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Abstract—As an effective technique for QoS provision, 
reservation service has been widely applied in various grids. 
However, plenty of studies have shown that reservation 
service will bring about many negative effects on system 
performance, i.e. higher rejection rate and lower resource 
utilization. To mitigate these negative effects, a relaxed 
reservation policy is proposed in this paper. It allows grids 
accepting reservation requests that overlapping with 
existing ones in two dimensions (temporal and space). In 
addition, the proposed policy is completely compatible with 
conventional reservation service, which means it can be 
applied in all kinds of practical grids. Extensive experiments 
have been conducted by using real workloads, and the 
experimental results show that the relaxed reservation 
policy can achieve higher resource utilization and lower 
rejection rate comparing to other policies. Also, It shows 
better adaptiveness when grids are in presence of higher 
reservation rate.  
 
Index Terms—grid computing, resource reservation, relaxed 
policy, quality of service, reservation violation, time slot 
 

I.  INTRODUCTION 

Resource reservation is a process of requesting 
resources for use at a specific time in the future [1]. In 
grid computing [2], reservation service provides 
confidence that a subsequent resource allocation request 
will succeed, in this way, it allows users to gain 
concurrent access to adequate resources and guarantees 
the availability of resources at required times [3]. 
Therefore, reservation mechanism has been widely 
applied to provide end-to-end QoS for high-performance 
applications in many grids [4]. Although the effectiveness 
and the advantages of reservation have been proven in 
many practical grids, it also brings about many negative 
effects on system performance. Studies in [4-12] have 
shown that fixed-capability reservation will result in low 
resource utilization, and excessive reservation often leads 
to high rejection rate. Therefore, how to mitigate these 
negative effects has becomes an important issue that 
needs to be addressed [4, 6-8]. 

Performance reports on practical grids have indicated 
that unpredictable workload and dynamic availability of 
resources are the two significant characteristics in grid 

environments [5, 7-9]. Therefore, it is difficult for 
applications to precisely estimate the reservation time, if 
not impossible. As a result, grid applications tend to 
overestimate the reservation time so as to ensure their 
successful execution [6-9]. This behavior inevitably 
results in high rejection rate and low resource utilization.  

Motivated by these observations, in this paper we 
propose a Two-Dimension Relaxed Reservation Policy 
(TDRRP), which allows grids to accept the reservation 
requests that overlaps with existing ones under certain 
conditions. By this way, TDRRP is capable of mitigating 
the negative effects in conventional reservation service. 

The rest of this paper is organized as following: 
Section 2 presents the related work; Section 3 introduces 
the key ideology of TDRRP; Section 4 presents a relaxed 
co-reservation admission algorithm; In section 5, 
experiments are conducted to verify the performance of 
TDRRP. Finally, Section 6 concludes the paper with a 
brief discussion of the future work. 

II.  RELATED WORK 

Since the reservation service has been incorporated in 
GARA architecture, its effects on system performance 
have been widely studied in many works [9-12]. In [9], 
Foster et al. investigate the impacts of reservation on the 
performance of scheduler in the metrics of Mean Waiting 
Time, Mean Offset Time, and Request Rejection Rate. The 
experimental results show that Mean Offset Time will be 
reduced when the reservation rate is low, however, in 
face of high reservation rate all these three metrics will 
increase significantly. These conclusions are repeatedly 
confirmed in [6-8, 10-12]. In [10], Wu and Sun study the 
effects of reservation on remote jobs and local jobs in 
non-dedicated environments. They use queuing system to 
model resources, and their studies also prove that 
excessive reservation will prolong the response time of 
remote jobs as well as local jobs.  

Therefore, many frameworks and techniques have been 
proposed to overcome the demerits of reservation service 
[4-6, 11]. For example, Foster et al. suggest that 
incorporating adaptive mechanism into reservation 
service is a feasible approach to improve the conventional 
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reservation mechanism, and they also develop an 
extended GARA architecture to provide more flexible 
reservation service [4]. In this extended GARA 
framework, reservation service is enhanced with 
intelligent decision model and performance sensors. 
However, this adaptive reservation architecture is 
designed for the applications with high-bandwidth and 
dynamic flows, which means it only adapts to bandwidth 
reservation for bulk-data transfer. 

