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Abstract—The staggered-grid finite difference (FD) method 
demands significantly computational capability and is 
inefficient for seismic wave modelling in 2-D viscoelastic 
media on a single PC. To improve computation speedup, a 
graphic processing units (GPUs) accelerated method was 
proposed, for modern GPUs have now become ubiquitous in 
desktop computers and offer an excellent cost-to-
performance-ratio parallelism. The geophysical model is 
decomposed into subdomains for PML absorbing conditions. 
The vertex and fragment processing are fully used to solve 
FD schemes in parallel and the latest updated frames are 
swapped in Framebuffer Object (FBO) attachments as 
inputs for the next simulation step. The seismic simulation 
program running on modern PCs provides significant 
speedup over a CPU implementation, which makes it 
possible to simulate realtime complex seismic propagation in 
high resolution of 2048*2048 gridsizes on low-cost PCs. 
 
Index Terms—seismic, wave propagation, finite difference, 
viscoelastic media, parallel algorithms, GPU  
 

I.  INTRODUCTION 

The staggered-grid finite difference (FD) method has 
long been a popular computational method for the 
simulation of seismic waves propagating in geophysical 
exploration. FD can solve geophysical models to identify 
geological structures with arbitrary geometries comprised 
of acoustic, elastic or even viscoelastic materials. The 
main drawback of the FD method is that simulations with 
large model spaces or long nonsinusoidal waveforms can 
require a tremendous amount of floating point 
calculations and run times. In recent years the spatial 
parallelism on high-performance PC clusters makes it a 
promising method for seismic numerical computing in 
realistic (complex) media [1-3]. These implementations 
are achieved through an explicit FD method by the 
rational domain decomposition and considerable 
communication between multiple CPUs. Each processor 
solves the problem within its small subdomain and 
communicates with neighboring processors to update 
wavefield information at each time step. However, the 
efficiency of parallel implementations is limited by the 
computational load balance and the communication 
between processors.  

 
 
 

The most challenging problem is doubtlessly the 
computational ability of the single node in the parallel 
environment, which prompts a need to investigate 
methods of increasing computational speed for these 
simulations.  

Modern GPUs have now become ubiquitous in desktop 
computers and offer an excellent cost-to-performance-
ratio, exceeding the performance of general purpose CPU 
by many times, due to their powerful and fully 
programmable parallel processing architectures. In the 
past few years, programmability of GPU and increased 
floating point precision has allowed GPU to perform 
general purpose computations. Applications include 
numeric processing [4], pattern recognition [5], computer 
vision and image processing [6].  

In this article, we have proposed a new implementation 
under the current GPU architecture to improve the real-
time FD simulation of wave propagation in viscoelastic 
media. The rest of the paper is organized as follows. First, 
an overview of using GPU for general purpose 
computation is given. Next, we provide a brief 
description of the viscoelastic staggered-grid FD method 
with PML boundary conditions. Then, we present our 
method for achieving real-time simulation of seismic 
wave propagation on GPU in detail, including domain 
decomposition and processing techniques. Finally the 
experimental results and related discussion are given in 
Section 5 and 6. 

II. GENERAL PURPOSE COMPUTATION ON GPUS 

For a few years now, GPUs have been used for general 
purpose computation [7, 8]. In terms of their fully 
programmable parallel processing architectures and raw 
floating point computational capability, they are many 
times more powerful than general purpose CPUs and 
have much higher memory bandwidth.  

GPUs are optimized for kernel-oriented data-parallel 
implementation [9], or in other words, general purpose 
computation on GPUs assumes all work is done in 
parallel without any data interdependence. Explicit data 
parallelism allows GPUs to largely exclude control logic 
and to execute similar operations on large vectors or 
streams of data in parallel, and data streaming with high-
speed memory interfaces eliminates the need for large on-
die caches. 
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This paradigm of data-parallel computing also implies 
that the internal computation is split up among the 
available fragment processors and the user-programmable 
shaders cannot control the order in which fragments are 
processed, and we have to utilize the "address", the 
coordinates (pixel coordinates) in the target texture where 
an individual dataflow will end up. Our implementation 
of the seismic wave propagation that uses the parallel 
processing capabilities for general tasks undergo the 
typical phases as described in Section 4. Fig.1 contains an 
abstract view of the hardware rendering pipeline and data 
streaming. 

Programmable parallel processors—GPUs have two 
types of programmable processors: vertex and fragment 
processors [7, 9]. 

