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Abstract—This paper introduced a detail ElGamal digital 
signature scheme, and mainly analyzed the existing 
problems of the ElGamal digital signature scheme. Then 
improved the scheme according to the existing problems of 
ElGamal digital signature scheme, and proposed an implicit 
ElGamal type digital signature scheme with the function of 
message recovery. As for the problem that message recovery 
not being allowed by ElGamal signature scheme, this article 
approached a method to recover message. This method will 
make ElGamal signature scheme have the function of 
message recovery. On this basis, against that part of 
signature was used on most attacks for ElGamal signature 
scheme, a new implicit signature scheme with the function of 
message recovery was formed,  after having tried to hid  
part  of signature message and refining forthcoming implicit 
type signature scheme. The safety of the refined scheme  was 
anlyzed, and its results indicated that the new scheme was 
better than the old one. 

Index Terms—ElGamal-type digital signature scheme; 
message recovery; implicit signature scheme; security 
analysis 

I.   INTRODUCTION  

ElGamal signature scheme is designed to use as a 
signature, and its speed of encryption and decryption is 
relatively slower than the symmetric algorithm, it is the 
common problem of all practical public key algorithms at 
present [1-3]. It is a non-deterministic two-key system. In 
terms of the same plaintext message, due to different 
parameters chosen randomly, it has different signatures. 
Most digital signature systems in the public did not have 
the message recovery function. Signature scheme 
allowing message recovery has many advantages [4-7], 
such as shorter signature for shorter message; meanwhile, 
it puts the message together with validation[4]. Nyberg 
and Rueppel had improved the broad-based ELGamal 
mode [8-10], and a series of signature schemes had been 
received, which could verify the signature while 
recovering  the message. 

The implicit digital signature scheme conceals part of 
the signature from the other data in the signature, and 
constitutes an implicit signature on the message by using 

the data of the implicit part of the signature. Signature 
receiver can verify the signature of the implicit signature 
to come to the verification of the real signature. As for 
the generalized ELGamal type signature scheme, Harn 
and Xu pointed out that there are a total of 18 security 
ELGamal type signature schemes [11]. Qi Ming and Xiao 
Guozhen promoted the Chang-Liao password 
authentication scheme based on generalized ELGamal 
type scheme in [12]. To make a signature scheme more 
secure, this paper puts forward an improved scheme of 
three implicit ElGamal type signature schemes. 
According to the different ways of hiding the signature, 
the schemes are divided into three types: Ⅰ (a with s) 
type, Ⅱ (b with s) type, Ⅲ (c with s) type. The feature of 
the improved scheme is to conceal part of the original 
signature s. So an attacker can not use part of signature s 
to substitute the usual attack and can increase the number 
of unknowns (key x, k, s) in original signature equation, 
while the forgers are not aware of these unknowns, and 
thus prevent the reuse of k to exposure to key x. 
Signature receiver can verify the signature of the implicit 
signature to come to the verification of the real signature. 
As the implicit signature scheme was improved; method 
of message recovery was given and it was applied to 
ElGamal digital signature scheme, thus an implicit digital 
signature scheme with the function of message recovery 
was formed. The analyzed results show that: the security 
of the improved scheme has been improved significantly. 

II. ELGAMAL DIGITAL SIGNATURE SCHEME 

A. General definition of digital signature scheme 
Generally speaking, a digital signature [13] mainly has 

two algorithms. Signer can use a (secret) signing 
algorithm to sign a message, leading to the signature by a 
public verification algorithm to verify. Verification 
algorithm makes an answer with "real" or "false" 
according to whether the signature is real when given a 
pair of signature. A digital signature scheme can be 
described when meeting the following conditions (P, A, 
K, S, V): 

(1) P is  a finite set composed by all possible 
messages; 
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(2) A is a finite set composed by all possible 
signatures ; 

(3) K is a finite set composed by all possible 
keys, which is key space; 

(4) As for each k K∈ , there is a signature 

algorithm ( )kSig S⋅ ∈ and a corresponding 

verification algorithm ( , )kVer V⋅ ⋅ ∈ . Each 

( )kSig S⋅ ∈  and 

( , ) : { , }kVer V P A true false⋅ ⋅ ∈ × → is a 

function which satisfies the following 
equation: as for each message x P∈  and 
each signature y A∈ , there is 

( , )kVer x y true= , If and only if 

( )ky Sig x= , ( )kSig ⋅ and ( , )kVer ⋅ ⋅  both are 

function of polynomial time. ( , )kVer ⋅ ⋅  is a 

public function, while ( )kSig ⋅  is a  secret 

function. 

