
Developing Software Using A Novel Event-
Condition-State Pattern Framework: Taking 

Mobile Input Method System As A Case Study 
 

Fei Zhu1,2 
1 School of Computer Science and Technology, Soochow University 

2 Provincial Key Laboratory for Computer Information Processing Technology, Soochow University 
Suzhou, Jiangsu, China, 215006 

Email: zhufei@suda.edu.cn 
 

Hongjun Diao1,2* and Wei Huang1,2* 
1 School of Computer Science and Technology, Soochow University 

2 Provincial Key Laboratory for Computer Information Processing Technology, Soochow University 
Suzhou, Jiangsu, China, 215006 

Email: {hjdiao, huangwei}@suda.edu.cn 
 
 

Abstract—Design patterns add more reliability, flexibility 
and reusability to a software system. Taking advantage of 
design patterns is usually beneficial to software design and 
makes software development relatively easier. The state 
pattern proposed by GoF is not a determined design and 
can hardly be transformed into implementation code 
directly. It is disable to cope with sophisticated response 
event either. Hereby we propose a novel event-condition-
state pattern framework, an event-based finite state 
machine. The framework improves GoF state pattern by re-
segmenting Context into two classes, one for management 
and the other for operation interface. Essential components 
for implementation, such as management, state transferring, 
and event triggering mechanism, are also taken into 
consideration in the framework. We use pattern framework 
to develop a thirty party input method system which has a 
Windows Mobile system version and a Symbian system 
version separately. We rewrote Context part related with 
system interfaces in the two different systems, and 
encapsulated the part related with internal logic of input 
method by concrete subclasses, thus avoiding redundant 
developing work in both systems and providing convenience 
for later synchronous updating and maintenance of two 
input methods. With the pattern framework, much effort 
during software development is saved. The development 
logic seems simpler and clearer. As a result, the whole 
development process is simplified.  
 
Index Terms—software architecture, design pattern, event 
condition state, mobile developing, input method 

I.  INTRODUCTION 

Design pattern is widely used in software 
development, such as Internet game, utility software, and 
system software. As a behavioral software design pattern, 
state pattern is deeply favored by software developers. It 
is used to represent the states of an object and is often 
applied to develop software that has multiple states. State 
pattern is a clean way for an object to partially change its 
type at runtime. For example, documents in office 

automation system with workflow typically have multiple 
states, including editing, waiting for auditing, being 
audited, replying and forwarding[1][2]. Microsoft Pinyin 
input method system[3] can be in one of the states, 
including initial state before input, input state, and 
selecting state after input. Obviously, state pattern can 
work in these two kinds of software. 

The state design pattern proposed by Erich Gamma, 
Richard Helm, Ralph Johnson and John Vlissides[4] is 
one of  milestones in software engineering domain. 
However it is not a determined design that can be 
transformed directly into code and when coping with 
sophisticated response event, the state design pattern 
shows its nature disability. One of the common methods 
to implement the state design pattern is to use IF-ELSE-
IF statement provided by most programming languages. 
However too many branches of IF-ELSE-IF will make 
the program structure and logic ambiguous, making it 
harder for future potential modification and updating. 
Meanwhile, taking advantage of event-response which is 
provided by modern programming technology, it is of 
benefit to refine the similar functional structures and 
change IF-ELSE-IF statement to event-response ones so 
as to promote readability and reusability as well as 
relieving design efforts. 

In this paper, we propose a novel event-condition-
state pattern framework, which is an event-based finite 
sate machine, for software development. With the pattern 
framework, we developed a third party input method 
system which has a Microsoft Mobile version for 
Microsoft Mobile system and a Symbian version for 
Symbian system. We found it easy to fulfill development 
with the help of the pattern framework. We did not carry 
out two developing activities for input method system. 
Instead, we utilized common part of the systems with sub 
pattern model and then rewrote related interfaces to 

1506 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.8.1506-1512



different systems. By this, we spared lots of redundant 
efforts in developing, and gained convenience in later 
synchronous updating and maintenance. 

