
Two-Dimension Relaxed Reservation Policy for
Independent Tasks in Grid Computing

Peng Xiao

School of Computer and Communication, Hunnan Institute of Engineering, Xiangtan, 411104, China
Email: xpeng4623@yahoo.com.cn

Zhigang Hu

School of Information Science and Technology, Central South University, Changsha, 410083, China
Email: zghu@mail.csu.edu.cn

Abstract—As an effective technique for QoS provision,
reservation service has been widely applied in various grids.
However, plenty of studies have shown that reservation
service will bring about many negative effects on system
performance, i.e. higher rejection rate and lower resource
utilization. To mitigate these negative effects, a relaxed
reservation policy is proposed in this paper. It allows grids
accepting reservation requests that overlapping with
existing ones in two dimensions (temporal and space). In
addition, the proposed policy is completely compatible with
conventional reservation service, which means it can be
applied in all kinds of practical grids. Extensive experiments
have been conducted by using real workloads, and the
experimental results show that the relaxed reservation
policy can achieve higher resource utilization and lower
rejection rate comparing to other policies. Also, It shows
better adaptiveness when grids are in presence of higher
reservation rate.

Index Terms—grid computing, resource reservation, relaxed
policy, quality of service, reservation violation, time slot

I. INTRODUCTION

Resource reservation is a process of requesting
resources for use at a specific time in the future [1]. In
grid computing [2], reservation service provides
confidence that a subsequent resource allocation request
will succeed, in this way, it allows users to gain
concurrent access to adequate resources and guarantees
the availability of resources at required times [3].
Therefore, reservation mechanism has been widely
applied to provide end-to-end QoS for high-performance
applications in many grids [4]. Although the effectiveness
and the advantages of reservation have been proven in
many practical grids, it also brings about many negative
effects on system performance. Studies in [4-12] have
shown that fixed-capability reservation will result in low
resource utilization, and excessive reservation often leads
to high rejection rate. Therefore, how to mitigate these
negative effects has becomes an important issue that
needs to be addressed [4, 6-8].

Performance reports on practical grids have indicated
that unpredictable workload and dynamic availability of
resources are the two significant characteristics in grid

environments [5, 7-9]. Therefore, it is difficult for
applications to precisely estimate the reservation time, if
not impossible. As a result, grid applications tend to
overestimate the reservation time so as to ensure their
successful execution [6-9]. This behavior inevitably
results in high rejection rate and low resource utilization.

Motivated by these observations, in this paper we
propose a Two-Dimension Relaxed Reservation Policy
(TDRRP), which allows grids to accept the reservation
requests that overlaps with existing ones under certain
conditions. By this way, TDRRP is capable of mitigating
the negative effects in conventional reservation service.

The rest of this paper is organized as following:
Section 2 presents the related work; Section 3 introduces
the key ideology of TDRRP; Section 4 presents a relaxed
co-reservation admission algorithm; In section 5,
experiments are conducted to verify the performance of
TDRRP. Finally, Section 6 concludes the paper with a
brief discussion of the future work.

II. RELATED WORK

Since the reservation service has been incorporated in
GARA architecture, its effects on system performance
have been widely studied in many works [9-12]. In [9],
Foster et al. investigate the impacts of reservation on the
performance of scheduler in the metrics of Mean Waiting
Time, Mean Offset Time, and Request Rejection Rate. The
experimental results show that Mean Offset Time will be
reduced when the reservation rate is low, however, in
face of high reservation rate all these three metrics will
increase significantly. These conclusions are repeatedly
confirmed in [6-8, 10-12]. In [10], Wu and Sun study the
effects of reservation on remote jobs and local jobs in
non-dedicated environments. They use queuing system to
model resources, and their studies also prove that
excessive reservation will prolong the response time of
remote jobs as well as local jobs.

Therefore, many frameworks and techniques have been
proposed to overcome the demerits of reservation service
[4-6, 11]. For example, Foster et al. suggest that
incorporating adaptive mechanism into reservation
service is a feasible approach to improve the conventional

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1395

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.8.1395-1402

reservation mechanism, and they also develop an
extended GARA architecture to provide more flexible
reservation service [4]. In this extended GARA
framework, reservation service is enhanced with
intelligent decision model and performance sensors.
However, this adaptive reservation architecture is
designed for the applications with high-bandwidth and
dynamic flows, which means it only adapts to bandwidth
reservation for bulk-data transfer.