B. The description of the ElGamal type digital signature 
scheme based on discrete logarithm problem on *

pZ    

Suppose p is a intractable prime on *
pZ  the discrete 

logarithm problem[15-16], q is a large prime factor of p-1, 
or p=q, when q<p, select a element *

pZα ∈  of an order for 

the q randomly; When p=q, randomly select a element 
*
pZα ∈ , or * *, , ( )p p qP Z A Z Z q p∈ = × 〈  or 
*

1( )p pA Z Z q p−= × =  of an order for the p-1. Definition: 

}{( , , , , ) (mod )aK p q a pα β β α= =  

Where , , ,p q α β  are public, a is private. 

For ( , , , , )K p q aα β=  and a secret random 
*( )qk Z q p∈ <  or *

1( )pk Z q p−∈ = , definition: 

( , ) ( , )kSig x k γ δ=                                 (1) 

Where mod (mod )k p qγ α= . 

When q<p, δ satisfies the equation: 

( , , ) ( , , ) ( , , ) 0 modk f x a g x h x qγ δ γ δ γ δ⋅ + ⋅ + ≡          (2) 

When q=p, δ satisfies the equation: 

( , , ) ( , , ) ( , , ) 0(mod 1)k f x a g x h x pγ δ γ δ γ δ⋅ + ⋅ + ≡ −      (3) 

f, g, h is a public function, and is calculated easily 
from (1) and (2). 

For * *,p qx Z Zγ∈ ∈  and qZδ ∈ , definition: 

( , , ) ( , , ) ( , , )( , , ) 1(mod )(mod )f x g x h xVer x true p qγ δ γ δ γ δγ δ γ β α= ⇔ ⋅ ⋅ ≡
                                                                                         (4) 

     f, g, h is a public function and ( , , )x γ δ  is known 

public, so any one can verify the equation (3). 

If the signature is constructed correctly, then the 
validation will be successful, because 

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

(mod )(mod )

(mod )(mod ) 1

f x g x h x

kf x ag x h x

p q
p q

γ δ γ δ γ δ

γ δ γ δ γ δ

γ β α

α α α

⋅ ⋅

= =
  (5) 

When f, g, h take a different function, different digital 
signature scheme will be gotten, and we referred to this 
type of scheme as the ElGamal digital signature scheme. 

In the above scheme, 

, ( , , ) , ( , , ) , ( , , )q p f x g x h x mγ δ δ γ δ γ γ δ= = = = −   (6) 

When taking the above-type, the scheme is the 
ElGamal digital signature scheme. At this point, the 
signature algorithm and verifying algorithms of the 
scheme change correspondingly: 

1( , ) ( , ), mod , ( ) mod 1k
kSig x k p x a k pγ δ γ α δ γ −= = = − −  (7) 

And 
*

1( , , ) (mod ) , ,x
p pVer x true p x Z Zγγ δ β γδ α γ δ −= ⇔ ≡ ∈ ∈  (8) 

C． Analysis of ElGamal Digital Signature Algorithm 
Security 

In general, the following are the main ways of attack: a 
direct hack on the private key[14-16]. 

1) Following the launch of RSA in 1978, has spent 
much effort to find the defects that can be 
deciphered. Although it is used within a certain 
scope of the agreement is not without risk, the 
algorithm's basic security is guaranteed. But 
ELGamal algorithm has not a decoding test of 
detailed cryptanalysis , there are serious technical 
defects. 

2) For activities attacks and counterfeit attacks is 
fragile. If an attacker successfully replaces a 
legitimate user's public key by using private key 
that is randomly selected corresponding to public 
key, then user will be able to forge signatures. 