II.  RELATED WORK 

In software engineering, a design pattern is a general 
reusable solution to a commonly occurring problem in 
software design. It is a description or framework for how 
to solve a problem that can be used in many different 
situations but not a determined design that can be 
transformed directly into code. It explains why a 
particular situation causes problems, why the proposed 
solution is considered a good one, and when it is 
applicable [5].  

Erich Gamma, Richard Helm, Ralph Johnson and John 
Vlissides, referred as GoF, in their software engineering 
book [4], described recurring solutions to common 
problems in software design. Design pattern is especially 
important in software engineering. Many researchers 
have devoted themselves to study on design pattern.  

In [8], Shahir, Kouroshfar and Ramsin proposed a 
method for using design patterns in the context of model 
transformation, refactoring real-world models through 
application of these patterns. The results showed its 
applicability to real-world models. 

Zamani and Butler figured out in [9] that in designing 
with patterns, three aspects of the pattern language that 
should be taken into consideration: Structural, Syntactic, 
and Semantic.  They proposed formalisms for 
representing the Structural, Syntactic, and Semantic 
aspects of a pattern language. And finally, they selected a 
pattern language in the domain of enterprise application 
architecture, and showed how to describe the pattern 
language using the proposed formalism, thus achieving 
automatic design model checking.  

Bayley and Zhu focused on the composition of design 
patterns in [10], defining a notion of composition of 
patterns with respect to overlaps based on two operations 
on design patterns, which was illustrated by the 
composition of Composite, Strategy and Observer 
patterns. In paper [11], they advanced an approach that 
used first order predicate logic to specify design patterns 
by capturing the dynamic behaviour represented in 
sequence diagrams. 

Medve and Ober addressed the pair-wise direct 
mapping of service factories from the problem domain to 
POSA2 features in [12], where the software components 
were implemented in the context of the solution domain 
by weaving GoF features. They took advantage of SDL’s 
allowance to describe rigorously systems at the model 
level, which has been successfully used on large scale 
developments using intensive simulation and code 
generation.  

Design-pattern is a reusable solution to a commonly 
occurring problem in software design. If design-patterns 
could be captured and reused in reverse engineering, the 
reverse engineering would be very helpful to developers 
and maintainers of the software. Thus there have been 
many attempts to detect design-patterns during reverse 
engineering. Lee and his group, in paper [13], proposed 

taxonomy of GoF design patterns that could guide the 
reverse-engineering process, which did not only combine 
static analysis with dynamic analysis but also added the 
implementation-specific analysis. They applied the 
approach to a number of applications, and demonstrated 
the reverse engineering process more accurate. 

Shi and Olsson presented an automated pattern 
detection approach in [14], which was based on 
reclassification of the GoF patterns by their pattern intent. 
They argued that the GoF pattern catalog classifies design 
patterns in the forward-engineering sense and their 
reclassification was better suited for reverse engineering. 
The experiments showed their implementation could 
detect patterns in programs and package including Java 
AWT, JHotDraw, Swing and Apache Ant.  

In [15], Forbrig and Lämmel discussed an 
experimental programming language PaL, which was 
based on a compilation to Eiffel and developed a PaL 
library with the 23 GoF patterns. They also introduced a 
new form of abstraction so as to capture reuse schemes 
for patterns. 

Dlamini, Olivier and Sibiya, in [16], extended work on 
a forensic model for Logical Traffic Isolation (LTI) based 
on Differentiated Services (DiffServ) and designed the 
LTI model, a three-tier architecture, using different 
design patterns. They focused on three design patterns in 
modeling the LTI architecture to achieve reusability and 
flexibility of the LTI model, which was composed of 
tDiffServ network and the sink server.  

So far the most common technique used to implement 
the pattern is by object oriented state design pattern, in 
which states are represented as descendants of a common 
interface class that declares event handler functions. A 
context class delegates all events for processing to the 
current state object. State transitions are accomplished by 
changing the current state object. [17] and [18] extended 
and refined this basic pattern and presented several 
patterns to solve problems including implementing state 
transition mechanisms and composite states, etc. 

III. DESIGN PATTERN IMPROVEMENT 

GoF design pattern is not a kind of particular 
technique. It is an idea or a kind of thought. It does not 
only display flexible application of interface as well as 
abstract class and its intelligence, but also iteratively 
emphasize on making the program reusable, which has 
prove to be an important trend. However it is a challenge 
to current state as software requirement keeps changing 
so quickly and frequently that corresponding designs 
cannot keep up with the changes. Therefore it is a wise 
way to find out invariable part and then separate it from 
variable part. 