Recently, researchers begin to focus on more
applicable and convenient techniques for mitigating the
negative effects of reservation service. Backfilling [13] is
one of the most famous techniques to improve resource
utilization for those reservation-aware systems. Normally,
backfilling techniques are categorized into two classes:
(1) Aggressive Backfilling: small tasks are moved ahead
to fill in holes in the time slot, provided they do not delay
the first tasks in the waiting queue; (2) Conservative
Backfilling: small tasks are moved ahead only if they do
not delay any task in the waiting queue. So, the
backfilling technique can provide improved
responsiveness for short tasks combined with no
starvation for long ones. In [7], backfilling-based gang
scheduling is implemented and incorporated into the
SCOJO scheduler for co-reservation service. The
simulation results show that it can mitigate the negative
effects of reservation for the applications with high ratio
of computing to communication. In [14], Sulistio et al.
apply several techniques, including re-arranging subtask,
interweaving task graphs and backfilling, into reservation
service with aiming to improve resource utilization.
Although backfilling technique is effective to improve
resource utilization and throughput, it still has the
problem of high rejection rate when grids are in presence
of high reservation rate [7, 14].

To solve the problem of high rejection rate, Kaushik et
al. propose a flexible reservation window scheme [15].
By extensive simulations, Kaushik concludes that when
the size of reservation window is equal to the average
waiting time in on-demand queue, the blocking
probability (also called rejection rate) can be minimized
near to zero. However, Kaushik does not address the
issue of low resource utilization brought by reservation
service. In [16], Wu et al. study the bandwidth
reservation for grid applications, and propose an adaptive
mechanism for malleable bandwidth reservation requests
to reduce rejection rate of reservation. Unfortunately,
Wu’s study only adapts to the systems that support
malleable reservation requests, and it only can be used for
bandwidth reservation.

III. PROBLEM DEFINITION

In reservation framework described in the standard
document GFD.5, resources are managed by Reservation
Manager (RM), which performs admission control and
tracks the reservations on all resources under its control.
On receiving a reservation request, RM tries to allocate a
free time-slot, which can meet the request’s requirements.
If a feasible time-slot is available, RM will respond the
request with a confirmative response. Then, it is said that

a reservation contract has been successfully signed
between the request and RM. Otherwise, it is said that the
reservation request is rejected. Given a reservation
contract, if RM does not make the resource accessible for
the request at the reservation start time, or fail to keep the
resource accessible during the reservation duration, it is
said that a reservation violation occurs. So, the
reservation service can be described as following.

Definition 1. A reservation request can be
characterized as a 3–tuple , ,ts te res< > , where ts is the
reservation start time, te is reservation deadline, res
refers to resource demands.

Definition 2. A time-slot can be characterized as a 3–
tuple _ , _ , _slot ts slot te slot res< > , where _slot ts is the start
time of the time-slot, _slot te is the deadline of the time-
slot, _slot res refers to the available resources between
the duration [_ , _]slot ts slot te .

Definition 3. Given a time-slot kslot and a reservation
request ireq , kslot can rigidly meet the requirements of

ireq if _ _ _k i k i k islot ts ts slot te te slot res res≤ ≥ ≥∩ ∩

Figure 1. A example of time slot table

Given current time is 0t , a time-slot table is shown in
Fig. 1. The existing reservations are illustrated by
rectangles with texture. Considering a reservation request

irequest arrives, RM finds that no available free slot can
rigidly meet the requirements of irequest . However, RM
notices that a free slot between 2r and 5r seems to be a
good candidate, except that the start time and the deadline
of irequest are slightly overlapping with other existing
reservations. If RM reserves this time slot to irequest ,
then the start time of irequest can not be guaranteed
because of 2r . Meanwhile, irequest will overlap with the
start time of 5r and 6r .

As mentioned before, reservation requests usually tend
to overestimate deadline to ensure their successful
completion. If the actual deadlines of 2r are earlier than
the start time of irequest , and the actual deadline of

irequest is earlier than the start time of 5r and 6r , then,
this time slot is feasible for irequest in practice. So, our
strategy takes such overestimation into account, and tries
to accept some requests, whose reservation requirements
can not be met in conventional way.

Definition 4. Given a time-slot kslot and a reservation
request ireq , let random event iE represent that no
reservation violation occurs on ireq . Then, kslot can

t

…

1r

Capacity
Max Capacity = maxC

2r 3r 4r 5 6,r r

irequest

1396 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

relaxed meet the requirements of ireq with the
probability Pr{ }iE as following

Pr{ } Pr{ _ _
 _ }

k i k i

k i

slot ts ts slot te te
slot res res

= ≤ ≥
≥

iE ∩ ∩ (1)

IV. RELAXED RESERVATION POLICY

A. Overlapping Sets
Considering a reservation request ireq , denoted as

, ,i i its te res< > , arrivals to a RM. To meet the requirements
of ireq , RM should find a free slot which satisfying

free iC res≥ during the period [,]i its te , where freeC is the
amount of free capacity. If there is no such time-slot that
can rigidly meet the requirements of ireq , there must be
one ore more existing reservations that overlapping with
the reservation time of ireq . As shown in Fig. 1, it is
clear that these existing reservations can be classified as
two kinds.