3) The substitution attack. These attacks include the 
use of some of the signatures s and only use the 
public key Y. The substitution attack carried out 
by using some of the signature s  is  major attack 
that the signature program ELGamal face to. 

4) The forgery attack. Starting from the 
signature,forgers make any changes to form the 
signature of another message m, which  is 
possible to meet the same verification equation. 
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5) Random prive key k can not be repeatedly used to 
sign different messages. Otherwise, an attacker 
can easily obtain the signer private key x. 

6) He and Keisler point out that can forge signer 
sign any message. If three random key k, (i = 
1,2,3) satisfy the k3 = k1 + k2, then r, (i = 1,2,3) 
to meet the r3 = r1r2. Then the attacker can obtain 
the key x. This is similar to the homomorphism 
attack that is faced by RSA , the difference is, the 
homomorphism attack of RSA signature is only 
used to forge signature , and can be overcome by 
using hash function .while the homomorphism 
attack of the ELGamal digital signature scheme, 
has yet to find effective solutions by now. 

7) Subliminal channel problem. Closed threshold on 
the lower channel of ELGamal  digital signature 
scheme  ,has not seen any study findings so far. 

According to the above analysis on ElGamal Digital 
Signature Algorithm, due to the discrete logarithm 
problem has yet no possible solution has been worked out 
yet, so the ElGamal type digital signature algorithm based 
on the question has high security keys. Before the 
discrete logarithm problem is effectively resolved, any 
direct attack on the keys, the computational needs are 
staggering[17-18]. 

According to the signature and the verify equation, the 
signer needs to complete a signature through a power 
operation and an inverse operation, and the verifier needs 
three power operations. Given that sign documents or 
information for the sign may be more, but the verifier is 
the different user; this conditions which the 
computational complexity of verifier is higher than the 
computational complexity of signers. 

III. THE IMPLICIT  SIGNATURE SCHEME WITH MESSAGE 

RECOVERY 

Setting p as a large prime number, which makes 
calculating the discrete logarithm of p a hard problem. 
Moreover, p-1 contains large prime. Then select 
randomly a element *

pZα ∈  with an order for p-1. 
*
pP Z=  is a set of all possible messages. While 

* *
1p p pA Z Z Z −= × ×  is a set [21] of all possible signatures, 

definition: 

{ }( , , , ) modxK p x y y pα α= =  

Where parameters p , y and α  are known to every 
user. Signer's private key x is element belonging to set 

*
1−pZ , the corresponding public key generated by x is: 

modxy pα=                             (9) 

Sign a message m, which is an element on *
pZ .For 

{ }mod),,,( pyyxpK xαα ==  

and a secret random number
1, pk t Z −∈ , define: 

( , ) ( , , )kSig m k r i v=  

Where r is calculated by 

pmr k mod−= α                          (10) 

and assume 

'gcd( , 1) 1ry p − =                           (11) 

Where “gcd” is greatest common factor. If the above 
equation does not hold, we can fixe the k and choose 
another value of t to make it hold. 

Then calculation of s is defined by the following 
equation: 

1(1 ) mod( 1)s kr x p−= + −               (12) 

Among them 

)1mod(1 −=− pkrsx                       (13) 

is signature equation. Then calculate: 

(mod )tu y p=                                (14) 

And 

mod 1v t su p= + −                        (15) 

The message signature is ( , , )r u v , for 

* * *
1, ,p p p pm Z r Z u Z and v Z −∈ ∈ ∈ ∈  

Define: 

( , ) ( ) modv r u urVer r s TRUE y r m u pα − −= ⇔ =       
When validating and recovering messages, firstly, 
receiver calculates: 

( ) (mod )v r uc y r pα −=                   (16) 

and then determine whether c satisfies the condition (17) 
to verify signature. 

urc m u=                                             (17) 

Theorem 3.1: In the above signature scheme, we 
assume gcd( , 1) 1try p − =  is reasonable; namely, the t 
which can satisfy the equation exists, and the choice of t 
be completed in limited steps. 

