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Abstract—Spectral band selection is a fundamental problem 
in hyperspectral classification. This paper addresses the 
problem of band selection for hyperspectral remote sensing 
image and SVM parameter optimization. First, we propose 
an evolutionary classification system based on particle 
swarm optimization (PSO) to improve the generalization 
performance of the SVM classifier. For this purpose, we 
have optimized the SVM classifier design by searching for 
the best value of the parameters that tune its discriminant 
function, and upstream by looking for the best subset of 
features that feed the classifier. Second, for making use of 
wavelet signal feature of pixels of hyperspectral image,we 
investigate the performance of the selected wavelet features 
based on wavelet approximate coefficients at the third 
level．The PSO algorithm is performed to optimize spectral 
feature and wavelet-based approximate coefficients to select 
the best discriminant features for hyperspectral remote 
imagery．The experiments are conducted on the basis of 
AVIRIS 92AV3C dataset. The obtained results clearly 
confirm the superiority of the SVM approach as compared 
to traditional classifiers, and suggest that further substantial 
improvements in terms of classification accuracy can be 
achieved by the proposed PSO-SVM classification system. 

Index Terms — support vector machine (SVM) ,  Particle 
Swarm Optimization( PSO) ,optimization ， Feature 
Selection,Wavelet Decompostion 

I. INTRODUCTION 

Hyperspectral Classification problems have been 
extens- ively studied. Numerous factors, such as 
incomplete data, and the choice of values for the 
parameters of a given model, may affect classification 
results. Classification problems have previously been 
solved with statistical methods such as logistic regression 
or discriminate analysis. Technological advances have led 
to the development of methods for solving classify- cation 
problems, including decision trees, back-propagation 
neural networks, rough set theory and support vector 
machines (SVM). SVM which is an emerging data 
classification technique proposed by Vapnik[1], and has 
been widely adopted in various fields of classification 
problems in recent years. 

Classification problems generally involve a number of 
features. However, not all of these features are equally 
important for a specific task. Some of them may be 
redundant or even irrelevant. Better performance may be 

achieved by discarding some features. In other 
circumstances, the dimensionality of input space may be 
decreased to save some computation effort, although this 
may slightly lower classification accuracy. Therefore, the 
classification process must be fast and accurate, using the 
smallest number of features. This objective can be 
achieved using feature selection. Feature selection 
strategies are often implied to explore the effect of 
irrelevant attributes on the performance of classifier 
systems. 

This study attempts to increase the classification 
accuracy rate by employing an approach based on particle 
swarm optimization (PSO) in SVM. This novel approach 
is termed PSO-SVM. The developed PSO-SVM approach 
not only tunes the parameter values of SVM, but also 
identifies a subset of features for specific problems, 
maximizing the classification accuracy rate of SVM. This 
makes the optimal separating hyper-plane obtainable in 
both linear and non-linear classification problems. 

In particular, they are organized so as to test the 
sensitivity of the SVM classifier and that of three 
reference classifiers used for comparison, i.e., SVM-
Linear classifier, the k-nearest neighbor (K-nn) classifier 
and the radial basis function neural network (RBF-NN) 
classifier, with respect to the curse of dimensionality and 
the number of available training data 

The rest of the paper is organized as follows. The 
literature review is recalled in Section II. The main 
concepts and principles of PSO are introduced in Section 
III. The proposed PSO-SVM classification system is 
described in Section IV. The experimental results obtained 
on  hyperspectral remote sensing data  are reported in 
Sections V. PSO-SVM for spectral and wavelet feature 
selection is illustrated in Section VI and experimental 
result indicates the methods  is effective. Finally, 
conclusions are drawn in Section V.  

II.  LITERATURE  REVIEW 

Approaches for feature selection can be categorized 
into two models, namely a filter model and a wrapper 
model [2]. Statistical techniques, such as principal 
component analysis, factor analysis, independent 
component analysis and discriminate analysis can be 
adopted in filter-based feature selection approaches to 
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investigate other indirect performance measures, most of 
which are based on distance and information. Chen and 
Hsieh[3] presented latent semantic analysis and web page 
feature selection, which are combined with the SVM 
technique to extract features. Gold [4] presented a 
Bayesian viewpoint of SVM classifiers to tune hyper-
parameter values in order to determine useful criteria for 
pruning irrelevant features. 