Definition 5. The start time overlapping set of ireq is
those existing reservations that their deadlines overlap
with ireq , denoted as

[1 1]{ | , }s
i j j i jiset req j st st et−= ∀ ∈ < <…

Definition 6. The deadline overlapping set of ireq is
those existing reservations that their start time overlap
with ireq , denoted as

[1 1]{ | , }e
i j j i jiset req j st et et−= ∀ ∈ < <…

Clearly, if s
iset =∅ ∩ e

iset =∅ ∩ free iC c≥ , then
request ireq can be guaranteed. This is also the criterion
of conventional reservation mechanism while accepting
reservation requests. In the TDRRP, the system will
follow a more relaxed policy, which tries to accept some
reservation requests that do not obey the strict criterion of
conventional reservation mechanism. As shown in Fig. 1,
if the RM decides to accept ireq , then the start time
overlapping set of ireq is 2 3 4,{ , }s

iset r r r= , and the
deadline overlapping set is 4 5 6,{ , }e

iset r r r= .
Given there has been 1i − existing reservations when

ireq arrivals. To know the risk of accepting ireq , we
should figure out the probability of reservation violation
if it is accepted. Let random event iE represent that no
reservation violation occurs on ireq , random event s

iE
represent that all the reservations in s

iset do not incur the
violation of ireq . Let random event e

iE represent that
ireq do not incur any violation on all the reservations in
e
iset . We assume that all reservation requests are

independent, so the probability of iE can be expressed as
Pr{ } Pr{ } Pr{ }= ⋅s e

i i iE E E (2)
For a job with m reservation requests, the probability

of successful reservation for this job can be expressed as

1
Pr{ } Pr{ } Pr{ }

m

i=
= ⋅∏ s e

i iE E E (3)

where E is a random variant representing that relaxed
reservation policy does not result in reservation violation.

B. Caculation of Pr{ }s
iE

According to definition 5, the deadline of all
reservations in s

iset are later than the start time of ireq .
If some of these existing reservations release their
resource before the start time of ireq , then the system is
able to reserve enough resource for ireq at the time of

its , which means that reservation violation will not
happen on ireq . So, Let random variable ([1])jTE j i∈ …
represent the actual deadline of reservation request

()j j
s
ir setr ∈ , then the probability that s

iset do not incur
the violation of ireq can be calculated as

1 2
Pr{ } Pr{
 | _ }

nj i j i j i

j i
j J

TE t TE t TE t
slot res res res

∈

= ≤ ≤ ≤
+ >∑

s
iE ∩ ∩…∩

 (4)

where set 1 2 ,{ , }nj j jJ r r r= … and s
iJ set⊆ .

It is clear that there might be many set J that can
satisfy the condition of (4). For example, 2 3 4,{ , }s

iset r r r=
as shown in Fig. 1, then 2{ }J r= or 3{ }J r= or

2 3{ , }J r r= can all be applied in (4) to calculate Pr{ }s
iE .

So, the question is which one is the optimal *J , which can
be expressed as a programming problem as following

*
*

 Pr{ }
 _

max
. .

s
i

j i
j J

resslot res

J set

ress t
∈

+ ≥

⊆

∑
s
iE

The approach to find *J is very similar to 0-1
knapsack algorithm [17], and the details of calculating
Pr{ }s

iE are shown as following.
Algorithm 1: Calculating Pr{ }s

iE
Input: s

iset , , ,i i its te res< > , _slot res
Output: Pr{ }s

iE , *J
Begin
1. Pr{ } 0←s

iE ; *J ←∅
2. For each s

ir set∈
3. [] Pr{ }r iV r TE ts← ≤ ;
4. If Pr{ } []V r<s

iE Then
5. Pr{ } []V r←s

iE ; * }{J r← ;
6. End For
7. If *_

J islot res res res+ ≥ Then

8. Return Pr{ }s
iE , *J ;

9. Else
10. For each s

ir set∈
11. If *Jr∈ Then Continue;
12. Else
13. * * { }J J r← + ;
14. For each *' Jr ∈
15. '

' '[] [] Pr{ }irV V TE tsr r← ⋅ ≤ ;
16. If

*

_ j
j J

iresslot res res
∈

+ ≥∑ Then

17. Return Pr{ }s
iE , *J ;

18. Else * * { }J J r← − ;
19. End For
End

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1397

© 2011 ACADEMY PUBLISHER

C. Caculation of Pr{ }e
iE

Pr{ }e
iE is the probability that ireq won’t lead to

reservation violation in e
iset . Unlike the calculation of

Pr{ }s
iE , the key point of calculating Pr{ }e

iE is to figure
out the time when ireq will release its resources.