Recently, researchers begin to focus on more 
applicable and convenient techniques for mitigating the 
negative effects of reservation service. Backfilling [13] is 
one of the most famous techniques to improve resource 
utilization for those reservation-aware systems. Normally, 
backfilling techniques are categorized into two classes: 
(1) Aggressive Backfilling: small tasks are moved ahead 
to fill in holes in the time slot, provided they do not delay 
the first tasks in the waiting queue; (2) Conservative 
Backfilling: small tasks are moved ahead only if they do 
not delay any task in the waiting queue. So, the 
backfilling technique can provide improved 
responsiveness for short tasks combined with no 
starvation for long ones. In [7], backfilling-based gang 
scheduling is implemented and incorporated into the 
SCOJO scheduler for co-reservation service. The 
simulation results show that it can mitigate the negative 
effects of reservation for the applications with high ratio 
of computing to communication. In [14], Sulistio et al. 
apply several techniques, including re-arranging subtask, 
interweaving task graphs and backfilling, into reservation 
service with aiming to improve resource utilization. 
Although backfilling technique is effective to improve 
resource utilization and throughput, it still has the 
problem of high rejection rate when grids are in presence 
of high reservation rate [7, 14]. 

To solve the problem of high rejection rate, Kaushik  et 
al. propose a flexible reservation window scheme [15]. 
By extensive simulations, Kaushik concludes that when 
the size of reservation window is equal to the average 
waiting time in on-demand queue, the blocking 
probability (also called rejection rate) can be minimized 
near to zero. However, Kaushik does not address the 
issue of low resource utilization brought by reservation 
service. In [16], Wu et al. study the bandwidth 
reservation for grid applications, and propose an adaptive 
mechanism for malleable bandwidth reservation requests 
to reduce rejection rate of reservation. Unfortunately, 
Wu’s study only adapts to the systems that support 
malleable reservation requests, and it only can be used for 
bandwidth reservation. 

III.  PROBLEM DEFINITION 

In reservation framework described in the standard 
document GFD.5, resources are managed by Reservation 
Manager (RM), which performs admission control and 
tracks the reservations on all resources under its control. 
On receiving a reservation request, RM tries to allocate a 
free time-slot, which can meet the request’s requirements. 
If a feasible time-slot is available, RM will respond the 
request with a confirmative response. Then, it is said that 

a reservation contract has been successfully signed 
between the request and RM. Otherwise, it is said that the 
reservation request is rejected. Given a reservation 
contract, if RM does not make the resource accessible for 
the request at the reservation start time, or fail to keep the 
resource accessible during the reservation duration, it is 
said that a reservation violation occurs. So, the 
reservation service can be described as following. 

Definition 1. A reservation request can be 
characterized as a 3–tuple , ,ts te res< > , where ts  is the 
reservation start time, te is reservation deadline, res  
refers to resource demands. 

Definition 2. A time-slot can be characterized as a 3–
tuple _ , _ , _slot ts slot te slot res< > , where _slot ts  is the start 
time of the time-slot, _slot te  is the deadline of the time-
slot, _slot res  refers to the available resources between 
the duration [ _ , _ ]slot ts slot te . 

Definition 3. Given a time-slot kslot  and a reservation 
request ireq , kslot  can rigidly meet the requirements of 

ireq  if _ _ _k i k i k islot ts ts slot te te slot res res≤ ≥ ≥∩ ∩  

 
Figure 1. A example of time slot table 

Given current time is 0t , a time-slot table is shown in 
Fig. 1. The existing reservations are illustrated by 
rectangles with texture. Considering a reservation request 

irequest  arrives, RM finds that no available free slot can 
rigidly meet the requirements of irequest . However, RM 
notices that a free slot between 2r  and 5r  seems to be a 
good candidate, except that the start time and the deadline 
of irequest  are slightly overlapping with other existing 
reservations. If RM reserves this time slot to irequest , 
then the start time of irequest  can not be guaranteed 
because of 2r . Meanwhile, irequest  will overlap with the 
start time of 5r  and 6r . 

