staggered-
grid finite-difference method for 2-D poroelastic wave
propagation,” Computers & Geosciences, vol. 32, no.8,
2006, pp.1182–1191.

[3] W. Sun, J.W. Shu, and W. Zheng, “Parallel Seismic
Propagation Simulation in Anisotropic Media by Irregular
Grids Finite Difference Method on PC Cluster,” Gervasi et
al. (Eds.): ICCSA 2005, LNCS 3483, 2005, pp.762 – 771

[4] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A. Lefohn and T. Purcell, “ A survey of general-purpose
computation on graphics hardware,” In Eurographics 2005,
State of the Art Reports, pp. 21-51.

[5] J. F. Ohmer, N.J. Redding, “GPU-Accelerated KLT
Tracking with Monte-Carlo-Based Feature.Reselection,”
IEEE Computer Society, Digital Image Computing:
Techniques and Applications, DICTA 2008, pp. 234-242.

[6] S. Tzeng and L.Y. Wei, “Parallel white noise generation on
a GPU via cryptographic hash,” ACM:In Proceedings of
the 2008 symposium on Interactive 3D Graphics (SI3D
2008), 2008, pp. 79–87.

[7] H. Mark, “Mapping Computational Concepts to CPUs,”
GPU Gems2, Addison-Wesley. NVIDIA, 2005, Chapter 47,
pp.493-508

[8] J. F. Ohmer, F. Maire and R. Brown, “Implementation of
kernel methods on the GPU,” IEEE Computer Society, In
Digital Image Computing: Techniques and Applications,
DICTA 2005, pp. 543-550

[9] D. Göddeke. GPGPU Basic Math Tutorial. Available:
http://www.mathematik.unidortmund.de/~goeddeke/gpgpu
/tutorial.html

[10] J. Virieux, “SH-wave propagation in heterogeneous media:
velocity-stress finite-difference method,” Geophysics, vol.
49 issue 11, 1984, pp.1933–1957.

[11] J. Virieux, “P-SV wave propagation in heterogeneous
media: velocity-stress finite-difference method,”
Geophysics, vol. 51 issue 4, 1986, pp.889–901.

[12] A.R. Levander, “Fourth-order finite-difference P-SV
seismograms,” Geophysics, vol. 53, issue 11, pp.1425–
1436, 1988

[13] K.R Kelly, “Numerical study of love wave propagation,”
Geophysics, vol.48, issue 7, 1983, pp.833–853

1560 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

[14] K.R. Kelly, R.W. Ward, S. Treitel, and R.M. Alford,
“Synthetic seismograms: a finite-difference approach,”
Geophysics, vol. 41, issue 1, 1976, pp.2–27

[15] R. W. Graves, “Simulating seismic wave propagation in
3D elastic media using staggered grid finite differences,”
Bull. Seism. soc. Am., vol. 86, 1996, pp.1091–1106

[16] G. Kneib and C. Kerner, “Accurate and efficient seismic
modeling in random media,” Geophysics, vol. 58, issue 4,
1993, pp.576–588

[17] S.M. Day and J.B. Minster, “ Numerical simulation of
wavefields using a Pade approximant method,”
Geophysical Journal of the Royal Astronomical Society,
vol. 78, 1984, pp.105–118

[18] H. Emmerich, M. Korn, “Incorporation of attenuationinto
time-domain computations of seismic wave fields”.
Geophysics, vol. 52, issue 9, 1987, pp.1252–1264.

[19] H.P. Liu, D.L. Anderson and H. Kanamori, “Velocity
dispersion due to anelasticity: implications for seismology
and mantle composition,” Geophysical Journal of the
Royal Astronomical Society, vol. 47, 1976, pp.41–58

[20] J.O. A , Robertsson, J.O. Blanch, and W.W. Symes,
“Viscoelastic finite-difference modeling,” Geophysics, vol.
59, issue 9, 1994, pp.1444–1456.

[21] M.A. Biot, “Mechanics deformation and acoustic
propagation in porous media,” Journal of Applied Physics,
vol. 33, 1962, pp.1482-1498

[22] Y.Q. Zeng and Q.H. Liu, “A staggered-grid finite-
difference method with perfectly matched layers for
poroelastic wave equations,” The Journal of the Acoustical
Society of America, vol. 109, 2001, pp. 2571–2580.

[23] J..M. Carcione, D. Kosloff, and R. Kosloff, “Wave
propagation simulation in a viscoelastic medium,”
Geophysical Journal of the Royal Astronomical Society,
vol. 93, 1988, pp.597–611

[24] R. Clayton and B. Engquist, “Absorbing boundary
conditions for acoustic and elastic wave equations,”
Bulletin of the Seismological Society of America, vol. 67,
1977, pp.1529–1540

[25] J.P. Berenger, “A perfectly matched layer for the
absorption of electromagnetic waves,” Journal of
Computational Physics, vol. 114, 1994, pp.185–200

[26] F. D. Hastings, J. B. Schneider, and S. L. Broschat,
“Application of the perfectly matched layer (PML):
absorbing boundary condition to elastic wave
propagation,” J. Acoust. Soc. Am, vol. 100, 1996 ,
pp.3061–3069

[27] Q. H. Liu and J. Tao, “The perfectly matched layer for
acoustic waves in absorptive media,” J. Acoust. Soc. Am,
vol. 102, 1997, pp.2072–2082

[28] W.C. Chew and Q.H. Liu, “Perfectly matched layers for
elastodynamics: a new absorbing boundary condition,”
Journal of Computational Acoustics, vol. 4, 1996, pp.72–
79

[29] Q. H. Liu, “Perfectly matched layers for elastic waves in
cylindrical and spherical coordinates,” J. Acoust. Soc. Am.
Vol. 105, 1999, pp. 2075–2084

Zhangang Wang was born on November
4, 1980 in Ningxia, China. He received
the B.S. and PhD degree from Peking
University in 2003 and 2008, respectively.
He was currently a lecturer of applied
geophysics in China University of
Mining and Technology, Beijing. His
research interests include high

performance computing for geosciences.

Suping Peng is an academician of China
National Engineering. He serves as
Director of the State Key Laboratory of
Coal Resources and Mine Safety, China.
He actively conducts research in the3D-
3C seismic exploration of coal resources.

Tao Liu is a PhD candidate in Peking University. He

received the B.S. degree from Peking University in 2006
and now researches elastic wave propagation.

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1561

© 2011 ACADEMY PUBLISHER