Let random iTE represent the deadline of ireq , and
1 2, , , }{ nk k kr r r" represent the reservations in e

iset .
Assuming that 1 2, , , }{ nk k kr r r" is sorted in ascending order
of reservation start time, it is clear that we should find the

lk that satisfying
1

1 1max
l lk k

j i jj k j k
res res res res−

= =
≤ − <∑ ∑ (5)

where maxres is the max capacity of the resource. As long
as the actual deadline of ireq is earlier than lkts , we can
ensure that ireq will not incur any violations on all the
reservations in e

iset , and the probability that ireq won’t
lead to reservation violation is

Pr{ } Pr{ }
li kTE ts= ≤e

iE (6)
The algorithm of calculating Pr{ }e

iE is as following
Algorithm 2: Calculating Pr{ }e

iE
 Input: e

iset , , ,i i its te res< > , maxres
 Output: Pr{ }e

iE
Begin
1. Sort all the e

ikr set∈ in ascending order of kts ;
2. Store the sorting result as 1 2, , , }{ nk k kr r r" ;
3. For 1l ← to n
4. If 1

1 1max
l lk k

j i jj k j kres res res res−

= =
≤ − <∑ ∑ Then

5. Break;
6. End For
7. Calculating Pr{ }e

iE by (6)
End

D. Admission Algorithm of Relaxed Co-reservation
Parameter Sweep Application (PSA) [18-19] is an

important class of grid applications, which arises in
scientific and engineering contexts. A significant
challenge of deploying PSA is the concurrent reservation
of a huge number of resources in grid environments [20-
21]. So, in this paper we focus on the co-reservation for
PSA by using relaxed reservation policy.

Given the grid system has N computing sites, noted as
1(, ,)NCE CE… . A PSA task consists of m subtasks

1 2, , msub sub sub< >… , and vector 1 2, , , msr sr sr=< >R … is
the resource requirements of each sub-tasks. Therefore, a
co-reservation scheme is the mapping of resource
requirements to computing sites, noted as

: {1, , } {0,1}S N× →R … . It is clear that a co-reservation
scheme S can be noted as a m N× matrix as shown in
Fig. 2. In the co-reservation matrix, , 1i jS = means
reserving the ith sub-tasks onto jCE . A validated co-
reservation scheme should satisfy that if , 1i jS = then

j ic r≥ .

1 2 3

1

2

3

1 0 0 1

1 1 0 0

 0 0 1 1

0 1

N

m

CE CE CE CE

r

r

r

r

"

"

"

"

" " " " " "

1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦"

 Figure 2 Co- reservation Matrix

So, the admission algorithm of co-reservation for PSA
is designed as following. In this admission algorithm,
relaxed reservation is applied only when there is no
feasible time-slot that can rigidly meet the requirements
of reservation request.

Algorithm 3: Co-reservation Admission for PSA

Input: 1 2, , , msr sr sr=< >R … , 1 2{ , }NSlot Slot Slot…
 Output:

Matrix of Co-reservation Scheme: V
Successful probability of V : G

Begin
1. 1G ← ;
2. For 1 toi m ←
3. If _k Slot SetSlot ∈∃ satisfying Pr{ } 1 ==iE

Then , 1i kV ← ;
4. Else
5. Pr{ }_ 0Max ←iE ;
6. For each _k Slot SetSlot ∈
7. Obtaining s

iset and e
iset ;

8. Calculating Pr{ }S
iE by calling Algorithm 1;

9. Calculating Pr{ }E
iE by calling Algorithm 2;

10. If Pr{ }_ Pr{ } Pr{ }Max < ⋅S E
i iiE E E Then

11. Pr{ }_ Pr{ } Pr{ }Max ← ⋅S E
i iiE E E ;

12. End For
13. , 1i kV ← ;
14. _ Pr{ }MaxG G← × iE ;
15. End For
16. Return V and G ;
End

V. EXPERIMENTS EVALUATION AND ANALYSIS

In this section, we conduct extensive experiments to
verify the performance of relaxed reservation policy
when co-reservation for multiple resources is required.