Vertex processors handle streams of vertices 
(composed of positions, colors, normal vectors and other 
attributes), which are elements that compose 3D 
geometric models. Vertex processors apply vertex shader 
programs to transform each vertex based on its position 
relative to the viewpoint.   

The fragment processors apply fragment shader 
programs to each output pixel to determine its final color. 
Vertex and fragment processors are fully programmable 
and can execute an instruction simultaneously on four 

different values. That’s because graphics primitives are 
either positions (x, y, z, w) or colors (red, green, blue, 
alpha). 

Shader programs can be used to iterate over the 
elements of a stream (stored in a texture), processing 
them automatically with the instructions in the parallel 
computing body. The amount of parallelism in this 
computation depends on the number of processors on the 
GPU. 

The rasterization stage executes the fundamental step 
of transforming the geometry into discrete pixel-based 
ones by generating pixel-like entities called fragments for 
screen pixel locations covered by geometry. The 
rasterizer is not user-programmable, but the rasterizer can 
be thought of as an address interpolator and a data 
amplifier because it generates many pixels from a few 
vertices. 

Render-to-texture functionality is essential for 
scientific computing. To achieve feedback on the GPU, 
render-to-texture must be used to write (render) the 
results of a fragment program to a texture memory for 
further processing in a subsequent rendering pass. The 
OpenGL extension FrameBuffer Object (FBO) 
implements direct feedback of GPU output to input 
without going back to the host processor. 

 
 
Fig.1. The hardware rendering pipeline implemented in GPUs can be mapped to the stream model. The steam formulation of non-graphics 

applications expresses all data as streams and computational stages. The first User-programmable part on the pipeline processes vertex primitives, the 
second part operates on fragment (pixel) data. FrameBuffer Object (FBO) allows reusing the framebuffer content as a texture for off-screen feedback 
in render-to-texture pass. 

III. THEORY 

Explicit finite difference methods have been widely 
used to simulate seismic wave propagation, because of 
their ability to accurately model seismic waves in 
complex media. Early researches on FDM for elastic 
wave modeling in complex media gradually formulated 
finite difference schemes based on a system of high-order 

coupled elastic equations where the variables were 
stresses and velocities [10, 11, 12], rather than 
displacements [13, 14] and used a staggered-grid method 
[15], for staggered-grid operators are more accurate than 
standard grid to perform first derivatives for high 
frequencies close to the Nyquist limit [16]. In such 
studies, however, the earth’s anelastic behaviours such as 
fluid-saturation and viscosity have been ignored and 
synthetic seismograms fail to model attenuation and 
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dispersion of seismic waves. Day and Minster [17] made 
the first attempt to incorporate anelasticity into a 2-D 
time-domain modeling methods by applying a Pade 
approximant method. An efficient approach [18] was 
proposed based on the rheological model called 
“generalized standard linear solid” (GSLS), which was 
shown to explain experimental observations of wave 
propagation through earth materials [19]. Then a 
staggered grid finite difference technique [20] was 
proposed based on the GSLS to model the propagation of 
seismic waves in 2D/3D viscoelastic media. A staggered-
grid FD method bases on Biot’s equations [21] was given 
to simulate wave propagation in poroacoustic media [22]. 

The velocity-stress formulation of differential 
equations used in this article can be found in [20] and 
[23].  

A.  Staggered-grid Finite difference formulation 

The first-order velocity-stress equations of viscoelastic 
wave propagation are given by  
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Where vP0, vS0 denote the phase velocity at the centre 
frequency of the source(w0) for P- and S-waves, 
respectively. The symbol R denotes the real part of the 
complex variable. The constants of stress relaxation times 
for both P-and S-waves, can be calculated by quality 
factor Q and angular frequency w. 
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A second-order centered difference scheme is applied 
to approximate the time derivatives, and a fourth-order 
staggered scheme with centered differences to 

approximate the spatial derivatives. From Eqs.1, for 
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Where i, j, k, n are the indices for the three spatial 
directions and time, respectively.τ denotes the size of a 
timestep. 

The discretion of the spatial differential operator, for 
example, is given: 
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 Where l denotes grid spacing and c1, c2 denote the 
differential coefficients. 

B.  PML absorbing boundary condition 

In order to simulate an unbounded medium, an 
absorbing boundary condition (ABC) must be 
implemented to truncate the computational domain in 
numerical algorithms. The paraxial approximation [24] 
was used to make the boundary transparent to outgoing 
waves. Since the highly effective perfectly matched layer 
(PML) method [25] for electromagnetic waves was 
proposed, the PML has been widely used for finite-
difference and finite-element methods [26, 27]. The 
effectiveness of the PML for elastic waves in solids and 
the zero reflections from PML to the regular elastic 
medium were proved [28, 29].  