As mentioned before, reservation requests usually tend 
to overestimate deadline to ensure their successful 
completion. If the actual deadlines of 2r  are earlier than 
the start time of irequest , and the actual deadline of 

irequest  is earlier than the start time of 5r  and 6r , then, 
this time slot is feasible for irequest  in practice. So, our 
strategy takes such overestimation into account, and tries 
to accept some requests, whose reservation requirements 
can not be met in conventional way.  

Definition 4. Given a time-slot kslot  and a reservation 
request ireq , let random event iE  represent that no 
reservation violation occurs on ireq . Then, kslot  can 
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relaxed meet the requirements of ireq  with the 
probability Pr{ }iE  as following 

Pr{ } Pr{ _  _
                   _ }

k i k i

k i

slot ts ts slot te te
slot res res

= ≤ ≥
≥

iE ∩ ∩        (1) 

IV.  RELAXED RESERVATION POLICY 

A.  Overlapping Sets 
Considering a reservation request ireq , denoted as 

, ,i i its te res< > , arrivals to a RM. To meet the requirements 
of ireq , RM should find a free slot which satisfying 

free iC res≥  during the period [ , ]i its te , where freeC  is the 
amount of free capacity. If there is no such time-slot that 
can rigidly meet the requirements of ireq , there must be 
one ore more existing reservations that overlapping with 
the reservation time of ireq . As shown in Fig. 1, it is 
clear that these existing reservations can be classified as 
two kinds. 

Definition 5. The start time overlapping set of ireq  is 
those existing reservations that their deadlines overlap 
with ireq , denoted as 

[1 1]{ | ,  }s
i j j i jiset req j  st st et−= ∀ ∈ < <…  

Definition 6. The deadline overlapping set of ireq  is 
those existing reservations that their start time overlap 
with ireq , denoted as 

[1 1]{ | ,  }e
i j j i jiset req j  st et et−= ∀ ∈ < <…  

Clearly, if s
iset =∅ ∩ e

iset =∅ ∩ free iC c≥ , then 
request ireq  can be guaranteed. This is also the criterion 
of conventional reservation mechanism while accepting 
reservation requests. In the TDRRP, the system will 
follow a more relaxed policy, which tries to accept some 
reservation requests that do not obey the strict criterion of 
conventional reservation mechanism. As shown in Fig. 1, 
if the RM decides to accept ireq , then the start time 
overlapping set of ireq  is 2 3 4,{ , }s

iset r r r= , and the 
deadline overlapping set is 4 5 6,{ , }e

iset r r r= . 
Given there has been 1i −  existing reservations when 

ireq  arrivals. To know the risk of accepting ireq , we 
should figure out the probability of reservation violation 
if it is accepted. Let random event iE  represent that no 
reservation violation occurs on ireq , random event s

iE  
represent that all the reservations in s

iset  do not incur the 
violation of ireq . Let random event e

iE  represent that 
ireq  do not incur any violation on all the reservations in 
e
iset . We assume that all reservation requests are 

independent, so the probability of iE  can be expressed as 
Pr{ } Pr{ } Pr{ }= ⋅s e

i i iE E E                     (2) 
For a job with m  reservation requests, the probability 

of successful reservation for this job can be expressed as 

1
Pr{ } Pr{ } Pr{ }

m

i=
= ⋅∏ s e

i iE E E                  (3) 

where E  is a random variant representing that relaxed 
reservation policy does not result in reservation violation. 