A. Experimental Settings
Experimental grid model is a multi-cluster system,

which consists of 12 high-performance clusters. The
topology and detail settings of the grid model are
referenced from the famous grid test-bed DAS-2 [22].

The experimental workload is generated by Lublin-
Feitelson Model [23], which is derived from real
workload logs of large-scale distributed systems. The
workload consists of 10 000 requests, and each of request
is characterized by arrival time, number of processors,
and running time. As the workload model is based on

1398 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

long-term jobs on supercomputer, we divided the arrival
times and running times by 60 to reduce the overall time
of simulations. There is no start time in this workload, so
we append each request with a reservation start time,
which is set by adding the arrival time with a random
value that uniformly distributed in [100,1000] .

To reflect the overestimation of reservation deadline,
we multiply the running time of each request with a
random factor overk (more details about overk is discussed
in Section V.D). To increase the probability of co-
reservation from multiple clusters, the resource demands
of each reservation request is enlarged by 20 times.

In the first experiment, the performance of TDRRP is
compared with four reservation policies, including
Conventional Reservation Policy (CRP), Aggressive
Backfilling Reservation Policy (ABRP), Conservative
Backfilling Reservation Policy (CBRP), and Malleable
Reservation Policy (MRP). As these policies have been
applied in different systems, we present their brief
description as following:

 CRP [9]: It is a fixed-capability reservation policy,
in which request admission follows the definition 3.

 ABRP [13]: It allows the system move some
requests ahead to fill the holes in the time-slot table,
only when the first request in the waiting queue will
not be delayed by them.

 CBRP [13]: It allows the system move some
requests ahead to fill the holes in the time-slot table,
provided that they do not delay any request in the
waiting queue.

 MRP [24]: the requirements of a reservation request
are allowed to be modified during the runtime. In
practice, MRP is often implemented by adding other
attributes in a reservation request, so that RM can
re-arrange the time-slot table when necessary.

As mentioned above, reservation rate of workload is an
important factor that has a great deal of effects on the
performance of reservation service. So, we conduct the
experiment four times under different reservation rates,
i.e. 10%, 15%, 20%, 25%. In this experiment, we set

* 0.8v = for TDRRP, which means that system will accept
a reservation request only when the probability of
reservation violation for this request is less than 20%.
And the factor overk is set to be uniformly distributed in
the interval [1.2, 1.5], which means reservation requests
tend to overestimate their reservation time with mean
value 35%. In next experiment, we will investigate the
effects of *v and overk on the performance of TDRRP in
more details. In this experiment, we focus on three
performance metrics, including Resource Utilization
Rate, Reservation Rejection Rate, and Mean Response
Time.

B. Resource Utilization and Rejection Rate
In simulations, we set that the requests without

reservation requirements will be canceled, if its deadline
expires and still has not been scheduled on required
resources. It often happens on the requests with co-
reservation requirement, which in turn intensifies the

decline of resource utilization. The experimental results
are shown in Fig 3 – Fig. 6.

Figure 3. Resource utilization rate under different reservation rates

As we can see in Fig. 3, for conventional reservation
policy, with reservation rate increasing from 10% to 25%,
resource utilization drops dramatically from 56% to about
25%. It is because that many requests have been blocked
by existing reservations. So, the performance of CRP is
the worst in the five policies in terms of utilization rate.

When applying backfilling technique, utilization rate
have been increased significantly about 14% comparing
with CRP when reservation rate is about 10% and 15%.
Respect to the two backfilling-based policies, ABRP
outperforms over CBRP in different reservation rate.
Especially, when the reservation rate is 25%, the resource
utilization of ABRP is higher than ABRP about 13%. The
reason is that ABRP tends to move more requests to the
holes in time-slot table, which inevitably improve the
resource utilization.

In this experiment, a significant result is that ABRP,
CBRP, and MRP all perform better than TDRRP when
reservation rate is relative low (10% and 25%). However,
as the reservation rate increase to 20% and 25%,
TDRRP’s resource utilization becomes the highest. An
interesting finding is that TDRRP’s utilization rate
increases about 3% when reservation rate increases from
15% to 20%. The reason is that there are more free slots
can be allocated by using TDRRP as reservation requests
increases. However, such increasing can not be sustained
when the reservation rate increases to 25%.