In this work, we exploit the elastic wave formulation in 
the ABC region, not considering the viscosity. For the 
first-order velocity equations: 
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The PML equations in x direction are obtained: 
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Then velocity in x direction becomes
1 2

x x xv v v= + . Similar   
equations can be obtained in the same way for other 
components in Eqs.1. The outgoing waves are absorbed 
by the PML via high attenuation. 

IV. IMPLEMENTATION ON GPUS 

A.  Overview 

To compute the staggered-grid FD and PML equations 
on graphics hardware, we divide the geophysical model 
into regions represented as textures with the input and 
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output parameters. Fig.2 shows the division of a 2D 
model into a collection of regions. Two sets of alternating 
textures binding with a FBO are used to represent the 
parameters for computing frame at time t and t+1 
respectively. All the other input-only variables are stored 
similarly in 2D textures. To update FBO textures at each 
time step, we render quadrilaterals (regions) mapped with 

the textures in order, so that a fragment program running 
at each texel computes the FD equations. After each 
frame, FBO attachments are swapped and the latest 
updated textures are then used as inputs for the next 
simulation step (loops go on). The simulation is totally 
implemented using the current fragment and vertex 
processing stages of the GPU. 

                                                                 

 
Fig.2. Implementation of staggered grid FD method with PML conditions on GPUs. Vertex processing switches computing regions and render 

quadrilaterals (regions) mapped to textures; fragment program run at each texel for computing frame at time t and t+1. FBO attachments are swapped 
and the latest updated textures are then used as inputs for the next simulation step (loops go on). 

 
B.  Domain decomposition 

 The computational domain is divided into an interior 
region and PML regions. The outgoing waves are 
absorbed by the PML via high attenuation. For 2D model, 
the size of the interior region is N1*N2, denoting the 
interior part of the whole textures, where N1 = width-
2*NBC, N2 = Height-2*NBC. PML region covers 8 
blocks and can be divides three types based on the 
different computing process: PML1, processing 
absorbing condition both in x and z direction, with the 
size NBC*NBC; PML2, processing absorbing condition 

only in z direction, locating in top and bottom of the 
whole region and the size is N1*NBC; PML3, processing 
absorbing condition only in x direction, locating in left 
and right of the whole region and the size is NBC*N2. 
The vertex processors will transform on computational 
domains and the rasterizer will determine all the pixels in 
the output buffer they cover and generate fragments. 

C.  Data representation 

For 2D viscoelastic FD schemes of Eqs.1, computation 
on interior region at each frame is to get PX, PZ, PXZ, VX, 
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VZ, RX, RZ and RXZ; computation on PML regions needs 
two extra components for PX, PZ, PXZ, VX or VZ on each 
of 4 absorbing boundaries. Considering the time t and t+1, 
there are actually (8+5*2*4)*2 = 96 arrays storing these 
components to run in the whole process.  

In order to reduce to the number of textures and to 
switch computational domain quickly, 16 textures are 
used to store interior stress-velocity parameters, called 
whole- texture with the size width*height as shown in 
Fig.3, width and height denoting grid-point numbers in x 
and z direction respectively. It equals the size of the 
rendering viewport. The input seismic parameters Vp, Vs, 
Qp, Qs, ρ are also stored in whole- texture. 5*2 extra 
textures, called x-direction-texture, are used to express all 
velocity and stress parameters in x absorbing direction; 
and the size of each texture is (2*NBC, height), NBC 
defining the gridpoints of the absorbing boundary. In our 
work, NBC is 10. Simultaneously, there are 5*2 extra 
arrays in z absorbing direction, called z-direction-texture, 
and the size is (width, 2*NBC).There are actually another 
20 arrays at time t+1. 

From above analysis, the memory requirements 
MEMREq for 2D viscoelastic modelling is obtained by, 

   22 1024/)**( FzDNBCNCNMEMREg ∗+∗=    (11)    

where the total number C of the whole-texture is 21 
and the total number D of x-and z- direction- texture is 40. 
Fz of float size equals 4 bytes.  

Table1 shows 2D viscoelastic model which is only less 
than 10242 or 20482 gridsizes can be supported on current 
GPUs directly, since graphics video memory size is about 
256-512M in general and the texture maximum size is 
40962. 