Prove: When t takes over each element of 
1pZ −
, y′  

takes over each element of *
pZ . Since there are ( 1)pφ −  

elements relatively prime with p-1 in *
pZ , then there are 

also ( 1)pφ −  elements prime with p-1 in { }1t
pry t Z −∈ ,  
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that is, t which satisfies gcd( , 1) 1try p − =  exists, and the 
number is ( 1)pφ − . 

As t is a random selection in 
1pZ −  to satisty the 

gcd( , 1) 1try p − = , then we can know the expected setps 

in selecting such t, the expectation is 1 ( 1)p pφ− − . 

The proof has been completed. 

Theorem 3.2: when signing message m, if its signer 
complied with the steps in the above mentioned scheme, 
it can be verified that signature ( , , )r u v  is true signature 
of the message. 

Prove: From (16), we can get: 

( 1)

( ) mod   

   ( ) mod

   mod   

   mod
u

v r u

t su r kr u

xsu ur kru u

xs kr ur

c y r p
y m p
u m p

u m p

α

α α

α α α

α

−

+ −

− − −

− − −

=

= ⋅

=

=

 

Because 1mod1 −=− pkrxs , then modurc u m p−= ⋅ , 
that is to say signature ( , , )r u v   is true signature of the 
message. 

The proof has been completed. 

IV. RECOVERY OF IMPLICIT SIGNATURE MESSAGE 

In (17) the value of message m is unknown, so, when 
verifying signatures we have to recover message m. 
Euclidean algorithm[22] for polynomial[7] is used to 
recover message m. 

First, define polynomial 

1( ) modrP X X c pα−= −                (18) 

Where, message m is one root of polynomial ( )P X . 

Because r and p-1 are co-prime, there is only one root for 
polynomial 1 modrX c pα −−  on limited domain pZ , 

and the root is m. 

Theorem 4.1: Recover message from signature 
( , , )r u v , and message m is given though following 

equation: 

1
1 1

1( )

( ) mod

t

u
vr r

m c u

y r u pα
−

− −

−

−

=

⎡ ⎤= ⋅⎣ ⎦

       (19) 

Prove: Noted m satisfies the equation 

1 modurm c u p−=  

Since ru and p-1 are co-prime, then choose t and make 
it like this:  

1(mod 1)rut p= −                     (20) 

Then: 

1

(mod 1)

( ) mod

mod

t

urt p

c u p
m p
m

−

−

=

=
=

 

So: 

1
1 1

1( )

( ) mod

t

u
vr r

m c u

y r u pα
−

− −

−

−

=

⎡ ⎤= ⋅⎣ ⎦

 

Thus, we recover  the message m. 

The proof has been completed. 

Theorem 4.2: Message m is the number on the contrary of 
the constant term of the greatest common factor of 
polynomial pcXXP r mod)( 1−−= α  and polynomial 

XX p − , that is: 

1gcd( , )r pX m X c X Xα −− = − −        (21) 

where  “gcd” is greatest common factor.  

Prove: there are three steps for the proof. 
1) Message m is one root of polynomial: 

pcXXP r mod)( 1−−= α . 

Because 

(mod )rc m pα= ⋅  

So 

)(mod1 pcmr −= α  

that is  

)(mod01 pcmr =− −α                (22)  

 so message m is one root of polynomial ( )P X . 

2) There is only one root for polynomial 
pcXXP r mod)( 1−−= α  on pZ . 

It can be divided into the following two cases for 
discussion: 

a) When 11 =−αc , that is 01=−rX . 
Equation 01)1,( =−−prX  can be derived 

from 011 =−−pX . Because 1)1,( =−pr  

and 1 0 1x x− = ⇒ = , there is 1x ≡ , that is to 

say there is only one root for 01=−rX  on 

pZ , and the root is 1. 

b) When 11 ≠−αc , establish the 
mapping rxxf →: , which is from pZ  to r

pZ . 