Figure 4. Reservation rejection rate under different reservation rates

Reservation rejection rate is shown in Fig. 4. Like the
resources utilization, when using CRP, the rejection rate
increases sharply from about 7% to 34% as the

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1399

© 2011 ACADEMY PUBLISHER

reservation rate increases from 10% to 25%. Also, we
notice that backfilling technique can not lower down
rejection rate. On the contrary, it leads to a slightly higher
rejection rate comparing with conventional policy. That is
because the experimental workload is very long (10 000
requests), the scheduler only deal with a small part of
reservation requests each time. So, some non-reservation
requests are backfilled into a lot of free slots, which
probably may be allocated to other reservation requests
later if using TDRRP. That is why backfilling technique
leads a higher rejection rate. When TDRRP is used, the
rejection rate is only about 50% of conventional
reservation policy in all cases.The results also show that
the rejection rate of MRP is almost the same as that of
TDRRP when reservation rate is 10%, 15%, and 20%.
Only when it reaches 25%, MRP’s rejection rate becomes
higher than TDRRP’s about 3%.

The conclusions of this experiment: (1) conventional
reservation policy as a fixed-capability mechanism can
not provide satisfying resource utilization for dynamic
grid environment; (2) backfilling technique and malleable
policy are effective to improve resource utilization when
reservation rate is below 15%; (3) when the system faces
high reservation rate (>15%), TDRRP is more effective
than other policies.

C. Task Mean Response Time
As noted in [4, 7, 9-12], reservation service will result

in the increasing of Task Mean Response Time (TMRT).
It is because that reservation requests may hold their
resources even if they are not used in reality. This
situation often happens when too many reservation
request arrivals in a short term. So, we log the TMRT of
all the jobs in workload. As the simulative workload is
very long (including 10 000 jobs), we monitor the TMRT
in the manner of real-time when every 200 jobs arrivals.
The real-time MTRT is shown in Fig. 5, and the total
MTRT is shown in Fig. 6.

Figure 5. Real-time Task Mean Response Time

As shown in Fig. 6, the Task Mean Response Time of

CRP, ABRP and CBRP are almost the same when the
system’s reservation rate is relative low (10% and 15%).
On the other side, the Task Mean Response Time of MRP
and TDRRP are very similar too. The dramatically
differences occur when the reservation rate reaches 20%

and 25%. For instance, the Task Mean Response Time of
CRP increases about 230% when reservation rate
increases from 10% to 25%. However, the Task Mean
Response Time of TDRRP only increases about 50% in
presence of 25% reservation rate.

Figure 6. Total Task Mean Response Time

Refer to the results shown in Fig. 5, we notice that the
Task Mean Response Time of CRP increases quickly even
at the beginning of simulation. The reason is that CRP
tends to block reservation requests when it can’t meet its
requirements. In our simulative workload, the distribution
of reservation requests rate decreased gradually. So, CRP
have to faces high reservation rate at the beginning of
experiment. However, MRP and TDRRP allow the
system accepting reservation requests with more flexible
and relaxed criteria, so, they do not block too many
reservation requests at the beginning. In the middle of
experiment, as many reserved resource have been
released earlier that their previous requirements, then
MRP and TDRRP can take advantages of these released
resources for those requests that been blocked by CRP.

D. Parameter Analysis for TDRRP
In this experiment, we focus on reservation violation

when using TDRRP. As noted in previous sections, there
are two key parameters (*v and overk) in TDRRP. The
parameter *v is a threshold for admission algorithm in
TDRRP. For instance, if the system set * 0.8v = , it means
that the system will accept a reservation request only
when the probability of reservation violation for this
request is less than 20%. As to the parameter overk , it is a
statistical characteristic of workload, which reflect the
overestimation of reservation time. In this experiment, we
modify the workload by multiple reservation time of each
request with overk , where overk is set to be uniformly
distributed in a certain interval. For instance, if overk is set
to be uniformly distributed in [1.0, 1.2], it means that
requests in workload tend to overestimate their
reservation time with mean value 10%, and [1.2, 1.5]
means the mean overestimation is about 35%.

Just like the first experiment, we conduct this
experiment four times with different reservation rates. In
each experiment, parameter *v is increased from 0.6 to
0.95 gradually, and parameter overk is set to be uniformly
distributed in three different interval, such as [1.0, 1.2],

1400 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

[1.2, 1.5], and [1.5, 1.8] respectively. In this way, we
hope to extensively investigated the effects of *v and

overk on the performance of TDRRP. The results of this
experiment are shown in Fig. 7. In order to examine the
effects of overestimation on resources utlization, we
record all the resources utlization on different composion
of overk and *v as shown in Table 1.