B.  Caculation of Pr{ }s
iE  

According to definition 5, the deadline of all 
reservations in s

iset  are later than the start time of ireq . 
If some of these existing reservations release their 
resource before the start time of ireq , then the system is 
able to reserve enough resource for ireq  at the time of 

its , which means that reservation violation will not 
happen on ireq . So, Let random variable ( [1 ])jTE j i∈ …  
represent the actual deadline of reservation request 

( )j j
s
ir setr ∈ , then the probability that s

iset  do not incur 
the violation of ireq  can be calculated as 

1 2
Pr{ } Pr{
                   | _ }

nj i j i j i

j i
j J

TE t TE t TE t
slot res res res

∈

= ≤ ≤ ≤
+ >∑

s
iE ∩ ∩…∩

       (4) 

where set 1 2 ,{ , }nj j jJ r r r= …  and s
iJ set⊆ . 

It is clear that there might be many set J  that can 
satisfy the condition of (4). For example, 2 3 4,{ , }s

iset r r r=  
as shown in Fig. 1, then 2{ }J r=  or 3{ }J r=  or 

2 3{ , }J r r=  can all be applied in (4) to calculate Pr{ }s
iE . 

So, the question is which one is the optimal *J , which can 
be expressed as a programming problem as following 

*
*

  Pr{ }
     _

        

max
. .

s
i

j i
j J

resslot res

J set

ress t
∈

+ ≥

⊆

∑
s
iE

               

The approach to find *J  is very similar to 0-1 
knapsack algorithm [17], and the details of calculating 
Pr{ }s

iE  are shown as following. 
Algorithm 1: Calculating Pr{ }s

iE  
Input: s

iset , , ,i i its te res< > , _slot res  
Output: Pr{ }s

iE , *J  
Begin 
1. Pr{ } 0←s

iE ; *J ←∅  
2. For each s

ir set∈  
3.       [ ] Pr{ }r iV r TE ts← ≤ ; 
4.   If Pr{ } [ ]V r<s

iE  Then 
5.       Pr{ } [ ]V r←s

iE ; * }{J r← ; 
6. End For 
7. If *_

J islot res res res+ ≥  Then 

8.       Return Pr{ }s
iE , *J ; 

9. Else 
10.      For each s

ir set∈  
11.           If *Jr∈  Then  Continue; 
12.           Else 
13.      * * { }J J r← + ; 
14.                For each *' Jr ∈  
15.                      '

' '[ ] [ ] Pr{ }irV V TE tsr r← ⋅ ≤ ; 
16.                If 

*

_ j
j J

iresslot res res
∈

+ ≥∑  Then 

17.                      Return Pr{ }s
iE , *J ; 

18.                Else  * * { }J J r← − ; 
19.     End For 
End 
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C.  Caculation of Pr{ }e
iE  

Pr{ }e
iE  is the probability that ireq won’t lead to 

reservation violation in e
iset . Unlike the calculation of 

Pr{ }s
iE , the key point of calculating Pr{ }e

iE  is to figure 
out the time when ireq  will release its resources.  

Let random iTE  represent the deadline of ireq , and 
1 2, , , }{ nk k kr r r"  represent the reservations in e

iset . 
Assuming that 1 2, , , }{ nk k kr r r"  is sorted in ascending order 
of reservation start time, it is clear that we should find the 

lk  that satisfying 
1

1 1max
l lk k

j i jj k j k
res res res res−

= =
≤ − <∑ ∑            (5) 

where maxres  is the max capacity of the resource. As long 
as the actual deadline of ireq  is earlier than lkts , we can 
ensure that ireq  will not incur any violations on all the 
reservations in e

iset , and the probability that ireq  won’t 
lead to reservation violation is 

Pr{ } Pr{ }
li kTE ts= ≤e

iE                         (6) 
The algorithm of calculating Pr{ }e

iE  is as following 
Algorithm 2: Calculating Pr{ }e

iE  
  Input: e

iset , , ,i i its te res< > , maxres  
  Output: Pr{ }e

iE  
Begin 
1. Sort all the e

ikr set∈  in ascending order of kts ; 
2. Store the sorting result as 1 2, , , }{ nk k kr r r" ; 
3. For 1l ←  to n  
4.      If 1

1 1max
l lk k

j i jj k j kres res res res−

= =
≤ − <∑ ∑  Then 

5.          Break; 
6. End For 
7. Calculating Pr{ }e

iE  by (6) 
End 

 

D.  Admission Algorithm of Relaxed Co-reservation 
Parameter Sweep Application (PSA) [18-19] is an 

important class of grid applications, which arises in 
scientific and engineering contexts. A significant 
challenge of deploying PSA is the concurrent reservation 
of a huge number of resources in grid environments [20-
21]. So, in this paper we focus on the co-reservation for 
PSA by using relaxed reservation policy. 