The wrapper model [5]  applies the classifier accuracy 
rate as the performance measure. Some researchers have 
concluded that if the purpose of the model is to minimize 
the classifier error rate, and the measurement cost for all 
the features is equal, then the classifier’s predictive 
accuracy is the most important factor. Restated, the 
classifier should be constructed to achieve the highest 
classification accuracy. The features adopted by the 
classifier are then chosen as the optimal features. In the 
wrapper model, meta-heuristic approaches are commonly 
employed to help in looking for the best feature subset. 
Although meta-heuristic approaches are slow, they obtain 
the (near) best feature subset. Shon[6] employed GA to 
screen the features of a dataset. The selected subset of 
features is then fed into the SVM for classification testing. 
Zhang[7] developed a GA-based approach to discover a 
beneficial subset of features for SVM in machine 
condition monitoring. Samanta [8] proposed a GA 
approach to modify the RBF width parameter of SVM 
with feature selection. Nevertheless, since these 
approaches only consider the RBF width parameter for the 
SVM, they may miss the optimal parameter setting.Huang 
and Wang [9] presented a GA-based feature selection and 
parameters optimization for SVM. Moreover,Huang et 
al.[10] utilized the GA-based feature selection and 
parameter optimization for credit scoring. 

Several kernel functions help the SVM  obtain the 
optimal solution. The most frequently used such kernel 
functions are the polynomial, sigmoid and radial basis 
kernel  function (RBF). The RBF is generally applied 
most frequently, because it can classify high-dimensional 
data, unlike a linear kernel function. Additionally, the 
RBF has fewer parameters to set than a polynomial kernel. 
RBF and other kernel functions have similar overall 
performance. Consequently, RBF is an effective option for 
kernel function. Therefore, this study applies an RBF 
kernel function in the SVM to obtain optimal solution. 
Two major RBF parameters applied in SVM, C and γ, 
must be set appropriately. Parameter C represents the cost 
of the penalty. The choice of value for C influences on the 
classification outcome. If C is too large, then the 
classification accuracy rate is very high in the training 
phase, but very low in the testing phase. Parameter γ has a 
much greater influence on classification outcomes than C, 
because its value affects the partitioning outcome in the 
feature space. An excessively large value for parameter γ 
results in over-fitting, while a disproportionately small 
value leads to under-fitting. Grid search [11] is the most 
common method to determine appropriate values for C 
and γ. Values for parameters C and γ that lead to the 
highest classification accuracy rate in this interval can be 
found by setting appropriate values for the upper and 

lower bounds (the search interval) and the jumping 
interval in the search. Nevertheless, this approach is a 
local search method, and vulnerable to local optima. 
Additionally, setting the search interval is a problem. Too 
large a search interval wastes computational resource, 
while too small a search interval might render a 
satisfactory outcome impossible. 

In addition to the commonly used grid search 
approach, other techniques are employed in SVM to 
improve the possibility of a correct choice of parameter 
values. Pai and Hong [12] proposed an SA-based 
approach to obtain parameter values for SVM, and applied 
it in real data; however, this approach does not address 
feature selection, and therefore may exclude the optimal 
result. As well as the two parameters C and γ, other 
factors, such as the quality of the feature's dataset, may 
influence the classification accuracy rate. For instance, the 
correlations between features influence the classification 
result. Accidental removal of important features might 
lower the classification accuracy rate. Additionally, some 
dataset features may have no influence at all, or may 
contain a high level of noise. Removing such features can 
improve the searching speed and accuracy rate. 

It is worth underlining that the kernel-based 
implementation of SVM involves the problem of the 
selection of multiple parameters, including the kernel 
parameters (e.g., the γ and p parameters for the Gaussian 
and polynomial kernels, respectively) and the 
regularization parameters C. 