For any two elements
1 2, px x Z∈ , if there 
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is rr xx 21 = , )(mod01
2

1 p
x
x

r

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 can be 

gained. And from a), we can find out 21 xx = , 

so the mapping rxxf →:  is a bisection, that 
is to say there is only one root for 

)(mod11 pcX r =− −α  on pZ . 

3) Prove the establishment of 

equation ),gcd( 1 XXcXmX pr −−=− −α . 
On the limited domain, there is an equation: 

 
1

0

( )
p

p
i i p

i

X X X x x Z
−

=

− = − ∈∏ ，             (23) 

There is no repeated factorization in XX p − , but 
from a) it can be known that 1−− αcX r  is the r-th power 
repeated factorization of mX − , so: 

1),gcd( 1 ≤−−∂ − XXcX pr α .              (24) 

Because *
pZm∈ , there is i  making mxi = , 

where 0 i p≤ ≤ , that is  

),gcd( 1 XXcXmX pr −−=− −α            (25) 

In summary, the theorem has been proved. 

In terms of Euclidean algorithm on polynomials, we 
can get the following conclusions [8]: Assumed 
polynomial applies to polynomials f and g, and 
deg degf g d≥ =   then there are: 

1) The most steps of decomposition are d t, clearly 
every step in the process of price reduction may reduce 
the order for1  at least. 

2) Steps required by decomposition are just d, when  
f and g are polynomial of recursive sequence of 
polynomials, defined as follows: 

{ 0 1 1 11 , 1n n nF F X F XF F n+ −= = = + ≥， ，        (26) 

3) If the g is uniformly distributed in polynomial and 
make modf g  be uniform distribution as well, then  the 
number of steps of decomposition  is (1 1/ )p d− . 

For general polynomials, this algorithm needs large 
amount of computing. However, applying Euclidean 
algorithm for polynomial to 1( , )p rX X X c α −− − ⋅  , can 
reduce the amount of computing largely. Where there is 
no repeated factorization in polynomial XX p − , its 
roots traversal every element in pZ . Especially 

1−⋅− αcX r  is the r-th power repeated factorization, 
having only one factor. This makes the amount of 
computing in the process of algorithm decomposition be 
reduced largely, and algorithm speed be faster. 

According to the difference of the hidden part of the 
signature in the scheme, we can get three kinds of 
implicitly corresponding signature scheme with the 

function of message recovery. Signature of each scheme 
is (r, u, v). The lists are as follows: 

Tabel 1 a inclued s concealed type signature scheme 

Signature equation Signature vefication 

1mod
mod

1mod1
mod

−+=
=

−+=
=

psutv
pyu

prksx
pmr

t

kα
 

pryc urv mod)( −= α  

If umc ur−= ,then 
accept signature 

Tabel 2 b inclued s concealed type signature scheme 

Signature equation Signature vefication

1mod
mod

1mod1
mod

−+=
=

−+=
=

psutv
pru

pskrx
pmr

t

kα
 

pyrc urv mod)( 1 −−= α  

If umc ur−= ,then 
accept signature 

Tabel 3 c inclued s concealed type signature scheme 

Signature equation Signature vefication

1mod
mod

1mod
mod

−+=
=

−+=
=

psutv
pu

psrkx
pmr

t

k

α

α
 

pyrc urv mod)( 1 −−= α  

If umc ur−= ,then 
accept signature 

V. SECURITY ANALYSIS  

The security of the above scheme mentioned is based 
on the discrete logarithm problem. Assuming that the 
attacker does not know key x, digital signature of a given 
message m is going to be forged now. If the attacker 
chooses a value s first, and then finds a corresponding r 
strongly, the transcendental equation 

1loglog −= αsy
r
mr  must be solved to find out r, and it 

is associated with the discrete logarithm. If the attacker 
chooses a value r first, and then finds a corresponding s 
strongly, the transcendental equation 

y
r
ms r log/)(log ⎥⎦

⎤
⎢⎣
⎡= α  must be solved. The implicit 

signature scheme hides part of signature s among other 
data, and constitutes an implicit signature on the message 
using the data of the hidden part of the signature; finally 
verifies the real signature through the implicit signature 
verification. Increase the number of the original signature 
equation unknown (key skx ,, to the forger not know), 

preventing key x from espousing for the reuse of k, and 
security of other aspects has been strengthened. 