TABLE I 
MEMORY REQUIREMENTS FOR 2D VISCOELASTIC MODEL 

Gridsize( N2) Memory Requirements 

5122 22.56M 

10242 87.12 M 

20482 342.25 M 

40962 1356.50 M 

D.  Rendering 

To update textures at each time step, we render 
quadrilaterals (regions) in order to generate fragments 
mapped with those textures described above. Vertex 
domain in interior region operates on whole-texures; 
PML2 runs on x-direction-textures and switches viewport 
twice on the left and right half of the texture. PML3 runs 
on z-direction-textures and switches viewport twice on 
the top and bottom half of the texture. PML1 runs on 
either z-direction-textures or x-direction-textures.  

In our approach, velocity and stress fields are 
staggered in spatial and time domain. Therefore, the 
velocity field is updated after the stress field is updated 
and the priority of subdomains processing is interior 
region, PML2 (3), PML3 (2), PML1. 

 
 
Fig.3. Three texture types at each time step: whole-texture denotes the all computational domain; x-direction-texture and z-direction-texture store 

absorbing results in x-and z-direction. 

 
E.  Fragment processing 

The results of each step are written to a two-
dimensional memory location called framebuffer. But the 
characteristics of the GPU prohibit the usage of the buffer 
for reading and writing operations at the same time. 
Fortunately, the OpenGL extension FrameBuffer Object 
(FBO) allows reusing the framebuffer content as a texture 
for further processing in a subsequent rendering pass and 
the “ping-pong" method allows two buffers swap their 
role after each write operation [9]. In order to generate 
and store intermediate results for each simulating step on 
GPUs, our strategy is to bind each texture that is rendered 
to onto one attachment on an assigned FBO; two textures 

binding on the same FBO are used to represent one 
stress-velocity component at time t and t+1, respectively. 
The pseudo FBO initialization codes for each component 
are given as follows. 

 
 
 
 
 
 
 
 
In each rendering pass, glBindFramebufferEXT() is 

used to active the assigned FBO, and  glDrawBuffer() 

glGenFramebuffersEXT(1,&m_fbo); 
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_fbo);
FOR each N = 0, 1 

setupTexture (Texture[N], Width, Height) 
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
COLOR_ATTACHMENT[N], 
GL_TEXTURE_RECTANGLE_ARB, Texture[N], 0); 

END FOR

2*NBC

Z

X                                 2*NBC 

Height 

(A) Whole-texture (B) Absorbing in x –direction-texture (C)Absorbing in z- direction- texture 
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used to switch attachment points, making sure the current 
texture is to be written. To update FBO textures at each 
time step, we render quadrilaterals (regions) mapped to 
the computational domain in order, so that a fragment 
program running at each texel computes the FD equations. 
After each frame, FBO attachments are swapped and the 
latest updated textures are then used as inputs for the next 
simulation step while N = 1- N (N = 0, 1). 

 
 
 
 
 
Alternatively, when data demand for simulating 

exceeds the capacity of the graphics video memory, the 
intermediate results can be transferred out into the host 
memory and for each frame be reloaded into the texture 
memory, and thus the video memory bottleneck is 
alleviated.  

V. NUMERICAL EXAMPLES 

We have experimented with our GPU accelerated 
method implemented using C++/OpenGL and Cg shader 
language on a PC with Intel Core(TM)2 Duo E7400 
2.8GHz, 2G main memory. The graphics chip is NVidia 
GeForce 9800GT with 512M video memory and 550MHz 
core frequency. The OS is Windows XP. All the results 
related to the GPU are based on 32-bit single-precision 
computation of the rendering pipeline. For comparison, 
we have also implemented a software version of the 
seismic simulation using single-precision floating point, 
and we have measured their performance on the same 
machine. 

Two samples are used. One is a three-layer model 
(model1) and another is similar to Kelly model [14] 
(model2). The source is located at the top of the medium 
(Fig.4) and propagates downwards ricker wave with a 
dominant frequency of approximately 50 Hz. 

The Models are discretized in various grid resolutions 
as shown in table2. The computation runs 2000 steps on 
both GPU and CPU, respectively. Note that the FD 
simulation is known to handle arbitrary models in 
accuracy. We show only the speedup of the method on 
the GPU. 