Given the grid system has N  computing sites, noted as 
1( , , )NCE CE… . A PSA task consists of m  subtasks 

1 2, , msub sub sub< >… , and vector 1 2, , , msr sr sr=< >R …  is 
the resource requirements of each sub-tasks. Therefore, a 
co-reservation scheme is the mapping of resource 
requirements to computing sites, noted as 

: {1, , } {0,1}S N× →R … . It is clear that a co-reservation 
scheme S  can be noted as a m N×  matrix as shown in 
Fig. 2. In the co-reservation matrix, , 1i jS =  means 
reserving the ith sub-tasks onto jCE . A validated co- 
reservation scheme should satisfy that if , 1i jS =  then 

j ic r≥ . 

1 2 3

1

2

3

                      

1         0         0             1 

1         1         0             0 

 0        0         1             1 

                     

0        1        

N

m

CE CE CE CE

r

r

r

r

"

"

"

"

" " " " " "

 

1              0  

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦"

 

    Figure 2  Co- reservation Matrix 

So, the admission algorithm of co-reservation for PSA 
is designed as following. In this admission algorithm, 
relaxed reservation is applied only when there is no 
feasible time-slot that can rigidly meet the requirements 
of reservation request. 

 
Algorithm 3: Co-reservation Admission for PSA 

Input: 1 2, , , msr sr sr=< >R … , 1 2{ , }NSlot Slot Slot…  
  Output:  

Matrix of Co-reservation Scheme: V  
Successful probability of V : G  

Begin 
1. 1G ← ; 
2. For 1    toi  m ←  
3.      If _k Slot SetSlot ∈∃  satisfying Pr{ } 1 ==iE  

Then  , 1i kV ← ; 
4.      Else 
5.         Pr{ }_ 0Max ←iE ; 
6.         For each _k Slot SetSlot ∈  
7.             Obtaining s

iset  and e
iset ; 

8.             Calculating Pr{ }S
iE  by calling Algorithm 1; 

9.             Calculating Pr{ }E
iE  by calling Algorithm 2; 

10.         If Pr{ }_ Pr{ } Pr{ }Max < ⋅S E
i iiE E E  Then 

11.             Pr{ }_ Pr{ } Pr{ }Max ← ⋅S E
i iiE E E ; 

12.     End For 
13.     , 1i kV ← ;  
14.     _ Pr{ }MaxG G← × iE ; 
15. End For 
16. Return  V  and G ; 
End 

V.  EXPERIMENTS EVALUATION AND ANALYSIS 

In this section, we conduct extensive experiments to 
verify the performance of relaxed reservation policy 
when co-reservation for multiple resources is required. 

A.  Experimental Settings 
Experimental grid model is a multi-cluster system, 

which consists of 12 high-performance clusters. The 
topology and detail settings of the grid model are 
referenced from the famous grid test-bed DAS-2 [22].  

The experimental workload is generated by Lublin-
Feitelson Model [23], which is derived from real 
workload logs of large-scale distributed systems. The 
workload consists of 10 000 requests, and each of request 
is characterized by arrival time, number of processors, 
and running time. As the workload model is based on 
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long-term jobs on supercomputer, we divided the arrival 
times and running times by 60 to reduce the overall time 
of simulations. There is no start time in this workload, so 
we append each request with a reservation start time, 
which is set by adding the arrival time with a random 
value that uniformly distributed in [100,1000] .  