(a) Reservation Rate = 10%

(b) Reservation Rate = 15%

(c) Reservation Rate = 20%

(d) Reservation Rate = 25%

Figure 7. Reservation Violation Rate with different reservation rate

It is clearly that parameter *v is of significant
importance on the reservation violation rate. With the
increasing of *v , reservation violation rate decreases
quickly, especially for those workload with very higher
reservation rate (shown in Fig. 7 (c) and (d)). However,
the decreasing of violation rate is not ratio to the

increasing of *v , more specifically, violation rate drops
quickly when *v is increased from 0.6 to 0.8, however,
the decline of violation rate becomes stable even the
parameter *v is set to a very high value. In all cases, we
note that the violation can be limited below 10% when

* 0.8v ≥ , and If we set * 0.9v ≥ , the violation rate can be
controlled below 5%. As to the resources utilization, we
notice that higher overestimation often results lower
utilization rate as shown in Table 1. However, parameter

*v is very effective to control the resources utilization,
that is a small value of *v can sigficantly increase
resources utilization. For instance, when *v is set to 60%
the resources utilization is more that 70% even the
overestimation has reached 35%, however, it drops to
about 25%, when *v is set to 100%.

Table 1 Resources Utilization with different overk and *v

 overk

*v

[1.0, 1.2]

[1.2, 1.5]

[1.5, 1.8]

60% 89.35% 84.58% 70.35%
65% 74.11% 70.21% 64.23%
70% 70.23% 64.53% 62.45%
75% 70.24% 63.32% 53.21%
80% 70.13% 63.47% 50.37%
85% 55.78% 51.02% 38.24%
90% 53.39% 50.69% 31.27%
95% 51.67% 55.34% 31.29%
100% 50.14% 31.25% 25.39%

As to parameter overk , the experimental results indicate
that more overestimation of reservation leads to lower
reservation violation rate. hat is because many overlapped
reservations do not overlap actually in run time, which
makes TDRRP more effective. On the other side, the
effects of overk on violation rate are influenced by the
reservation rate. As shown in Fig. 7 (a) and (b), the
violation rate is limited in a relative lower level even the
parameter *v is set to be 0.6-0.8. However, if the
reservation rate reaches 25% (as shown in Fig. 7(d)), the
violation rate increases dramatically to about 45% if *v is
set to be 0.6. It is clear that a low value of *v is not a
good idea when a system is in presence of high
reservation rate (>20%).

VI. CONCLUSION

To mitigate those effects, the paper proposes a two-
demension relaxed reservation policy TDRRP, which
based on the fact that applications tend to overestimate
their running time to ensure their completion. Extensive
simulations are conducted to verify the effectiveness of
our policy. Experimental results show that TDRRP can
bring about higher resource utilization and lower
rejection rate at the price of a slightly increasing of
reservation violations. Furthermore, the policy also shows
adaptive in presence of higher reservation rate. For the
future work, we plan to provide an adaptive mechanism
for RM to dynamically set optimal *v based on resource’s

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1401

© 2011 ACADEMY PUBLISHER

runtime load. Also, we plan to incorporate TDRRP into
grid economy to provide a more flexible price
mechanism.

ACKNOWLEDGMENT

The authors wish to thank Dr. Buyya and his team for
providing the open source grid simulator GridSim, and
thank Prof. Lublin and Prof. Feitelson for their workload
generator. This work was supported by a grant from the
National Natural Science Foundation of China (No.
60673165 and No. 60970038).

REFERENCES

[1] A. Roy, V. Sander. “Advance Reservation API”. GFD-E.5,
Scheduling Working Group, Global Grid Forum, 2002.

[2] I. Foster, I. Kesselman. “The Grid: Blueprint for a New
Computing Infrastructure”. Singapore: Elsevier Inc. 2004.

[3] I. Foster, C. Kesselman, C. Lee, et al. “A Distributed
Resource Management Architecture that Supports Advance
Reservation and Co-Allocation”. Proc. of Int’l Workshop
on Quality of Service, 1999:27-36.

[4] I. Foster, A. Roy, V. Sander. “A Quality of Service
Architecture that Combines Resource Reservation and
Application Adaptation”. Proceedings of International
Workshop on Quality of Service, 2000:181-188.

[5] T. Rölitz, A. Reinefeld. “Co-Reservation with the Concept
of Virtual Resources”. Proceeding of International Symp.
on Cluster Computing and the Grid, 2005:254-261.

[6] L. O. Burchard, B. Linnert, J. Schneider. “A Distributed
Load-Based Failure Recovery Mechanism for Advance
Reservation Environments”. Proc of Int’l Symp. on Cluster
Computing and the Grid, 2005:1071-1078.