The results for the two models are plotted in Fig.5. The 
time of viscoelastic wave simulation is defined as a 
function of the grid size. In order to compare the 
performance, GPU based method do not transfer the 
velocity-stress field or the parameters between the main 
memory and the graphics memory. The time spent on 
advecting and rendering the regions is negligible with 
respect to the simulation. The time of staggered-grid FD 

method is only dependent on the grid size, independent 
on geology structure complexity, which is shown in both 
GPU (Fig. 5a) and CPU (Fig.5b) based implementation.  

The performance of the GPU based implementation 
increases significantly with the increasing number of the 
gridpoints. The speedup factor, which is defined as the 
ratio of CPU’s time to GPU’s time on the same grid size, 
increases from about 2 (1282) to 50 (20482), illustrated in 
Fig. 5c. That is mainly due to the advantages of GPU’s 
parallel computing, and the staggered grid FD method is 
amenable to an implementation by the rendering pipeline. 
For the simulation only runs in several minutes, 
geophysicists can use the new method to visualize the 
each frame of the computing process in real time, which 
helps to analysis the wave propagations easily. 

 

 
 

(a) Model1: Three layer model 
 

 
Vp=1200①  Vs=800 Qp=80 Qs=60 ρ=1.4 

Vp=2440②  Vs=1330 Qp=100 Qs=90 ρ=2.2 

③Vp=3210 Vs=2389 Qp=219 Qs=190 ρ=2.3 

④Vp=3500 Vs=2173 Qp=200 Qs=170 ρ=2.5 

⑤Vp=3225 Vs=1800 Qp=294 Qs=220 ρ=2.5 

⑥Vp=3822 Vs=2980 Qp=490 Qs=340 ρ=2.6 

⑦Vp=4785 Vs=3800 Qp=450 Qs=400 ρ=3.4 
(b) Model2: Modified Kelly model 

 
Fig. 4 Two test models: both are the same size of 2500m*2500m. 
 

On the other hand, GPU based method improves more 
requirements of graphics card to use the programmable 
shaders. Now, only the latest nVidia or ATI card 
(Geoforce 6 above) can support the method. In additon, 
the available grid size is limit by the GPU texture 
maximum size. Now, the texture maximum size is 40962, 
so difference grid will not surpass the maximum size and 
the simulation accuracy is restricted. Graphics video 
memory size is about 256-512M in general, which limit 
the computing resources and only less than 20482 grid 
sizes can be supported directly.  

glBindFramebufferEXT (GL_FRAMEBUFFER_EXT, m_fbo );
glDrawBuffer ( COLOR_ATTACHMENT[N] ); 
cgGLBindProgram ( m_cgprog ); 
DrawRegion(); 

Vp =2600m/s Vs =1800 Qp =120  Qs= 110 ρ= 2.4g/cm3 

Vp = 3050 Vs = 2400  Qp = 230  Qs= 220  ρ= 2.7 

Vp = 4000 Vs = 3300  Qp = 350  Qs= 267  ρ=3.0 

2500m 

2500m

 
 

② 
 
⑤ 
 
⑦ 

 

① 

④                             ③ 

⑥ 

TABLE 2 
FD PROPERTIES OF THE GRID MODEL  

Gridsize( N2) △X*△Z T/△T 

2562 10m*10m 2s/1ms 
5122 5m*5m 2s/1ms 
10242 2.5m*2.5m 1s/0.5ms 
20482 1.2m*1.2m 0.5s/0.25ms 
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VI. CONCLUSION 

We have presented a GPU accelerated staggered-grid 
finite difference method to simulate the seismic 
propagation in 2D viscoelastic media model with 
complex earth structure geometry. The physical model is 
divided into subdomains for PML absorbing conditions 
and the implementation is totally implemented using the 
current fragment and vertex processing stages on GPUs. 
The simulation program runs on Modern PCs with 
popular low-cost GPUs, yet it is much faster than CPU-
based simulation. Our experimental results have shown 

that the GPU version is significantly faster (for example, 
3-50 times faster) for large grid sizes of 2D Models. The 
method makes it possible to simulate realtime complex 
seismic propagation in high resolution of 10242 – 20482 
gridsizes on low-cost PCs. 

Our future work will focus on GPU accelerated 3D 
staggered-grid FD in real seismic media and in order to 
overcome the imitation of video memory capacity, we 
will setup a high performance parallel environment with 
multiple GPUs and CPUs, in which CPUs are used to 
partition computing task and pass messages between 
tasks and GPUs are appointed to solve the FD equations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Comparative Analysis of GPU and CPU based staggered-grid FD method: (a) GPU based method using model1 and model2, (b) CPU based 

method using model1 and model2, (c) speedup analysis by CPU/GPU using model1. 
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