To reflect the overestimation of reservation deadline, 
we multiply the running time of each request with a 
random factor overk (more details about overk  is discussed 
in Section V.D). To increase the probability of co-
reservation from multiple clusters, the resource demands 
of each reservation request is enlarged by 20 times. 

In the first experiment, the performance of TDRRP is 
compared with four reservation policies, including 
Conventional Reservation Policy (CRP), Aggressive 
Backfilling Reservation Policy (ABRP), Conservative 
Backfilling Reservation Policy (CBRP), and Malleable 
Reservation Policy (MRP). As these policies have been 
applied in different systems, we present their brief 
description as following: 

 CRP [9]: It is a fixed-capability reservation policy, 
in which request admission follows the definition 3. 

 ABRP [13]: It allows the system move some 
requests ahead to fill the holes in the time-slot table, 
only when the first request in the waiting queue will 
not be delayed by them. 

 CBRP [13]: It allows the system move some 
requests ahead to fill the holes in the time-slot table, 
provided that they do not delay any request in the 
waiting queue. 

 MRP [24]: the requirements of a reservation request 
are allowed to be modified during the runtime. In 
practice, MRP is often implemented by adding other 
attributes in a reservation request, so that RM can 
re-arrange the time-slot table when necessary. 

As mentioned above, reservation rate of workload is an 
important factor that has a great deal of effects on the 
performance of reservation service. So, we conduct the 
experiment four times under different reservation rates, 
i.e. 10%, 15%, 20%, 25%. In this experiment, we set 

* 0.8v =  for TDRRP, which means that system will accept 
a reservation request only when the probability of 
reservation violation for this request is less than 20%. 
And the factor overk  is set to be uniformly distributed in 
the interval [1.2, 1.5], which means reservation requests 
tend to overestimate their reservation time with mean 
value 35%. In next experiment, we will investigate the 
effects of *v  and overk  on the performance of TDRRP in 
more details. In this experiment, we focus on three 
performance metrics, including Resource Utilization 
Rate, Reservation Rejection Rate, and Mean Response 
Time. 

B.  Resource Utilization and Rejection Rate 
In simulations, we set that the requests without 

reservation requirements will be canceled, if its deadline 
expires and still has not been scheduled on required 
resources. It often happens on the requests with co-
reservation requirement, which in turn intensifies the 

decline of resource utilization. The experimental results 
are shown in Fig 3 – Fig. 6. 

 
Figure 3. Resource utilization rate under different reservation rates 

As we can see in Fig. 3, for conventional reservation 
policy, with reservation rate increasing from 10% to 25%, 
resource utilization drops dramatically from 56% to about 
25%. It is because that many requests have been blocked 
by existing reservations. So, the performance of CRP is 
the worst in the five policies in terms of utilization rate. 

When applying backfilling technique, utilization rate 
have been increased significantly about 14% comparing 
with CRP when reservation rate is about 10% and 15%. 
Respect to the two backfilling-based policies, ABRP 
outperforms over CBRP in different reservation rate. 
Especially, when the reservation rate is 25%, the resource 
utilization of ABRP is higher than ABRP about 13%. The 
reason is that ABRP tends to move more requests to the 
holes in time-slot table, which inevitably improve the 
resource utilization. 

In this experiment, a significant result is that ABRP, 
CBRP, and MRP all perform better than TDRRP when 
reservation rate is relative low (10% and 25%). However, 
as the reservation rate increase to 20% and 25%, 
TDRRP’s resource utilization becomes the highest. An 
interesting finding is that TDRRP’s utilization rate 
increases about 3% when reservation rate increases from 
15% to 20%. The reason is that there are more free slots 
can be allocated by using TDRRP as reservation requests 
increases. However, such increasing can not be sustained 
when the reservation rate increases to 25%. 