Studies have also illustrated that a radial basis kernel 
yields the best results in remote sensing applications 
[13][14]. We chose to use the radial basis kernel for SVM 
in this study. The verification of the applicability of other 
specialized kernel functions for the classification of 
remote sensing data may be used in future studies. The 
equation for the radial basis kernel is 

)||||exp(),( 2xxxxK ii −−= γ                          (1) 
where γ  represents a parameter inversely proportional 

to the width of the Gaussian kernel. 

III. PARTICLE  SWARM OPTIMIZATION AND  
DEVELOPED PSO-SVM  APPROACH 

A. PSO Concept 
The particle swarm optimization (PSO), originally 

developed by Kennedy and Eberhart [15], is a method for 
optimizing hard numerical functions on metaphor of social 
behaviors of flocks of birds and schools of fish. It is an 
evolutionary computation technique based on swarm 
intelligence. A swarm consists of individuals, which are 
called particles, which change their positions over time. 
Each particle represents a potential solution to the problem. 
In a PSO system, particles fly around in a 
multidimensional searching space. During its flight each 
particle adjusts its position according to its own 
experience and the experience of its neighboring particles 
making use of the best position encountered by itself and 
its neighbors. The effect is that particles move towards the 
better solution areas, while still having the ability to 
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search a wide area around the better solution areas. The 
performance of each particle is measured according to a 
pre-defined fitness function, which is related to the 
problem being solved. The PSO has been found to be 
robust and fast in solving nonlinear, non-differentiable and 
multi-modal problems. The mathem- atical description 
and executive steps of the PSO are as follows. Let the i th 
particle in a D-dimensional space be represented as 
xi=(xi1,… xid,…xiD).The best previous position of the i th 
particle is recorded and represented as   pi=(pi1,…pid,…piD). 
which gives the best fitness value and is also called pbest . 
The index of the best  pbest among all the particles is 
represented by the symbol g . The location P g is also 
called gbest . The velocity for the i th particle is 
represented as v i=( v i1,…v id,…v iD). The concept of the 
particle swarm optimization consists of changing the 
velocity and location of each particle towards its pbest and 
gbest locations at each time step: 
v id = wv id +c1 r1( pid-xid)+c2r2(pgd-xid),   (2) 
xid=xid+vid,                                              (3) 

where w is the inertia coefficient which is a constant in 
the interval [0, 1] and can be adjusted in the direction of 
linear decrease ; c1 and c2 are learning rates which are 
nonnegative constants; r1 and r2 are generated randomly 
in the interval [0, 1];The termination criterion for 
iterations is determined according to whether the 
maximum generation or a designated value of the fitness 
is reached.  

In this following of the section, we describe the 
proposed SVM system for the classification of 
hyperspectral remote sensing image. As mentioned in the 
Introduction, the aim of this system is to optimize the 
SVM classifier accuracy by automatically: 1) detecting the 
subset of the best discriminative features (without 
requiring a user-defined number of desired features) and 2) 
solving the SVM model selection issue (i.e, estimating the 
best values of the regularization and kernel parameters). In 
order to attain this, the system is derived from an 
optimization framework based on PSO. 

B.  PSO Setup 
Because of the good performances generally achieved  

with the nonlinear SVM classifier based on the Gaussian 
kernel, in the following, we shall describe the proposed 
classification system with this particular kernel. This 
study developed a PSO approach, termed PSO-SVM, for 
parameter determination and feature selection in the 
SVM. Without feature selection, two decision variables, 
designated C and γ are required. For the feature selection, 
if n features are required to decide which features are 
chosen, then n+2 decision variables must be adopted. The 
value of n variables ranges between 0 and 1. If the value 
of a variable is less than or equal to 0.5, then its 
corresponding feature is not chosen. Conversely, if the 
value of a variable is greater than 0.5, then its 
corresponding feature is chosen. Fig. 1 illustrates the 
solution representation. C is penalty cost, γ represents a 

parameter inversely proportional to the width of the RBF 
kernel, an=Feature n is selected. 