As we can see in figure 1[19], although GoF described 
a reasonable state pattern, their framework only gave 
relations among context objects and state objects in short, 
which is  not enough for implementation. There normally 
are many response events, causing the structure of 
handling method very much complex, which will lead to 
inefficiency in software development. 

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1507

© 2011 ACADEMY PUBLISHER



 

Figure 1.  State pattern class diagram which merely shows relations 
among context object and state object without interpreting details of 
implementation 

As GoF state pattern did not give sufficient details for 
implementation, developers can complete in various 
ways. Some prefer setting properties of Context in 
method Handle. Some use state transferring table in 
method Request of object Context to retrieve state table 
to fulfill state transferring, which separates concrete rules 
out of state pattern. 

Context in GoF state pattern is used as user operation 
interface and also used for state class management. User 
operation part is usually related with dedicated 
application, while state management part is normally 
unchanged in each state pattern program. Therefore, we 
can separate it to two objects. One is for client object of 
user operation interface, changing with applications. The 
other is for state management, achieving state transferring 
by retrieving and interpreting state transferring table. 
Classes and their relations of the whole state pattern are 
shown as figure 2 [19]. 

 
Figure 2.  Novel state pattern class relation diagram which 
demonstrates relations among Context, State and StateManage as well 
as details of implementation 

In figure 2, state management class StateManage 
inherits from client class Context, while StateManage has 
an abstract class State to represent state. Taking 
advantage of StateManage, we can separate class Context 
of dedicated application from the framework to maximal 
extent, including functionalities in class State that are 
related with state management and indexing state 
transferring table, and embrace user event mapping 
mechanism in class State. As these functionalities 
normally keep unchanged, we can place them in event-
condition-state general framework as constant part. 

A. State Management  
States should be maintained properly. StateManage is 

mainly used for that. It has three methods: ProcEvent, 
PeekEvent and AddSubMach. ProcEvent is entrance to 
the user defined processing of event. PeekEvent is used to 
see if the user event has related processing method and if 
it would result in state transferring. AddSubMach is 

responsible for adding state transferring table to current 
state management object. 

In ProcEvent, some mechanism, initially, seeks for 
executing OnEntry. Otherwise, if no OnEntry is found, a 
default processing mechanism will be automatically 
woken up. Then state transferring table will be queried 
according to existence of state transferring. The query 
result will be used to determine whether state transferring 
is essential. 

PeekEvent queries user event processing method 
mapping table of current state and then finds out whether 
default processing method for event will deal with current 
event. Finally PeekEvent decides whether user event and 
current query state transferring table will cause state 
transferring. 

State transferring table has five elements: CID, iFirst, 
iLast, iCond and NID. CID and NID are identifiers of 
some state object, using object address, where CID is 
used as current identifier and NID represents next 
identifier. iFirst and iLast are used to represent the range 
of one particular kind of event that triggers the same 
transferring. iFirst is the starting value and  iLast means 
the ending. iCond is the transfer event condition that 
user’s processing will effect transferring event. 

B. State Representation 
Abstract class State, designed to represent state, has 

two properties: pthis and EventMap, as well as three 
methods: OnEntry, OnLeave and OnEvent. The property 
pthis tracks address of object Context for convenient 
access to state values. Property EventMap, an array of 
TEvent structure, is used to store mechanism of mapping 
user event to event processing function in concrete class.  
OnEntry, OnLeave and OnEvent are designed to deal 
with corresponding event.  

Structure TEvent has three elements: iFirst, iLast and 
lpDelegate. iFirst is used for representing the starting 
value of class transfer event. iLast keeps the ending 
value. lpDelegate is a pointer of M_Delegate type, which 
is an abstract class with function delegation calling 
mechanism.  