In this paper, we make the security analysis to the 
implicit scheme with the function message recovery by 
only taking I (a with s)-type scheme as an example,  

1) ( , , )r u v is an implicit signature of message, 

denoted ( )csig m . In practice, the time can be introduced 

to the signature, the signature equation: 
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1mod −+= psutv  

Modified it to: 

( , ) mod 1v t sf u T p= + −            (27) 

In equation, One-way function f is introduced to 
prevent the attacker changing the time, this 
time ( ) ( , , , )csig m r u v T= . This is more realistic. 

 In some special cases, the signature debit not only to 
verify the correctness of the signature, but also to verify 
the signature is valid. In general, there are signatures 
associated with the signature time, signature and its 
corresponding time are equally important and need to be 
verified. Implicit scheme has the function of verifying the 
signature and signature time at the same time. 

2) For the given message { }nimi ,,2,1, =  and its 

correspondingly implicit signature 
{ }( , , ). 1, 2, ,i i ir u v i n= . To obtain the signer’s key x, 

attacker can start from the signature equation as likely 
treate the ELGamal type signature scheme. 

 Attackers try to solve the key x from equations: 

1 1 1

2 2 2

1mod 1

1mod 1

1mod 1n n n

s x r k p
s x r k p

s x r k p

= + −⎧
⎪ = + −⎪
⎨
⎪
⎪ = + −⎩

                       (28) 

and 

1 11 1 1

2 2 2 2

1mod 1

mod 1

mod 1n n n n

v t s u p
v t s u p

v t s u p

= + −⎧
⎪ = + −⎪
⎨
⎪
⎪ = + −⎩

                    (29) 

We discuss the points from the following four cases: 

a) Random key ik and it were not being reused: at 

this time, the number of unknowns are more than the 
number of equations in the two equations, and the key x 
has no unique solution. 

b) ik  is only reused : 

       At this time, 1 2 nk k k k= = = = . 

       From modik
i ir m pα= , we can introduce: 

1 2

1 2

n

n

rr r
m m m

= =                        (30) 

As it is hard to solve ( 1, 2, , )is i n= from the 

second equations, therefore, even if the attacker knows 

ik  is used repeatedly from (30), that are , it will still not 

solve the key x due to the number of unknown in the first 
equations (31) bigger than the number of equation. 

1 1

2 2

1mod 1

1mod 1

1mod 1n n

s x r k p
s x r k p

s x r k p

= + −⎧
⎪ = + −⎪
⎨
⎪
⎪ = + −⎩

                       (31) 

c) it  is only reused : 

       At this time, 1 2 nt t t t= = = = , which lead 

1 2 nu u u u= = = = . If ( 1, 2, , )is i n=  is different 

form each other which is produced by the first equations, 
then due to the above reason, the attack is hard to solve 

( 1, 2, , )is i n=  from the second equations, 

therefore ,the key x is not obtain. 

 

1 1

2 2

mod 1

mod 1

mod 1n n

v t s u p
v t s u p

v t s u p

= + −⎧
⎪ = + −⎪
⎨
⎪
⎪ = + −⎩

                       (32) 

       Even if there are several same ( 1,2, , )is i n= , if 

time is introduced to signature like equation (32), the 
signature changes to ( , ) mod 1v t sf u T p= + − , then 

iv are different from each other due to the different it . So, 

attackers can not judge whether is is same from the 

signature ( )( 1,2, , )icsig m i n= . 

d) both ik and it  are reused : 

       From the above analysis we can know both ik and it  

are reused, which won’t expose the key x under the 
condition that ( 1,2, , )is i n= is different from each 

other. 

      In a word, using the ElGamal signature scheme is not 
same to using the implicit signature scheme which can 
not be strict greatly in the selection of random key, but 
relatively flexible. 