 
Figure 4. Reservation rejection rate under different reservation rates 

Reservation rejection rate is shown in Fig. 4. Like the 
resources utilization, when using CRP, the rejection rate 
increases sharply from about 7% to 34% as the 
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reservation rate increases from 10% to 25%. Also, we 
notice that backfilling technique can not lower down 
rejection rate. On the contrary, it leads to a slightly higher 
rejection rate comparing with conventional policy. That is 
because the experimental workload is very long (10 000 
requests), the scheduler only deal with a small part of 
reservation requests each time. So, some non-reservation 
requests are backfilled into a lot of free slots, which 
probably may be allocated to other reservation requests 
later if using TDRRP. That is why backfilling technique 
leads a higher rejection rate. When TDRRP is used, the 
rejection rate is only about 50% of conventional 
reservation policy in all cases.The results also show that 
the rejection rate of MRP is almost the same as that of 
TDRRP when reservation rate is 10%, 15%, and 20%. 
Only when it reaches 25%, MRP’s rejection rate becomes 
higher than TDRRP’s about 3%. 

The conclusions of this experiment: (1) conventional 
reservation policy as a fixed-capability mechanism can 
not provide satisfying resource utilization for dynamic 
grid environment; (2) backfilling technique and malleable 
policy are effective to improve resource utilization when 
reservation rate is below 15%; (3) when the system faces 
high reservation rate (>15%), TDRRP is more effective 
than other policies. 

C.  Task Mean Response Time 
As noted in [4, 7, 9-12], reservation service will result 

in the increasing of Task Mean Response Time (TMRT). 
It is because that reservation requests may hold their 
resources even if they are not used in reality. This 
situation often happens when too many reservation 
request arrivals in a short term. So, we log the TMRT of 
all the jobs in workload. As the simulative workload is 
very long (including 10 000 jobs), we monitor the TMRT 
in the manner of real-time when every 200 jobs arrivals. 
The real-time MTRT is shown in Fig. 5, and the total 
MTRT is shown in Fig. 6. 

 

 
Figure 5. Real-time Task Mean Response Time  

 
As shown in Fig. 6, the Task Mean Response Time of 

CRP, ABRP and CBRP are almost the same when the 
system’s reservation rate is relative low (10% and 15%). 
On the other side, the Task Mean Response Time of MRP 
and TDRRP are very similar too. The dramatically 
differences occur when the reservation rate reaches 20% 

and 25%. For instance, the Task Mean Response Time of 
CRP increases about 230% when reservation rate 
increases from 10% to 25%. However, the Task Mean 
Response Time of TDRRP only increases about 50% in 
presence of 25% reservation rate. 

 
Figure 6. Total Task Mean Response Time 

Refer to the results shown in Fig. 5, we notice that the 
Task Mean Response Time of CRP increases quickly even 
at the beginning of simulation. The reason is that CRP 
tends to block reservation requests when it can’t meet its 
requirements. In our simulative workload, the distribution 
of reservation requests rate decreased gradually. So, CRP 
have to faces high reservation rate at the beginning of 
experiment. However, MRP and TDRRP allow the 
system accepting reservation requests with more flexible 
and relaxed criteria, so, they do not block too many 
reservation requests at the beginning. In the middle of 
experiment, as many reserved resource have been 
released earlier that their previous requirements, then 
MRP and TDRRP can take advantages of these released 
resources for those requests that been blocked by CRP. 

D.  Parameter Analysis for TDRRP 
In this experiment, we focus on reservation violation 

when using TDRRP. As noted in previous sections, there 
are two key parameters ( *v  and overk ) in TDRRP. The 
parameter *v  is a threshold for admission algorithm in 
TDRRP. For instance, if the system set * 0.8v = , it means 
that the system will accept a reservation request only 
when the probability of reservation violation for this 
request is less than 20%. As to the parameter overk , it is a 
statistical characteristic of workload, which reflect the 
overestimation of reservation time. In this experiment, we 
modify the workload by multiple reservation time of each 
request with overk , where overk  is set to be uniformly 
distributed in a certain interval. For instance, if overk  is set 
to be uniformly distributed in [1.0, 1.2], it means that 
requests in workload tend to overestimate their 
reservation time with mean value 10%, and [1.2, 1.5] 
means the mean overestimation is about 35%. 