Event processing function mapping in concrete state 
class is implemented by class M_Delegate that inherits a 
template class CKeyDelegate[20][21]. The 
definitions[19] of M_Delegate and CKeyDelegate are as 
follows. 
Definition of M_Delegate: 

class M_Delegate{ 
public: 

virtual int Invoke(short sPara ,long lPara)=0; 
virtual void DestorySelf()=0; 

}; 
Definition of CKeyDelegate: 

template<class T> 
class CKeyDelegate:public M_Delegate{ 
typedef int (T::* LPF)(short,long); 
public: 

CKeyDelegate(T* lpObj,LPF lpFuc){ 
lpOO=lpObj; 
lpMethod=lpFuc; 

} 

1508 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER



virtual int Invoke(short wParam,long lParam){ 
   return (*lpOO.*lpMethod)(wParam,lParam); 
 } 
 virtual void DestorySelf(){ 
   delete this; 
 } 
private: 

T* lpOO; 
LPF lpMethod; 

} 
Here CKeyDelegate is a template class. It overrides 

method Invoke in M_Delegate. Any method in concrete 
state class with signature of int (T::* LPF)(short,long) 
type can be encapsulated as function delegation type and 
be triggered to execute by method Invoke in M_Delegate. 
Such kind of function delegation composes mapping 
relation of user event and concrete state class together 
with iFirst and iLast in TEvent structure. 

Method OnEvent maps user event to related processing 
function. It queries user event processing method to map 
current state table. If the processing method is retrieved, 
related processing method will be executed and result 
will be returned. Otherwise, a null value indicating no 
related function found will be returned. 

Moreover, method AddEvent can be used to add 
related processing function for some user defined event. 
By the mechanism, entering current state will trigger 
method OnEntry and leaving current state will trigger 
method OnLeave accordingly. 

IV. DESIGN MOBILE INPUT METHOD WITH EVENT-
CONDITION-STATE PATTERN FRAMEWORK 

Demands for intelligence in mobile phone urge 
development of intelligent mobile phone. Popularity of 
operation system in mobile phone makes it possible to 
develop a third party input method system for it. 
Meanwhile there are various mobile models and systems 
presently, making it difficult to develop an input method 
software for them. Moreover, the future update and 
maintenance of input method will get into trouble as well. 

As we can see, although a mobile phone may have 
different input methods, mobile phone will eventually be 
in one of the three states which are numeric number input 
state, English input state and non-English input state. 
These three states have similar state transferring rules to 
the ones in event-condition-state pattern. At the same 
time, each input state can be described by a sub state 
model. For example, English ABC, an English input 
method, will be in initial state before user input and in 
input state after user input. If there is no input within a 
predefined interval, the system will return to initial state. 
The whole view of state transferring is shown in figure 3. 

English Input 
Initial State

Input State

Timeout||Delete

Punctuation||English

Same Key

Different Key

 
Figure 3.  State transferring diagram of English input method 

There are usually far less keyboards in mobile than in 
PC, usually including numeric key 0 to numeric key 9, 
key shift and key star. To save as many keys as possible,  
one single key is normally given several alternatives in 
different cases, e.g. numeric key 0 to numeric key 9 
represent numeric 0 to 9 separately in numeric number 
input state. However, they are used as candidate keys in 
other situations, e.g. they are used as English candidate 
keys in English input mode. There will be even more 
complicated combinations in non-English inputting 
methods. For instance, in Chinese character input 
method, they are treated as input candidate keys and they 
will be turned to selecting keys when a user is selecting 
from candidate Chinese character. So it is the same as 
other keys. Key shift is used as shifting and key star is 
used to input character star. Meanwhile they have other 
meanings in different input methods.  

Although such one key with multiple interpretations is 
sophisticated, it conforms to the event-condition-state 
pattern. Thus, it is possible to develop input method 
systems in mobile with the framework proposed. 

Here, we use client interface class Context to 
encapsulate interfaces to mobile operation system, 
internal data and message processing component, of 
which two main interfaces are PressKey which receives 
and processes information when the key is pressed, and 
CommitResult which delivers character that is selected by 
the user. Figure 4 shows general view of state transferring 
process. 