3) From the above security analysis, we can see that 
there are also with the following state attacks for the 
ELGamal signature scheme with the function of message 
recovery:  

If the three random  keys ik , 1, 2,3i =   is     calculated 

)3,2,1( =iri ,   which  satisfies 213 kkk += ,  then    that 

is
3

3

21

21

m
r

mm
rr

= .
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So an attacker can solve key x using these correlations 
solutions. The solving process can be obtained through 
the signature equation 

1mod 1, 1,2,3i i ixs k r p i+ = − =  

and relationship equation 3 1 2k k k= +  to obtain the 

following equation: 

1 1 1
1 1 2 2 3 3

1 1 1 1 1 1 1 1
1 2 3 1 1 2 1 2 1 3 3

(1 ) (1 ) (1 )

( )( )

xs r xs r xs r x

r r r s r s r s r s r

− − −

− − − − − − − −

− + − = − ⇒ =

+ − + + −
 

Thus, key x has been solved, and the system has been 
deciphered. 

As for the implicit signature scheme, since 
( 1,2,3)is i =  is not public, no one can obtain the key x 

using the above  method. 

      In addition, when ( 1, 2,3)it i = satisfy 3 1 2t t t= + , 

attacker can not obtain anything from the equations: 

1 1 1 1

2 2 2 2

3 3 3 3

v t s u
v t s u
v t s u

= +⎧
⎪ = +⎨
⎪ = +⎩

                                 (33) 

Therefore, attack with the state is hold only with 
ELGamal type signature scheme, but dose not hold to the 
implicit ELGamal type signature. In this way, we have  
solved the question by He and Keisler but not able to 
resolve  [23-24]. 

     As a deformation of ELGamal type signature scheme, 
the security of implicit signature is also based on the 
difficulty of discrete logarithm. Literature [25] showed 
that if  b is set to the bit of  the prime modulus p, then the 
computational complexity of requesting x from y, 
requesting k from r or requesting t from u  is 

(exp 1 , (0,1)O cb nb where c∈ . It is generally 

believed that the computational complexity of the 

algorithm is (exp 1 )O cb nb  which is called a sub-

exponential time algorithm. Therefore, as long as the 
scale of b (eg b come to 1024-bit) is  expanded 
appropriately, it will be very difficult for forgers who 
want to solve discrete logarithm to decipher  implicit 
signature schemes or ELGamal type signature scheme. 
As the complexity of the mode index problem is O (n), so 
the signer can easily calculate the value of y, u and r[26]. 

    Due to structural features of implicit signature equation, 
the signature speed is slower one time than  ELGamal 
signature scheme, which is the major weakness of 
implicit scheme. However, the calculation of u has 
nothing to do with the message m, it can be carried out 
and calculation to make up the weakness of the speed. 
Enhanced ELGamal type signature's speed and 
verification speed are relatively slower than the original 
ELGamal signature scheme. With the increased security, 

signature speed and verification speed will be subject to 
different influence. 

VI. CONCLUSION 

Signature scheme allowing message recovery has 
many obvious advantages such as shorter signature for 
short message, lower computation work for the 
combination of message and its signature to be sent, and 
so on. Most signature schemes including ELGamal 
signature mode do not allow message recovery. Based on 
ELGamal signature mode, an improved scheme was 
proposed, which allows message recovery and has better 
security than the original one. In particular, it can resist 
homomorphism attack and substitution attack using 
partial signature. This function is not available in the 
other ELGamal improved schemes. 

Due to some features of attacks suffered by ELGamal 
signature, hash function must be used to ensure its 
security. As for ELGamal type signature scheme not 
using hash functions, Yen and Laib actually made a lot of 
efforts, but were unable to find [27]. These schemes are 
attacked by using some of the signatures s offensive and 
just carried out a public key y. Although the implicit 
signature program is also not completely free to use a 
hash function, one case of a major offense can be 
prevented at least without the use of hash functions . Harn 
and Xu pointed out that there are 18 the secure ELGamal 
type signature schemes, fowling attack methods of 
modeled Nyberg and Rueppel, you can use part of 
signature to substitution attack on almost 18 different 
schemes. If the pure public-key attach was not considered, 
such scheme can still maintain its security without using 
hash function. 
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