Just like the first experiment, we conduct this 
experiment four times with different reservation rates. In 
each experiment, parameter *v  is increased from 0.6 to 
0.95 gradually, and parameter overk  is set to be uniformly 
distributed in three different interval, such as [1.0, 1.2], 

1400 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER



[1.2, 1.5], and [1.5, 1.8] respectively. In this way, we 
hope to extensively investigated the effects of *v  and 

overk  on the performance of TDRRP. The results of this 
experiment are shown in Fig. 7. In order to examine the 
effects of overestimation on resources utlization, we 
record all the resources utlization on different composion 
of overk  and *v  as shown in Table 1. 

 
(a) Reservation Rate = 10% 

 
(b) Reservation Rate = 15% 

 
(c) Reservation Rate = 20% 

       
(d) Reservation Rate = 25% 

Figure 7.  Reservation Violation Rate with different reservation rate 

It is clearly that parameter *v  is of significant 
importance on the reservation violation rate. With the 
increasing of *v , reservation violation rate decreases 
quickly, especially for those workload with very higher 
reservation rate (shown in Fig. 7 (c) and (d)). However, 
the decreasing of violation rate is not ratio to the 

increasing of *v , more specifically, violation rate drops 
quickly when *v  is increased from 0.6 to 0.8, however, 
the decline of violation rate becomes stable even the 
parameter *v  is set to a very high value. In all cases, we 
note that the violation can be limited below 10% when 

* 0.8v ≥ , and If we set * 0.9v ≥ , the violation rate can be 
controlled below 5%. As to the resources utilization, we 
notice that higher overestimation often results lower 
utilization rate as shown in Table 1. However, parameter 

*v  is very effective to control the resources utilization, 
that is a small value of *v  can sigficantly increase 
resources utilization. For instance, when *v  is set to 60% 
the resources utilization is more that 70% even the 
overestimation has reached 35%, however, it drops to 
about 25%, when *v  is set to 100%. 

Table 1   Resources Utilization with different overk  and *v  

    overk

*v  
 

[1.0, 1.2] 
 

[1.2, 1.5] 
 

[1.5, 1.8] 

60% 89.35% 84.58% 70.35% 
65% 74.11% 70.21% 64.23% 
70% 70.23% 64.53% 62.45% 
75% 70.24% 63.32% 53.21% 
80% 70.13% 63.47% 50.37% 
85% 55.78% 51.02% 38.24% 
90% 53.39% 50.69% 31.27% 
95% 51.67% 55.34% 31.29% 
100% 50.14% 31.25% 25.39% 

As to parameter overk , the experimental results indicate 
that more overestimation of reservation leads to lower 
reservation violation rate. hat is because many overlapped 
reservations do not overlap actually in run time, which 
makes TDRRP more effective. On the other side, the 
effects of overk  on violation rate are influenced by the 
reservation rate. As shown in Fig. 7 (a) and (b), the 
violation rate is limited in a relative lower level even the 
parameter *v  is set to be 0.6-0.8. However, if the 
reservation rate reaches 25% (as shown in Fig. 7(d)), the 
violation rate increases dramatically to about 45% if *v  is 
set to be 0.6. It is clear that a low value of *v  is not a 
good idea when a system is in presence of high 
reservation rate (>20%). 

VI.  CONCLUSION 

To mitigate those effects, the paper proposes a two-
demension relaxed reservation policy TDRRP, which 
based on the fact that applications tend to overestimate 
their running time to ensure their completion. Extensive 
simulations are conducted to verify the effectiveness of 
our policy. Experimental results show that TDRRP can 
bring about higher resource utilization and lower 
rejection rate at the price of a slightly increasing of 
reservation violations. Furthermore, the policy also shows 
adaptive in presence of higher reservation rate. For the 
future work, we plan to provide an adaptive mechanism 
for RM to dynamically set optimal *v  based on resource’s 
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runtime load. Also, we plan to incorporate TDRRP into 
grid economy to provide a more flexible price 
mechanism. 
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