However there are still exceptions in practice. For 
example, some special inputs merely use part of the 
transferring rules, and some rules in use do not pertain to 
rules shown in figure 4. To gain maximum portability and 
dynamic capability, we use XML to describe state 
transferring table. Once rules are changed, what we 
should do to adapt to the changes is just to alter values, 
add, or remove some items in XML-based transferring 
state table description document, which will not affect the 
whole input model. Part of the XML-based transferring 
state table description example document is as follows. 

Example of XML-based transferring state table 
description: 
<author: dataAttribute xmlns: author ="FEI ZHU"> 

<ID name="Begin"> 
<iEvent iFirst=”-1” iLast=”-1” iCond=”-1” 
nID=”Chinese”/> 

</ID> 
<ID name="Search"> 

<iEvent iFirst=”0” iLast=”9” iCond=”1” 
nID=”Input”/> 
<iEvent iFirst=”0” iLast=”9” iCond=”0” 
nID=”Warr”/> 

</ID> 
</ author: dataAttribute> 

Here ID and nID are state identifiers. iFirst and iLast 
are used to represent range of events that will be 
accordingly triggered and can be classified into one 
category. iCond is condition of transferring event.

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1509

© 2011 ACADEMY PUBLISHER



 Chinese Input M
ethod Initial State

entry/ ^Input Field.Close
entry/ ^Candidate Field.Close
entry/ Clear Input C

ode

Input State

entry/ ^Input Field.R
efresh

entry/ ^Candidate Field.Refresh
event Translation K

ey/ ^Candidate Field.Refresh

W
arning State

do/ Sending W
arning M

essage
entry/ Restore Input Code

Selection State

entry/ ^Input Field.Refresh
entry/ ^Candidate Field.Refresh
event D

elete K
ey/ Restore Input Code

event Page K
ey/ ^Candidate Field.Refresh

Legend Searching

do/ Legend Searching Code

Legend State

entry/ ^Input Field.Refresh
entry/ ^Candidate Field.Refresh
event Translation K

ey/ ^Candidate Field.Refresh

Start

Failure Searching

Successful Searching

Page K
ey

Translation K
ey

Translation K
ey

Searching Punctuation

do/ Search Punctuation
Punctuation K

ey

Code Searching State

do/ Searching C
odebook

Input Code

Return C
ode Searching State

Successful Searching Punctuation
Failure Searching Punctuation

Failure Searching K
ey

Successful Searching

Edning K
ey

N
ull Input

PageU
p K

ey

Input K
ey||D

elete K
ey

Leagal Selection K
ey

D
elete K

ey

Ending K
ey

D
elete K

ey

Input Code

  
Figure 4.  State transferring diagram inside input method which shows main states in non-English input method, and state transferring processes 

 

V. DEVELOP MOBILE INPUT METHOD USING THE 
PATTERN  

A. For Windows Mobile System 
Windows Mobile is an open and intelligent mobile 

system. It provides developer a set of interface functions 
that are similar to those of Windows system[22][23]. 
These interface functions are dynamic libraries between 
system and application. They get user’s pressing key 
message, and send one or more characters to application 
after processing. Their relations are shown in figure 5. 

 
Figure 5.  Relation between input method and system in Windows 
Mobile system

1510 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER



We can see from figure 5 that it is input manager that 
interacts with input model directly. User’s pressing key 
message is passed to input method model through input 
method manager. Characters from input method are also 
delivered to application through input manager.  

In fact, input method manager can interact by input 
method user interface or by function interface of dynamic 
library. The difference is that input method user interface 
is the interface for input manager, while function 
interface is interface for input manager to maintain the 
whole input method modules. When applying the model 
in Windows Mobile system, a Context object is necessary 
to implement these two kinds of interact interfaces 
requiring by input method manager. The following is part 
of key code of Context in Windows Mobile system. 

class Context:public CWinIME{ 
PreRequest(int iEvent,short wParam,long lParam); 
Request(int iEvent,short wParam,long lParam); 
: 

} 
Here CWinIME is an UI class for input method, which 

encapsulates all UI message processing codes for input 
method. Class Context provides UI by inheriting from 
class CWinIME. Method Prerequest and method Request 
are two main entries for users to manipulate state 
machine. Prerequest is used to query how state machine 
will deal with current message and Request is used to 
deliver current message to state machine for processing. 