[7] J. W. Cao, F. Zimmermann. “Queue Scheduling and
Advance Reservations with COSY”. Proc. of the Int’l
Parallel and Distributed Processing Symposium, 2004.

[8] A. C. Sodan, C. Doshi, L. Barsanti, D. Taylor. “Gang
Scheduling and Adaptive Resource Allocation to Mitigate
Advance Reservation Impact”. Proc. of Int.l Symp. on
Cluster Computing and the Grid, 2006:649-653.

[9] W. Smith, I. Foster, V. Taylor. “Scheduling with Advanced
Reservations”. Proceedings of International Symp. on
Parallel and Distributed Processing, 2000:127-132.

[10] M. Wu, X. H. Sun, Y. Chen. “QoS Oriented Resource
Reservation in Shared Environments ”. Proc. of Int.l Symp.
on Cluster Computing and the Grid, 2006:601-608.

[11] C. Barz, M. Pilz, A. Wichmann. “Temporal Routing
Metrics for Networks with Advance Reservations”.
Proceedings of IEEE International Symp. on Cluster
Computing and the Grid, 2008:710-715.

[12] A. Sulistio, K. H. Kim, R. Buyya. “Managing
Cancellations and No-shows of Reservations with
Overbooking to Increase Resource Revenue”. Proc. of Int.l
Symp. on Cluster Computing and the Grid, 2008:267-276.

[13] A. W. Mu'alem, D. G. Feitelson. “Utilization,
Predictability, Workloads, and User Runtime Estimates in
Scheduling the IBM SP2 with Backfilling”. IEEE Trans.
on Parallel and Distributed Systems, 2001, 12(5):529-543.

[14] A. Sulistio, W. Schiffmann, R. Buyya. “Advanced
Reservation-based Scheduling of Task Graphs on
Clusters”. Proceedings of International Conf. on High
Performance Computing, 2006:60-71.

[15] N. R. Kaushik, S. M. Figueira, S. A. Chiappari. “Flexible
Time-Windows for Advance Reservation Scheduling”.
Proc. of Int.l Symp. on Modeling, Analysis, and
Simulation of Computer and Tele. Systems, 2006:218-225.

[16] L. Wu, C. Wu, J. Cui, J. Xing. “An Adaptive Advance
Reservation Mechanism for Grid Computing”. Proceedings
of International Conf. on Parallel and Distributed
Computing, Applications and Technologies, 2005:400-403.

[17] M. H. Alsuwaiyel. “Algorithms Design Techniques and
Analysis”. U.S.A: World Scientific Publishing Co., 1999.

[18] F. Berman, R. Wolski, et al. “Adaptive Computing on the
Grid Using AppLeS”. IEEE Trans. on Parallel and
Distributed Systems, vol.14, no.4, 2003:369-382.

[19] H. Casanova, F. Berman. “Parameter Sweeps on the Grid
with APST”. Wiley Publishers, Inc., 2002.

[20] A. Al-Saidi, N. J. Avis, I. J. Grimstead, O. F. Rana.
“Distributed Collaborative Visualization Using Light Field
Rendering”. Proc of Intl Symp. on Cluster Computing and
the Grid, 2009:609-614.

[21] N. Jacq, J. Salzemann, F. Jacq, Y. Legré, E. Medernach, et
al. “Grid-enabled Virtual Screening Against Malaria”.
Journal of Grid Computing, vol.6, no.1, 2008:29-43.

[22] H. Bal, R. R. Bhoedjang, R. Hofman, et al. “The
Distributed ASCI Supercomputer Project”. ACM
Operating Systems Review, vol.34, no.4, 2000:76-96.

[23] U. Lublin, D. G. Feitelson. “The Workload on Parallel
Supercomputers: Modeling the Characteristics of Rigid
Jobs”. Journal of Parallel and Distributed Computing,
vol.63, no.11, 2003:1105-1122.

[24] C. M. Hu, J. P. Huai, T. Y. Wo. “Flexible Resource
Capacity Reservation Mechanism for Service Grid Using
Slack Time”. Journal of Computer Research and
Development, vol.44, no.1, 2007:20-28.

Peng Xiao was born in 1979. He
received his master degree in Xiamen
Universy in 2004. Now, he works in
Hunan Institute of Engineering and is a
Ph.D candidate in Central South
University. His research interests include
grid computing, parallel and distributed
systems, network computing, distributed
intelligence.

Zhigang Hu was born 1963. He is a
Professor and Ph.D supervisor in Central
South University. Currently, he is the
Chief Secretary of Computer Science in
Hunan Province. His research interests
including grid computing, embedded
systems, high-performance platform.

1402 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