 
Spectral features(N) C γ 
1 ………… N N+1 N+2 
a1 ………… aN C γ 

Figure 1.  Solution  representation. 

The following shows the while process for PSO-SVM. 
First, the population of particles is initialized, each particle 
having a random position within the D-dimensional space 
and a random velocity for each dimension. Second, each 
particle’s fitness for the SVM is evaluated. The each 
particle’s fitness in this study is the classification accuracy. 
If the fitness is better than the particle’s best fitness, then 
the position vector is saved for the particle. If the 
particle’s fitness is better than the global best fitness, then 
the position vector is saved for the global best. Finally the 
particle’s velocity and position are updated until the 
termination condition is satisfied. Figure 2 shows the 
architecture of the developed PSO-based parameter 
determination and feature selection approach for SVM.  

IV. EXPERIMENTAL DESIGN  

A. Dataset Description 
  The hyperspectral remote sensing image used in our 

experiments is a section of a scene taken over northwest 
Indiana’s Indian Pines by the AVIRIS sensor in 1992 [16] . 
From the 220 spectral channels acquired by the AVIRIS 
sensor, 20 channels are discarded because affected by 
atmospheric problems. From the 16 different land-cover 
classes available in the original ground truth, seven classes 
are discarded, since only few training samples were 
available for them (this makes the experimental analysis 
more significant from the statistical viewpoint). The 
remaining nine land-cover classes were used to generate a 
set of 4757 training samples (used for learning the 
classifiers) and a set of 4588 test samples (exploited for 
assessing their accuracies) (see TABLE I) .  

CLASS TRAINNING TEST

ω1-Corn-no till 742 692

ω2-Corn-min till 442 392

ω3-Grass/Pasture 260 237

ω4-Grass/Trees 389 358

ω5-Hay-windrowed 236 253

ω6-Soybean-no till 487 481

ω7-Soybean-min till 1245 1223

ω8-Soybean-clean till 305 309

ω9-Woods 651 643

Total 4757 4588

TABLE I NUMBER OF TRAINNING AND TEST SAMPLES

 

B.  Experimental Scheme 
The proposed experimental framework was articulated 

around the following three main experiments. 
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1) The first experiment aimed at assessing the 
effectiveness of the SVM approach in classifying 
hyperspectral data directly in the whole original 
hyperdimensional feature space (i.e., by means of all the 
200 available features). The total number of training 
number fixed to 4757. For comparison purpose, we 
implemented three other reference nonparametric 
classification approaches, namely,the SVM-Linear, the k-
nearest neighbor (K-nn) and the radial basis function 
neural network(RBF-NN) classifiers . 

2) In the second experiment, it was desired to explore 
the behavior of the SVM classifier (compared to the two 
reference classifiers) when integrated within a standard 
classification scheme based on a PCA feature reduction. 
In particular, the number of features was varied from 20 
to 200 with a step of 20 so as to test this classifier in small 
as well as high-dimensional feature subspaces. And the 
result is compared with the original feature reduction 
scheme(the feature number vary from original 20 to 200 
band without PCA feature transform)(see Fig.4 and Fig.5) 

3) The third experimental part had for objective to 
assess the capability of the proposed PSO-SVM 
classification system to boost further the accuracy of the 
SVM-RBF classifier, thanks to its automatic feature 
detection and parameter optimization process of SVM-
RBF. 

C.  Experiment Settings 
In the experiments, we considered the nonlinear SVM 

based on the popular Gaussian kernel (referred to as 
SVM-RBF). The related parameters C and γ for this 
kernel were varied in the arbitrarily fixed ranges [10−3, 
200] and [10−3, 2] so as to cover high and small 
regularization of the classification model, and fat as well 
as thin kernels, respectively. The experiments are 
implemented by LIBSVM [17],  In addition, for 
comparison purpose, we implemented, in the first 
experiment, the SVM classifier with another kernel, which 
is the linear kernels, leading thus to another SVM 

classifiers termed as SVM-Linear. The degree d of the 
polynomial kernel was varied in the range [2, 5] in order 
to span polynomials with low and high flexibility. The K 
value and the number of hidden nodes (h) of the K-nn and 
the RBF-NN classifiers were tuned in the arbitrarily fixed 
intervals and [10, 60], respectively. The other RBF 
parameters, which include the center and the width of 
each RBF (kernel), were computed by applying the K-
means clustering algorithm separately to each class. 
Concerning the PSO algorithm, we considered the 
following standard parameters: swarm size S=40, inertia 
weight w=0.4, acceleration constants c1 and c2 equal to the 
unity, and maximum number of iterations fixed at 50. 

V. EXPERIMENTAL RESULTS 

A.  Experiment 1: Classification in the Whole 
OriginalHyperdimensional Feature Space 

As mentioned earlier, in this experiment, we applied the 
SVM classifier directly on the entire original 
hyperdimensional feature space, which is made up of 200 
features. During the training phase, the SVM parameters 
were selected according to am-fold cross-validation (CV) 
procedure [18], first by randomly splitting the 4757 
training beats into 10 mutually exclusive subsets(folds) of 
equal size, and then, by training m times an SVM 
classifier modeled with predefined values: C for the linear 
kernel,C and γ for the Gaussian kernel. Each time we left 
one of the subsets out of the training, and only used it to 
obtain an estimate of the classification accuracy. From 10 
times of training and accuracy computation, the OA 
yielded a prediction of the classification accuracy of the 
considered SVM classifier. We chose the best SVM 
classifier parameter values to maximize this prediction. In 
all experiments reported in this paper, we adopted a 
fivefold CV. The same procedure was adopted to find the 
best parameters for the K-nn and RBF-NN classifiers. We 
recall that this empirical parameter estimation procedure 
and all the classification experiments were repeated three 
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times, each with one of the three different training sets 
generated randomly. 

As reported in TABLE II, the OA accuracies achieved 
with the SVM classifier based on the Gaussian kernel 
(SVM–RBF) on the test set were equal to 92.63%.These 
results were better than those achieved by the SVM-linear  
the K-nn and the RBF-NN classifiers. Indeed, the OA 
accuracies were equal to 88.47% for the SVM-linear 
classifier, 82.74%for the K-nn classifier, and 85.92% for 
the RBF-NN classifier. This experiment appears to 
confirm what was observed in other application fields, i.e., 
the superiority of SVM based on the Gaussian kernel as 
compared to traditional classifiers when dealing with 
feature spaces of very high dimensionality. In adition, it 
provides reference classification accuracies (95.25%) in 
order to quantify the capability of the PSO-SVM approach. 

B.  Experiment 2: Classification Based on Feature 
Reduction 

In this experiment, we train the SVM classifier based 
on the Gaussian kernel, which proved in the previous 
experiments to be the most appropriate kernel for 
hyperspectral classification, in feature subspaces of 
various dimensionalities. The desired number of features 
varied from 20 to 200 with a step of 20, namely, from 
small to high-dimensional feature subspaces. Feature 
reduction was achieved by the traditional principal 
component analysis (PCA) algorithm[19], commonly used 
in hyperspectral classification. It is based on the idea to 
select the first component (i.e., the direction of maximum 
variance), then the second component (direction of second 
maximum variance), and so on, up to the desired number 
of components, which will compose the considered 
feature subspace. 

Fig. 4 depicts the results obtained in terms of OA by 
the three considered classifiers combined with the PCA 
algorithm, namely, the PCA–SVM-RBF, the PCA–RBF-
NN, and the PCA–K-nn classifiers. The PCA–SVM-RBF 
classifier maintains a clear superiority over the other three. 
Its best accuracy was found using a feature subspace made 
up of the first 160 components. The corresponding OA 
were 92.74%. Comparing these results with those 
achieved with the SVM classifier based on the Gaussian 
kernel in the original feature space (i.e., without feature 
reduction), a slight increase of 0.11% in terms of OA. As 
regards the PCA–K-nn and the PCA–RBF-NN classifiers, 
the best empirical numbers of features were found to be 
80 and 60, respectively. The corresponding OA are 
82.78% for the PCA–K-nn classifier, and 88.5% for the 
PCA–RBF-NN, respectively. Note from Fig.3 and Fig.4 
that these classifiers behave much better with 20 features 

by PCA feature transform than in the original hyper-
dimensional feature space. 

From this experiment, we can make three observations: 
1) the SVM-RBF classifier shows a relatively low 
sensitivity to the curse of dimensionality  and higher 
classification accuracy as compared to the SVM-Linear, 
K-nn and the RBF-NN classifiers[see Fig.3]; 2) the SVM-
RBF classifier still preserve its superiority when 
integrated in a feature reduction-based classification 
scheme; and 3) though the SVM performs well in the 
whole original feature space, its accuracy can still be 
improved provided that a subspace of higher 
generalization capability can be found. 
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Figure 3.Overall accuracy versus the number of original features 
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Figure 4. Overall accuracy versus the number of  PCA features 

C. Experiment 3: Classification With PSO–SVM 
As described in Section Ⅲ, the proposed PSO–SVM 

classification system aims at enhancing the SVM-RBF 
classification process from two different viewpoints [20]: 
1) by automatically detecting a feature subspace of higher 
genera- lization capability in order to deal in a more 
effective way with the curse of dimensionality, instead of 
reducing the dimension of the original feature space 
basing on PCA and 2) by passing from an empirical 
tuning of the value of the two SVM parameters to their 
automatic optimization. This experiment is aimed at 
assessing the effectiveness of this methodological 

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 OA[%]
SVM-Linear 88.29 76.53 96.62 99.16 99.6 62.37 89.37 90.94 99.22 88.47
SVM-RBF 91.91 81.07 96.62 99.44 99.6 68.19 94.94 96.12 99.53 92.63
K-nn 77.02 68.88 92.83 99.16 99.21 66.32 86.1 57.61 95.96 82.74
RBF-NN 97.44 73.51 87.67 78.13 99.21 98.04 91.98 73.72 80.06 85.92

CLASSIFICATION ACCURACY[%]
Method

TABLEⅡBEST OVERALL AND CASS-BY-CLASS ACCURATES BY DIFFERENT
CLASSIFIERS IN THE ORIGINAL HYPERSPECTRAL SPACE
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enhancement. To this purpose, we apply the PSO-SVM 
classifier to the available training data. Note that each 
particle of the swarm was defined by position and velocity 
vectors of a dimension of 202. At convergence of the 
optimization process, we assessed the PSO–SVM-RBF 
classifier accuracy on the test samples. The achieved 
overall accuracy is 95.25% corresp- onding to substantial 
accuracy gains as compared to what is yielded either by 
the SVM classifier (with the Gaussian kernel) applied to 
all available features (+2.62%) or by the PCA-SVM 
classifier. Moreover, by means of this approach, the 
average subset feature number is 120, which is fewer than 
original feature number 220. The whole process is 
automatic and without user’s interface.  

In the experiments, when using the proposed intelligent 
optimization methods, we considered the nonlinear SVM 
based on the popular Gaussian kernel (referred to as 
SVM-RBF). The related parameters C and γ for this 
kernel were varied in the arbitrarily fixed ranges [10−3, 
300] and [10−3, 3], so as to cover high and small 
regularization of the classification model, and fat as well 
as thin kernels, respectively. The experiments are 
implemented by LIBSVM [17]. 

LIBSVM is widely used in SVM classifier, but the 
value of RBF kernel parameters is always difficult to 
define. The default values are as follows: C is 1, and γ is 
the reciprocal of the dimension. In our experiment, the 
dimension is the band number, so the parameter value of γ 
is 0.005.In the same way, the default value of C of  SVM 
parameter in ENVI is 100, and γ is the reciprocal of the 
dimension. In our experiment, the dimension is the band 
number, so the parameter value of γ is 0.005. In addition, 
we also select SVM parameters by grid algorithm. In grid 
algorithm, according to reference [17],the range of C and 
γ is [ 2-5 , 215] and [2-15 , 23],the step length is 22. 

Concerning the PSO algorithm, we considered the 
following standard parameters: swarm size S=20, inertia 
weight w=1, acceleration constants c1 and c2 equal to 2, 
and maximum number of iterations fixed at 300. The 
parameters  setting is summarized in Table Ш. 

Table Ш  Parameters setting of different methods 
PSO-SVM   Grid  Algorithm 
Parameter Value Parameter Value 
Swarm size 20 C [2-5, 2-3，⋯,215] 
Number of 
generations 300 γ [2-15, 2-13，⋯,23] 

Vmax 4   
C1, C2 2   

 
In addition, for comparison purpose, we implemented 

the three traditional methods and our two intelligent 
optimization methods for classification. The experimental 
comparation results are shown in  Figure 5 and TABLE 
IV.  

Table  IV illustrates the classification of different 
classifiers. As can be seen our proposed classifier have 
better accuracy than traditional classifiers. The LIBSVM 
default setting lead to the lowest accuracy, which is 
52.79%.The best percentage of classification, is 95.25% 

by PSO-SVM method. The results still confirm the strong 
superiority of our proposed PSO-SVM over the other 
classifiers, with a gain in overall accuracy +12.80% and 
+4.27% with respect to the default SVM classifier in 
ENVI and the grid algorithm classifiers (see TABLE IV). 
    From the obtained experimental results, we conclude 
the proposed PSO-SVM classifier has the best 
classification accuracy account of its superior 
generalization capability as compared to traditional 
classification techniques. 

    
(a) Train data and test data   (b) Ground truth data 

       
(c) LIBSVM 52.79%           (d) ENVI 82.45% 

           

(e) Grid algorithm 90.98%        (f) PSO-SVM 95.25% 

Figure 5.  Classification accuracy of different classifiers 

The Grid search algorithm is a common method for 
searching for the best C and γ .In the Grid algorithm, 
pairs of (C, γ ) are tried and the one with the best cross-
validation accuracy is chosen. After identifying a ‘better’ 
region on the grid, a finer grid search on that region can be 
conducted. This research conducted the experiments using 
the proposed  PSO-SVM approaches and the Grid 
algorithm. The results from the proposed method were 
compared with that from the Grid algorithm. In all of the 
experiments 10-fold cross validation is used to estimate 
the accuracy of each learned classifier.  

We apply the PSO-SVM classifier to the available 
training data. Note that each particle of the swarm was 
defined  
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Table IV Classification result by different parameter selection methods 

Methods of selecting parameters C γ 
 

 Band num 
 

Classification accuracy(%) 

LIBSVM default 1 0.005 200 52.79 
ENVI default 100 0.005 200 82.45 

10 –cross validation 
(grid search algorithm) 8 2 200  

90.98 
PSO-SVM 223.32 0.9696 120 95.25 

 

 
VI.  SPECTRAL AND WAVELET FEATURE SELECTION 

From the perspective of signal processing ,the 
hyperspectral curve of each pixel can be thought as a 
one-dimensional (1-D) vector.By using the wavelet 
transform, the hyperspectral vector is transformed from 
the spectral space to the time-scale space. The wavelet 
analysis involves two compounds:  approximations and 
details. For 1-D wavelet decomposition, starting from 
original hyperspectral vector s, the first step produces two 
sets of coefficients: approximation coefficients (scaling 
coefficients) a1 and detail coefficients (wavelet 
coefficients) d1. These coefficients are computed by 
convolving original hyperspectral vector with the low-
pass filter for approximation and with the high-pass filter 
for detail. The convolved coefficients are down-sampled 
by keeping the even indexed elements. Then, the 
approximation coefficients a1 are split into two parts by 
using the same algorithm and are replaced by a2 and d2, 
etc. This decomposition process is repeated until the 
required level is reached. The coefficient vectors are 
produced by down-sampling and are only half the length 
of the signal or the coefficient vector at the previous level. 
Conversely, approximations and details are constructed 
inverting the decomposition step by inserting zeros and 
convolving the approximation and detail coefficients with 
the reconstruction filters. Fig.6 shows a wavelet 
decomposition tree at level 3. Notice that the 
approximation preserves most of the trend of original 
spectrum, in our study, we select some approximate 
coefficient as wavelet feature. we find that when the 
wavelet decomposition level is 3,the approximate 
coefficient number is 25, and the classification is higher 
than wavelet decomposition level 2. 

  

 Figure 7 represent the spectral and wavelet feature 
solution. In the new feature space, when using our 
propsoed PSO approach to select best feature subset and 
parameters of SVM.First, for the feature selection, if n 
features are required to decide which features are chosen, 
then M+N+2 decision variables must be adopted. The 
value of M+N variables ranges between 0 and 1. If the 
value of a variable is less than or equal to 0.5, then its 
corresponding feature is not chosen. Conversely, if the 
value of a variable is greater than 0.5, then its 
corresponding feature is chosen. Fig. 9 illustrates the 
solution representation. C is penalty cost, γ represents a 
parameter of RBF-SVM kernel function. an=Feature n is 
selected.  

Figure 7. The representation of spectral 、wavelet feature 
of image and parameters  C and γ of SVM. 

Fig.8 represent the performance process of PSO-SVM in 
spectral and wavelet feature space. In the flow char, 
Y,Wtr ,Wte, Ptr, and Pte represent the original feature 
vector，spectral and wavelet feature vectors for training 
and test samples，and selected PSO feature vectors for 
training and test samples．N，Ntr, Nte,dori, dw,and dpso 
represent the number of whole samples ， training 
samples and test samples， dimension number of the 
original data vector ， dimension number of spectral 
features and wavelet approximate coefficients at the third 
level,and the number of selected PSO features, 
respectively.The PSO and SVM parameters  setting is the 
same as section V.From TABLE V,we can see that the 
classification accuray is 97.48% by PSO-SVM in spectral 
and wavelet feature space,the obtained result is 2.23% 
increase than classification accuracy (95.25%) in only 
spectral feature spaces. 
 

Table V.Classification result by different feature selection methods  

Feature space C γ 

 
feature 
num 

 

Classification 
accuracy(%) 

 spectral 223.32 0.9696 120 95.25 
spectral+wavele

t features 243.56 0.8945 125 97.48 

Spectral features(N bit) Wavelet features(M bit) C γ 
1 ……… N N+1 …… D+M D+M+1 D+M+2 
a1 ……… aN T1 …… TM C γ 
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VII.  CONCLUSION 
From the obtained experimental results, we can 

strongly recommend the use of the SVM approach for 
classifying hyperspectral remote sensing image on 
account of their superior generalization capability as 
compared to traditional classification techniques. This 
capability generally provides them with higher 
classification accuracies and a lower sensitivity to the 
curse of dimensionality compared with traditional 
classifiers.First, we present a thorough experimental 
study to show the superiority of the generalization 
capability of the support vector machine (SVM) approach 
in the hyperspectral classification of remote sensing 
image. 

Second,this study also presents a particle swarm 
optimization-based approach, capable of searching for the 
optimal parameter values for SVM, simultaneous 
obtaining a subset of beneficial features. This optimal 
subset of features is then adopted in both training and 
testing to obtain the optimal outcomes in classification. 
Comparison of the obtained results with those of other 
approaches demonstrates that the developed PSO-SVM 
approach has a better classification accuracy than others 
tested.  

Third, traditional classifications of hyperspectral 
remote sensing have made use of spectral information 
mainly. Wavelet feature based on discrete wavelet 
transform are proposed to classify hyperspectral remote 
sensing images.Aim at the condition, the paper proposes 
PSO algorithms to optimize feature selection in wavelet 
features and spectral features. Compared with traditional 
spectral feature space classification, the new feature space 
has larger features information. Experiment indicates the 
classification method which combines wavelet feature and 
spectral feature can get better results than only using 
spectral feature classification. 
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