B.For Symbian System 
Symbian OS is an operating system designed for 

mobile devices, with associated libraries, user interface 
frameworks and reference implementations of common 
tools. It provides an API for input method, called FEP 
(Front-End Processor), to developers[24]. Developers can 
implement the interface by inheriting from class CcoeFep 
which exists in form of polymorphous and dynamic link 
library[25]. It receives user’s pressing key message, and 
sends characters to application for processing after input 
method system completes coping with the message. 

The whole input method system in Symbian is 
composed of FEP and FEP server[24][25]. FEP deals 
with internal logic of input method. FEP server acts as 
input method server and is in charge of data resource 
related processing. Symbian is a multitasking operation 
system, and there may be several input method instances 
running simultaneously. Different input method instances 
can share one thesaurus or corpus without adding more 
overhead, with which Symbian system achieves data 
share among input method instances by client server 
architecture. The relations among user, FEP and 
application are shown in figure 6. 

 
Figure 6.  Relations among user, FEP, FEP server and application in 
Symbian system 

We implement FEP API in Context to apply the input 
method model in Symbian system. The following is part 
of key code of Context in Symbian system. 

class Context:public CSybFep{ 
TKeyResponse OfferKeyEventL (const 
TKeyEvent& aKeyEvent, TEventCode 
aEventCode); 
int Request(int iEvent,short wParam,long lParam); 
: 

} 
Here CSybFep is derived from base class CcoeFep, of 

which method ConstructL will generate a 
CSybFepControl object that has the highest priority to 
handle input event so that it can deal with input event 
ahead of application[25]. Context implements API in 
Symbian system by inheriting from class CSybFep. 
Method OfferKeyEventL and method Request are 
designed to receive key pressing message and manipulate 
state machine. OfferKeyEventL overrides method 
OfferKeyEventL of CSybFep, gets key pressing message 
with CSybFepControl, and calls method OfferKeyEvent 
in Context to transform data. Then OfferKeyEvent 
transmits transformed data to method Request, which 
delivers its current event to concrete sub state model for 
further processing. 

VI. CONCLUSION 

Before we develop a thirty party input method system 
for Windows Mobile system and Symbian system, we 
analyzed different versions of an input method in both 
systems, finding all the internal logics are basically the 
same except interfaces to the two systems are different, 
which has the obvious feature to fit the event-condition-
state pattern. 

Therefore we use idea of state pattern in design and 
other phases in development. We rewrote Context part 
related with system interfaces of different systems. To 
avoid redundant developing work in both systems, we 
encapsulated the part related with internal logic of input 
method by concrete subclasses. The approach proved to 
be of benefit for providing convenience for later 
synchronous updating and maintenance of two different 
versions of input method. 

The event-condition-state design pattern proposed in 
the paper is not only fit for input method development, 
but also can be used in other software design and 
development.  

ACKNOWLEDGMENT 

Funding: This work was supported by School of 
Computer Science and Technology, Soochow University 
and Provincial Key Laboratory for Computer Information 
Processing Technology, Soochow University. 

Corresponding authors: Hongjun Diao and Wei Huang. 

REFERENCES 

[1] Fei Zhu, Xiaoxu Zhu, Qiang Lv, Yiyong Shi, Yang Yang 
and Qiaoming Zhu, “ZFlow: Workflow for Cooperative 

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1511

© 2011 ACADEMY PUBLISHER



Editing System”, Journal of Software, Vol.4, NO. 4, p. 
339-347, June 2009. 

[2] Fei Zhu, Qiang Lv, “ACEAC: A Novel Access Control 
Model for Cooperative Editing with Workflow”, 2008 
International Symposium on Electronic Commerce and 
Security, pp.1010-1014. IEEE Press, New York, 2008. 

[3] Microsoft Developer Network Simplified Chinese MSPY, 
http://msdn.microsoft.com/en-us/library. 

[4] Erich Gamma, Richard Helm, Ralph Johnson and John 
Vlissides, “Design Patterns:Elements of Reusable Object-
Oriented software,” Addison Wesley Pearson, June, 2000. 

[5] http://en.wikipedia.org/wiki/. 
[6] Elisabeth Freeman, Eric Freeman, Bert Bates, Kathy 

Sierra, “Head First Design Patterns,” O'Reilly, November, 
2005. 

