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Abstract—Collaborative Filtering (CF) is one of the widely 
used methods for recommendation problem. The key idea is 
to predict further the interests of a user (ratings) based on 
the available rating information from many users. Recently, 
matrix factorization (MF) based approaches, one branch of 
collaborative filtering, have proven successful for the rating 
prediction issues. However, most of the state-of-the-art MF 
models share the same drawback that the established mod-
els are static. They are only capable of handling CF systems 
with static settings, but never practical for a real-world sys-
tem, which involves dynamic scenarios like new user signing 
in, new item being added and new rating being given now 
and then. For conventional MF models, they have to con-
duct repetitive learning every time dynamic scenario occurs. 
It is computational expensive and hard to meet the real-time 
demand. Therefore, an incremental learning framework 
based on Weighted NMF is proposed. To reduce the compu-
tational cost, it utilizes partially the optimization informa-
tion from the original system, and stores some correspond-
ing information for the subsequent incremental model. Our 
empirical studies show that the IWNMF scheme for differ-
ent dynamic scenarios greatly lower the computational cost 
without degrading the prediction accuracy. 
 
Index Terms—Dynamic Collaborative Filtering, Weighted 
Nonnegative Matrix Factorization, Incremental Learning 
 

12BI.  INTRODUCTION 

The introducing of recommendation technologies is 
changing the way people use Internet. The recommend 
progress can dominate the user’s browse order and lead 
users discover what they like. It helps users obtain 
preferred information from huge collections of 
information resources. Recommendation Systems can 
now be found in many Internet application domains and 
has brought huge commercial interest. Examples include: 
38% of Google News’ more click-through are due to 
recommendation, 2/3 of Netflix’s rented movies are from 
recommendation, and 35% of Amazon’s sales are from 
recommendation, and so on [1]. Among all, the most 
typical and influential example in both academic and 
industrial communities should be the Netflix Prize 
competition [2], which greatly promotes the development 
of recommendation technology. 

What recommendation system does is to learn 
preferences of users based on history purchase record or 

rating data for some items, then to accurately predict 
which other items users might prefer, and finally provide 
users with a list of recommended items. A very common 
task for recommendation is to predict ratings (e.g. one 
star through five stars) over a set of items. It is an implicit 
act of recommendation. Lots of work has been done to 
find more appropriate algorithms for this task [3] [4]. 

Matrix Factorization models have become popular 
recently and have provided good performance in 
recommendation system. The main idea behind such 
models is that the taste of a user could be represented by 
a number of latent factors and by applying factorization, 
the original rating matrix is mapped into a latent space in 
which objects could have a compact representation. 
Several matrix factorization models have been proposed 
for collaborative filtering [4] [5] [6] [7] [8]. They either 
incorporate a positive regularization item or a nonne-
gative constraint to enhance the linear factor model. 
However, all these models share the same drawback that 
the established models are static. They are designed for 
the case that users, items and ratings are fixed, therefore 
can’t respond adaptively while the system setting varies. 
Every time new users, items or ratings enter the system, 
they have to conduct repetitive learning. For an online 
system involves hundreds of thousands of users and items, 
it is always time-consuming to train a prediction model. 
Relearn the matrix factorization model based on the 
whole new data is unsuitable for real-time collaborative 
filtering application. A dynamic collaborative filtering 
technique is crucial. 

In this paper, we consider an incremental learning 
framework for dynamic collaborative filtering, which is 
based on one of the weighted-based model, Weighted 
Nonnegative Matrix Factorization(WNMF) [7]. The basic 
idea is to keep part of the parameters from the original 
model available, and update other parameters from the 
new information. We refer to our model as Incremental 
Weighted Nonnegative Matrix Factorization(IWNMF). 

The proposed model is inspired by some incremental 
techniques applied in face recognition and dynamic 
background modeling [9] [10] [11]. All these schemes try 
to avoid relearning the whole model parameters and 
deduce computational cost by introducing incremental 
learning. Differing from the aforementioned models, we 
exploit how to use the incremental techniques directly for 
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Figure 1.  Toy example: A denotes the complete matrix; A represents 
the partially observed matrix, missing elements of which are set to 0; 

Â is the prediction matrix. 

a dynamic collaborative system. Meanwhile, some 
mathematical tricks are provided to further reduce the 
calculated amount. 

The rest of this paper is organized as follows. In 
Section 2, briefly review of the conventional WNMF 
model is presented. The IWNMF framework and 
theoretical analysis for different dynamic scenarios are 
given in Section 3. In Section 4, the results of the 
experiments are demonstrated. In Section 5, an overview 
of state-of-the-art methods for collaborative filtering is 
provided. Finally, a conclusion is drawn in Section 6.  

13BII.  WEIGHTED NMF OVERVIEW 

0BA.  Recommender System 
Suppose that there are  users and  items in the 

recommendation system. There exists between every 
user-item pair a preference measurement which could be 
quantified as a specific value, referred to as rating. 
Ratings are a set of discrete numbers coming from 
{ }1,2, , R . All these m n×  ratings form a complete 

matrix A , each element of which shows how much a 
user likes or dislikes an item. However, in reality 
application A  is partially observed, i.e. we can only 
obtain a matrix A  with a small part of its elements 
known. The task of recommendation then becomes 
learning a prediction models based on the observed 
elements, so that the fill in matrix could approximate the 
complete matrix A  as close as possible [12]. Fig.1 
example is the toy example on the problem we discuss. 

This user preference prediction task can be formulated 
as a matrix factorization problem. Namely, for a given 
user-item rating matrix , we need to find two matrixes 

m kU R ×∈  and k nV R ×∈ , so that ~A UV , where 
parameter k  represents the number of latent features 
reflect preference, each row of U shows how a user 
appreciate each factor, and each row of V indicates that 
to what extent an item possess each feature. Then rating 
on item j  by user i  can be formulated as: 

 
1

ˆ
k

it tj
t

r U V
=

= ∑ . (1) 

1B B.  WNMF Framework 
For the rating matrix is incomplete and sparse in the 

application of recommender system, a zero/one weighting 
factor is introduced to NMF [7]. Weighted nonnegative 
matrix factorization (WNMF) temps to find a linear 
matrix that maximizes the log-likelihood of the observed 
data. The optimization model could be described as 
follows: 

 

2min  ( ( ) )
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       ,

ij ij ij
ij
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1,     

0,     
ij

ij
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if A is observed
W

if A is unknown
⎧⎪= ⎨
⎪⎩

. 

The following updating rules can be derived by 
applying Lagrange Multiplier and Karush-Kuhn-Tucker 
complementary condition: 

 
((  ) )
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It is proven by [13] that the WNMF algorithm is 
guaranteed to converge. According to the updating rules 
(3) and (4), the computational complexity for WNMF is 

( )O mn mnk+ , i.e. ( )O mnk . 

14BIII.  INCREMENTAL WEIGHTED NONNEGATIVE MATRIX 
FACTORIZATION 

In this section, we will present how online updates 
could be applied to deal with the dynamic changes of the 
system without having to relearn the whole model. The 
solution of new user, new item and new rating problem 
will be discussed in III-B.1, III-B.2 and III-B.3 
respectively. 

2BA.  Problem Description & Notations 
From the above discussion, we can tell that the aim of 

collaborative filtering system is to learn the optimized 
features for both users and items, and then make the 
recommendation. To be concise and to the point, the 
recommender progress for both static and dynamic 
collaborative filtering are illustrates in Fig.2, where 
<User, Item, rating> stands for the original triplets, and 
Δ <User, Item, rating> stands for the increments. Let’s 
discuss the difference between WNMF and IWNMF 
framework under a dynamic case. Figure in the middle 
shows that the conventional WNMF framework simply 
integrates the increments into the original <User, Item, 
rating> triplets, and then rerun the iterative updates, 
which utilizes none of the features information from the 
original factorization. As to IWNMF framework for new 
entries (See the figure at the bottom), we can see the 
increments act on the result of the original model directly. 
It makes use of the old data, therefore could lower the 
computational cost. 
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Figure 2.  Diagrams for both Static and Dynamic Collaborative Filtering: the top diagram illustrates the WNMF framework for static environment; 

the middle diagram shows the WNMF for dynamic scenario; the bottom demonstrates the IWNMF for dynamic scenario. 

For convenience, we unify the notations that used in 
the following sections in Table I. 

3BB.  IWNMF Models 
Before we start our discussion, we need to declare a 

prerequisite, which is: For the original static system, we 
already get ~ o oA U V , where m kA R ×∈ , o m kU R ×∈ and 

o k nV R ×∈ . That is to say, 

( , )

2

( , ) 1 1

( , ) arg  min  ( , )

arg  min  ( ( ( ) ))

o o

U V

m n

ij ij ijU V i j

J U V J U V

W A UV
= =

=

= −∑∑
. 

1) 9BNew User enters 
When a new user 1mu +  with a few ratings signs in, the 

new rating matrix becomes: 

1

U
T
m

A
A

x +

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

where 1
T
mx +  is a row vector that records the rating 

information of 1mu + , and the corresponding weighting 
vector is 1

T
mw + . 

The objective function for the dynamic system is: 

 

1
2

1 1

2

1 1

2
1 1 1

1

( , ) ( ( ) )

( ( ) )

( ) (( ) ( ) )

m n
U U

ij ij ij
i j

m n

ij ij m ij
i j

n
T T T
m j m j m j

j

J U V W A UV

W A U V

w x u V

+

= =

= =

+ + +
=

= −

= −

+ −

∑∑

∑∑

∑

. (5) 

Considering the case that the number of ratings a new 
user owes is far less than that of items in the system. 
Therefore, the entries of the new user don’t have the 
power to significantly affect the distribution of the other 
users in the feature space. We can assume that the feature 

representation of the original users in the dynamic system 
is approximately equal to that in the static original system, 
so that mU  in (5) can be set to oU  in advance. Then the 
objective function becomes: 

 

2
1

1 1

2
1 1 1

1

( , ) ( ( ) )

( ) (( ) ( ) )

m n
o

m ij ij ij
i j

n
T T T
m j m j m j

j

J u V W A U V

w x u V

+
= =

+ + +
=

= −

+ −

∑∑

∑
. (6) 

Perform the Lagrange Multiplier method and using the 
Karush-Kuhn-Tucker complementary condition, we can 
get the (7): 

TABLE I.   
NOTATIONS 

Notation Description 
( , )J U V the objective function of the optimization model for CF

A  the original partially observed rating matrix 
UA  partially observed rating matrix with a new user sigh in
IA  partially observed rating matrix with a new item added 
RA  partially observed rating matrix with a new rating given

W  weighting matrix correspond to A  
UW  weighting matrix correspond to UA  
IW  weighting matrix correspond to IA  
RW  weighting matrix correspond to RA  
oU  the optimized User feature matrix given A   
oV  the optimized Item feature matrix given A  

mU  feature matrix for the original m  users 

nV  feature matrix for the original n  items 

1
T
mu +  feature vector of user 1m +  

1nv +  feature vector of item 1n +  
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Then the multiplicative updates can be derived as 
follow: 

 ( ) ( )
( )( )

( )( )( )
1 1

1 1

1 1

 

 

m m a
m ma a T

m m
a

V x w
u u

V V u w
+ +
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 1 1
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m m m ij

U A u x
v v
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+ + +

+
←

+
.(9) 

Although the IWNMF model under updating rule (8) 
doesn’t need to relearn the features of the original users, 
the updating rule (9) for calculating  still has a 
computational complexity of ( )O mnk . The whole 
IWNMF model shares the same complexity with WNMF, 
which is unacceptable. We try to apply some 
mathematical tricks to handle this issue. 

The updating rule for calculating V in WNMF can be 
rewritten as: 

 
( (  ))

( (( )  ))

T
ij

ij ij T
ij

U A W
v v

U UV W
← , (10) 

 ( ) ( ) ( ):, :, :,

( )
((  ) )

(     )

T
ij

ij ij T
i j j

U A
v v

U W U V

W is a binary matrix

←
. (11) 

The updating rule for calculating V in IWNMF can be 
rewritten as: 

 1 1

1 1 1

(( ) )

(( ) (  ) (( )  )

o T T
m m ij

ij ij o T o T T
m m m ij

U A u x
v v

U U V W u u V w
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 1 1
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ij ij o T
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+
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We can observed that ( )o TU A and (:, ) (:, )(  ) oo T
i jU UW  

in (12) are fixed numbers during the interactive progress; 
once computed, they could be stored and don’t need to 
compute again. Furthermore, these two factors could be 
obtained directly from the original static WNMF model 
(see (10)), they even don’t need to recalculate in the 
IWNMF model. Hence, the computational complexity of 
IWNMF for new user problem under (8) and (12) is 

2( )O nk nk+ , i.e. 2( )O nk . 
 

2) 10BNew Item enters 
When a new item 1nv +  with a few ratings signs in, the 

new rating matrix becomes: 

[ ]1   I
nA A x += , 

where 1nx +  records the rating information of 1nv + , and 
the corresponding weighting vector is 1nw + . 

The objective function for the dynamic system is: 

 

1
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2
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1

( , ) ( ( ) )
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Symmetrically, new item problem is similar to new 
user problem. The entries of a new item don’t have the 
power to significantly affect the distribution of the other 
items in the feature space. Hence, the objective function 
becomes: 
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Perform the Lagrange Multiplier method and using the 
Karush-Kuhn-Tucker complementary condition, we can 
get the multiplicative update rules as follows: 

 1 1

1 1 1
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To further reduce the complexity complexity, we also 
utilize some mathematical tricks to rewrite the updating 
rules. The updating rule (3) for calculating  in WNMF 
can be rewritten as: 

 
((  ) )

((( )  ) )

T
ij

ij ij T
ij

A W V
u u

UV W V
← , (18) 

 ( ) ( ) ( ),: ,: ,:( (  )

(     )

T
ij

ij ij T
i j j

AV
u u

U V V W

W is a binary matrix

←
. (19) 

The updating rule (16) for calculating U  in IWNMF 
can be rewritten as: 
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In (20), ( )o TA V and ( ,:) ( ,:)(  )o o T
j iV V W  are two constant 

factors, and can be obtained from the original WNMF 
model (see (18)). Hence, the computational complexity of 
IWNMF for new item problem under (20) and (17) is 

2( )O mk mk+ , i.e. 2( )O mk .  
 

3) 11BNew Rating enters 
Without loss of generality, assume that the new rating 

is given by user m  on item n . In order to express the 
problem well, we partitioned the corresponding matrices. 
The block form of the new rating matrix RA  and the 
original rating matrix A  in (22) shows the connection 
between the two matrices. 

 
' '      

,   
     0

n nR
T T
m mn m

A x A x
A A

x x x
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⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (22) 

where 
( 1) 1T n

mx R − ×∈ ,  ( 1) 1m
nx R − ×∈ are two rating vectors. 

T
mw , nw  are the corresponding weighting vectors. 

mnx  is the newly graded rating value. 
Then the objective function for new rating problem is: 
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∑

. (23) 

Considering the case that a new item doesn’t have 
sufficient power to significantly affect the relationship 
between different users and items. Therefore, we assume 
that this new rating only affect the feature representation 
of user m  and item n . In such assumption, U ′  is equal 
to the first ( 1)m −  rows of oU , and V ′  is equal to the 
first ( 1)n −  columns of oV . Hence, U ′  and V ′  in (23) 
are fixed matrices. 

Then the objective function becomes: 
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Perform the Lagrange Multiplier method and using the 
Karush-Kuhn-Tucker complementary condition, we can 
get the multiplicative update rules as follows: 
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4BB.  Summary of Computational Complexity 
The computational complexity of both WNMF and 

IWNMF are summarized in table II. We can tell from the 
table that the WNMF model is computational expensively, 
the training time increases linearly by the number of users 
and items involved in the system. And the IWNMF 
model has a much lower computational complexity. 
Furthermore, the computational complexity is 
independent of the number of users for a new user model; 
symmetrically, the computational complexity is 
independent of the number of items for a new item model. 

15BIV.  EXPERIMENTAL RESULTS 

In this section, we conduct several experiments to 
compare the prediction accuracy and complexities 
between WNMF and IWNMF model. All experiments 
were done on a PC with 2.8GHz processor and 2GB 
RAM. 

5BA.  Dataset Description 
Our algorithms were evaluated on the famous 

benchmark collaborative filtering data set MovieLenseF

1
F, 

collected by GroupLens Research Lab at the University 
of Minnesota. The dataset contains 100,000 movie ratings 
of 943 users for 1682 movies, on which ratings are made 
on a 5-star scale, and whole-star ratings only, and 0 
indicates that the movie is not rated by the user. Table III 
summarizes the characteristics of the dataset. 

                                                           
1 http://www.grouplens.org/node/73 

TABLE II.   
COMPUTATIONAL COMPLEXITY 

Models Computational Complexity 
WNMF ( )O mnk  
IWNMF for new user 2( )O nk  
IWNMF for new item 2( )O mk  
IWNMF for new rating ( ( 2))O k m n+ −  

 

TABLE III.   
DATASET DESCRIPTION 

 MovieLens 
Number of Users 943 
Number of Products 1,682 
Number of Ratings 100,000 
The scale of Ratings 1 ~ 5 
Density(%) 6.3 
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Figure 3.  Prediction Accuracy: WNMF vs. IWNMF 

6BB.  Evaluation 
We use Root Mean Square Error (RMSE) to measure 

the predictive accuracy, which is widely used in 
prediction tasks. RMSE is defined as: 

 
2ˆ( )ij ijij

r r
RMSE

N

−
=
∑

, (27) 

where ijr  denotes the actual ratings given by user  on 
item j , îjr  denotes the predicted ratings given by user  
on item j , N denotes the number of ratings predicted on 
testing set. 

To measure the computational complexity, running 
time is adopted. 

7BC.  Prediction Accuracy: WNMF vs. IWNMF 
Fig.3 shows the RMSE obtained by applying WNMF 

and IWNMF for different dynamic scenarios. The 
IWNMF models achieve approximately the same 
prediction accuracy with WNMF model. 

8BD. Computational Complexity: WNMF vs. IWNMF 
To investigate the computational complexity, we 

record the runtime for iteration in seconds for different 
models. From Fig.4, we observe that 1) In a scenario of a 
new user entering, the IWNMF model learns faster than 
the conventional WNMF, and the running time remain 
almost the same along with the number of new users 
increase; 2) In a scenario of a new item added, the 
IWNMF model learns faster than the conventional 
WNMF, and the running time remain almost the same 
along with the number of new items increase; 3) In a 
scenario of a new rating given, the IWNMF model 
updates faster; 4) The computational cost grows nearly 
linear for WNMF as the size of the system increase. The 
experimental results show the consistence with the 
theoretical analysis. 

16BV.  RELATED WORK 

Collaborative Filtering (CF) algorithms are the main 
and widely used technology in recommendation systems. 
The key idea is to predict further the interests of a user 
(ratings) based on the available rating information from 
many users. The assumption behind collaborative 
filtering is that users should be interested in those items 
that are similar with items users have selected before or 
have been selected by users who share similar tastes with 
the target user. In the literature [14] [15] [16], CF 
algorithms can be divided into two categories: memory-
based methods and model-based methods. Memory-based 
methods apply some heuristic rules over all historical 
ratings to form a specific formulation, and directly 
generate predictions. The main part of memory-based 
methods is similarity measurements and k-nearest 
neighbors calculation [14] [17] [18]. Model-based 
methods use the historical ratings to learn a model, and 
then apply it for prediction. Examples of model-based 
methods include clustering model [19], aspect 

models [20], the flexible mixture model [21] and latent 
factor models [5] [7] [22] [16]. 

Due to its ability to efficiently handle large scale 
problems and extract latent features, Matrix Factorization 
has become one of the powerful CF models. It belongs to 
the model-based category. By using low rank 
approximations, it tries to capture a number of factors 
that really influence tastes and how each factor applies to 
each user. The main objective is to learn a model that 
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Figure 4.  Computational Complexity: WNMF vs. IWNMF 

maximizes the log-likelihood of the observed rating. In 
the literature, a positive regularization item or a 
nonnegative constraint is usually adopted to enhance the 
linear factor model. Takács et al. [5] proposed a model 
that minimizes the total squared training error on the 
known element, and a gradient decent algorithm is 

applied to solve the model. To prevent over-fitting, the 
model also introduce a regularization item with factor λ . 
The model, named as Regularized Matrix Factorization 
(RMF), is also mentioned in Wu’s work [4]. The non-
negativity constraint is enforced to guarantee the 
interpretability of the matrixes factorization model, which 
restrict that all the elements in the factor matrix U  and 
V  should be non-negative. The WNMF method 
proposed by Zhang et al. [7] uses the least squares error 
as the cost function to guide the NMF performance while 
Wu [4] use the generalized Kullback-Leibler divergence 
as the measurement. Multiplicative rules can be deduced 
based on the work represented by Lee and Seung [23]. 
Yoo and Choi [24] proposed a co-tri-factorization model 
which simultaneously factor several matrixes into 3-
factor decompositions to effectively handle the cold-start 
cases. Chen et al. [25] presented an ensemble model to 
hybrid nonnegative matrix tri-factorization and memory-
based method to improve prediction accuracy and solve 
the sparsity and scalability problems. 

All models mentioned above are static. Once been 
trained, the prediction model remains fixed. Though 
provide good predictive accuracy, they are not capable of 
handling the situation where new users sign in, new items 
added and new ratings given over time in a real-word 
recommender systems. An on-line processing strategy 
that could make the efficient update possible is crucial for 
the dynamic recommend applications. 

Incremental learning models based on Singular Value 
Decomposition (SVD) for recommender systems have 
been studied by Brand [26] and Sarwar et al. [27]. They 
do help recommender systems achieve high scalability 
but may suffer from imputation and over-fitting. 
Furthermore, a SVD requires complete data matrix, it is 
not the best choice for recommender systems with a 
highly sparse data matrix. In contrast with the SVD-based 
models, our work intends to present incremental learning 
for WNMF. 

17BVI.  CONCLUSION 

In this paper, we propose an incremental learning 
framework for dynamic collaborative filtering, which is 
established based on the Weighted NMF model. It well 
addresses the time-consuming online updating problem 
by utilizing partially the optimization information of the 
original system, which leads to a very fast performance. 
Experiments on benchmark dataset show that the 
IWNMF scheme for different dynamic scenarios greatly 
lower the computational cost without degrading the 
prediction accuracy. 
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