[7] Frank Buschmann, Kevlin Henney, Douglas C. Schmidt, 
Pattern Oriented Software Architecture: On Patterns and 
Pattern Languages, Wiley, June 11, 2007. 

[8] Hamed Yaghoubi Shahir, Ehsan Kouroshfar, Raman 
Ramsin, “Using Design Patterns for Refactoring Real-
World Models,” seaa, pp.436-441, 2009 35th Euromicro 
Conference on Software Engineering and Advanced 
Applications, 2009. 

[9] Bahman Zamani, Greg Butler, “Describing Pattern 
Languages for Checking Design Models,” apsec, pp.197-
204, 2009 16th Asia-Pacific Software Engineering 
Conference, 2009. 

[10] Ian Bayley, Hong Zhu, “On the Composition of Design 
Patterns,” qsic, pp.27-36, 2008 The Eighth International 
Conference on Quality Software, 2008. 

[11] Ian Bayley, Hong Zhu, “Specifying Behavioural Features 
of Design Patterns in First Order Logic,” compsac, pp.203-
210, 2008 32nd Annual IEEE International Computer 
Software and Applications Conference, 2008. 

[12] Anna Medve, Ileana Ober, “From Models to Components: 
Filling the Gap with SDL Macro-patterns,” cimca, 
pp.1252-1257, 2008 International Conferences on 
Computational Intelligence for Modelling, Control and 
Automation; Intelligent Agents, Web Technologies and 
Internet Commerce; and Innovation in Software 
Engineering, 2008. 

[13] Hakjin Lee, Hyunsang Youn, Eunseok Lee, “Automatic 
Detection of Design Pattern for Reverse Engineering,” 
sera, pp.577-583, 5th ACIS International Conference on 
Software Engineering Research, Management & 
Applications (SERA 2007), 2007. 

[14] Nija Shi, Ronald A. Olsson, “Reverse Engineering of 
Design Patterns from Java Source Code,” ase, pp.123-134, 
21st IEEE International Conference on Automated 
Software Engineering (ASE'06), 2006. 

[15] Peter Forbrig, Ralf Lämmel, “Programming with Patterns,” 
tools, pp.159, Technology of Object-Oriented Languages 
and Systems (TOOLS 34'00), 2000. 

[16] Innocentia Dlamini, Martin Olivier, Sihle Sibiya, “Pattern-
Based Approach for Logical Traffic Isolation Forensic 
Modelling,” dexa, pp.145-149, 2009 20th International 
Workshop on Database and Expert Systems Application, 
2009. 

[17] Yacoub S M, Ammar H H, “A pattern language of 
statecharts,” PLOP’98, The Fifth Conf on the Pattern 
Languages of Program, 1998. 

[18] Kent Beck, “Implementation Patterns,” Addison Wesley 
Professional, November, 2008. 

[19] Hongjun Diao, Fei Zhu, “A novel general event-condition-
state pattern framework,” ICIEA, pp. 1024-1027, Industrial 
Electronics and Applications, 2009. 

[20] Jeffrey Richter, Christophe Nasarre, “Windows via 
C/C++,” Microsoft Press, September, 2008. 

[21] Microsoft Developer Network, 
http://msdn.microsoft.com/en-us/ 

[22] Andy Wigley, Daniel Moth and Peter Foot, “Microsoft 
Mobile Development Handbook,” Microsoft Press, March,  
2008. 

[23] Microsoft Mobile Developer Center, 
http://msdn.microsoft.com/en-us/windowsmobile/. 

[24] Symbian Developer Network, 
http://developer.symbian.com/. 

[25] Ben Morris, “The Symbian OS Architecture Sourcebook: 
Design and Evolution of a Mobile Phone OS ,”  Wiley , 
July, 2008. 

 
 
 
 
 
Fei Zhu was born in Suzhou, China, in 1978. He got his 

master’s degree in 2006, majoring in computer science and 
technology. He is now a PhD student of Soochow University, 
studying on bioinformatics and systems biology. His interests 
include machine learning, biological text mining, biological and 
biomedical network analysis and construction. 

 

1512 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER


