
SA Based Software Deployment Reliability
Estimation Considering Component Reliability

of Exponential Distribution

Xihong Su
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

Email: suxihong07@gmail.com

Hongwei Liu, Zhibo Wu, Xiaozong Yang, Decheng Zuo
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

Email: {lhw, wzb, xzy, zdc}@ftcl.hit.edu.cn

Abstract—Although many approaches for architecture-
based reliability estimation exist, these approaches are
typically limited to certain classes or exclusively concentrate
on software reliability, neglecting the influence of hardware
resources, component reliability, component replica and
software deployment. In this paper, a reliability estimation
model based on software architecture (SA) is presented.
This model incorporates the influence of software
deployment, component reliability and component replica.
Component lifetimes can be modeled by exponential
distribution. The approach of calculating system reliability
considering component replica and component reliability is
proposed. The influences of different deployment
architectures on component reliabilities and system
reliability are investigated. The improvement of system
reliability by redeployment or component replica is
discussed.

Index Terms—software architecture, software deployment,
component reliability, exponential distribution, component
replica, system redeployment

I. INTRODUCTION

The past few decades have witnessed an unrelenting
pattern of growth in size and complexity of software
systems, which will likely continue well into the
foreseeable future. This pattern is further evident in an
emerging class of embedded and pervasive software
systems that are growing in popularity due to increase in
the speed and capacity of hardware, decrease in its cost,
emergency of wireless ad hoc networks, proliferation of
sensors and handheld computing devise, etc. Studies
have shown that a promising approach to resolve the

challenges of developing large scale software system is
to employ the principles of software architectures [1,2].
Software architecture provides abstractions for
representing the structure, behavior, and key properties of
a software system. They are described in terms of
software components (computational elements),
connectors (interaction elements), and their
configurations [3, 4].

Many approaches have begun to predict reliability at
the level of architectural models, or at least in terms of
high-level system structure [5-12]. Firstly, these
researchers acknowledge that reliabilities of components
have a significant impact on system reliability, but they
almost invariably assume that the reliabilities of the
components in a system are known. The few researchers
consider component-level reliability [8, 10], assume that
the reliabilities of a given component elements, such as
its services, are known. Secondly, these approaches are
typically limited to certain failure classes or exclusively
concentrate on software reliability, neglecting the
influence of hardware resources, software deployment
and component replica. In a given context, some of these
deployment configurations are obviously more effective
than others in terms of reliability. Additionally, if replica
of critical software components exists, failure of one host
node does not mean that the whole system fails.
Therefore, we propose a new SA based reliability
estimation model, incorporating the influence of software
deployment, component replica and component
reliability.

The rest of this paper is organized as follows. Section
II describes system deployment architecture. Section III
investigates component replica and component reliability.
Section IV proposes an approach of calculating system
reliability. Section V gives the experiments. Section VI
presents the conclusions and directions of future study.

II. SYSTEM DEPLOYMENT ARCHITECTURE

In this section, we present an overview of whole
structure of system deployment architecture. System

Manuscript received September 8, 2010; accepted February 18,
2011.

Supported by High Technology Research and Development Program
of China (Project No. 2008AA01A201), National High Technology
Research and Development Plan of China (Project No.
2006AA01A103), National Nature Science Funds of China (Project No.
60503015)

Communication author: Xihong Su, born in 1981, female, Ph.D.
Harbin Institute of Technology, Harbin 150001, China

1140 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.6.1140-1145

deployment architecture is the allocation of the system
software components on its hardware host nodes [13].
We also introduce the frequency matrix CC of interaction
among software components.

A. Whole Structure
The basic entities of SA based software deployment

reliability estimation model include host nodes, software
components and services. In details, the model consists
of

1) a set H of host nodes, 1 2{ , , , }mH H H H= … ,which
represents the host nodes of a system.

2) a set C of components, 1 2{ , , , }nC C C C= … . Each
component may have multiple component replica.

3) a set S of services, which describes the different use
cases that the whole system offers and can perform. A
service is composed of the interaction among software
components in a system.

All components of set C should be deployed on
m host nodes. Matrix CH describes how to deploy
components on host nodes.

1 2

1,1 1,2 1,1

2,1 2,2 2,2

,1 ,2 ,

n

n

n

m m m nm

C C C
ch ch chH
ch ch chH

CH

ch ch chH

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
"

##
"

Each entry ,i jch in matrix CH may be 1 or 0.

,

0,

1,
j i

i j
j i

if component C isnot deployed on host node H
ch

if component C is deployed on host node H
⎧⎪= ⎨
⎪⎩

For a system comprising m host nodes and n software
components, the number of system deployment
architectures is

nm . In general, determing the system
deployment architecture that will maximize its reliability
for the given target environment is an exponential
complexity problem.

B. Frequency of Interacton among Software
Components

Matrix CC describes frequency of interaction among

software components. 1 2{ , , , }nC C C C= … is a set of

components. Each entry ,i jcc in matrix CC represents
the frequency of interaction between software

component iC and jC . ,i jcc is an integer number in[,]a b .
The values of a and b depend on concrete system.

1 2

1,1 1,2 1,1

2,1 2,2 2,2

,1 ,2 ,

n

n

n

n n n nn

C C C
cc cc ccC
cc cc ccCC C

cc cc ccC

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
"

##
"

III. COMPONENT RELIABILITY AND COMPONENT
REPLICA

System reliability can be appropriately evaluated
through component reliability. When there is not enough
failure data, it is very common to make certain
reasonable assumptions. A common assumption is that
the system lifetime follows an exponential distribution.
In this section, we suppose that all components follow
exponential distribution and particularly depend on
frequency of interaction among software components, as
shown in formula (1). iRC is the reliability of

component iC .Component failure rate iCλ is a function of

interaction frequency ifC of component iC .

 , 1, 2, ,iC t
iRC e i nλ− ×= = … (1)

For a system consisting of m host nodes and n
software components, if component iC has been identified
as a candidate for replication, iC should be replicated

1m − times. That is, iC has 1m − component replicas
or m components provide the same service. With
redundant copies, a replicated component can continue to
provide a service in spite of the failure of some of its
copies.

'' ,
, 1,2, ,

' ,
i i

i
i

C if C is replicated
C i n

C otherwise
λ

λ
λ
⎧

= =⎨
⎩

…
 (2)

 0'i i c other otherC fC fλ ρ λ ρ= × + + × (3)

 0''i other otherC fλ λ ρ= + × (4)
cρ frequency criticality of interaction among software

components.
otherρ criticality of other factors, it is a real number in

[-1,1].
0λ initial value of component failure probability.

otherf influence of other factors on component reliability.
ifC frequency sum of interaction between

component iC and other components deployed on
other host nodes

The value of ifC can be obtained by matrix CC in

formula(5). ()iH C describes the host node that

component iC is deployed on.

,

, () ()j i j

i i j
C H C H C

fC cc
∀ ≠

= ∑
 (5)

IV. SYSTEM RELIABILITY

It is often infeasible or difficult to directly estimate
complex system reliability through large sample
system-level test. Such difficulties may arise when the
system-level test is costly or leads to destruction of the
system itself. Nevertheless, system reliability can be
appropriately evaluated through the component reliability
information [14]. In this section, we suppose that the
main sources of system failure are software component

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1141

© 2011 ACADEMY PUBLISHER

failure and host node failure. Therefore, system
reliability is calculated in formula (6).

1 1
1 1 (1)

m m

system system i i
i i

R p ph pch
= =

= − = − − −∑ ∑∪ ∪
 (6)

, ()

1 ((1))i

j j i

C t
i i

C H C H

pch ph e λ− ×

∀ =

= − − ×∏
 (7)

systemR system reliability
systemp failure probability of system
()jH C the host node that jC is deployed on

ipch failure probability of components deployed on

host node iH
iph failure probability of host node iH

V. EXPERIMENTS

In this section, four experiments are based on such a
system consisting of eight original software components
and four host nodes. Each original software component
can provide a different service. The inputs of the
experiments include randomly generated frequency
matrix of interaction among software components and
failure probabilities of four host nodes. Additionally, four
experiments are based on three different deployment
architectures.

A. Inputs

Matrix CC is randomly generated frequency matrix of
interaction among software components. Each entry in
matrix CC is an integer number [0, 7]. We can calculate

the value of ifC for component iC on the basis of
matrix CC .

0 3 0 0 0 0 7 1
3 0 7 0 2 2 0 0
0 7 0 6 0 5 0 0
0 0 6 0 3 0 0 7
0 2 0 3 0 7 0 4
0 2 5 0 7 0 3 0
7 0 0 0 0 3 0 0
1 0 0 7 4 0 0 0

C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Failure probabilities of four host nodes are real

numbers in [0, 0.02]. iph represents the failure

probability of host node iH . 1 0.0093ph = , 2 0.0195ph = ,
3 0.0069ph = , 4 0.0101ph = .

B. Deployment Architecture and Frequency of Software
Component Interaction

These eight components should be deployed on four
host nodes. On the basis of frequency matrix of
interaction among software components, we obtain three
typical deployment architectures.

1) Deployment architecture

We use matrix 1CH to describe the first deployment

architecture. 1CH shows that 4 5 8, ,C C C are deployed

on host node 1H . 6 7,C C are deployed on 2H . 1 2,C C are

deployed on 3H . 3C is deployed on 4H .

1

0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

CH

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

We use matrix 2CH to describe the second deployment

architecture. Matrix 2CH shows that 8C is deployed on

host node 1H . 5 6,C C are deployed on 2H . 1 7,C C are

deployed on 3H . 2 3 4, ,C C C are deployed on 4H .

2

0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0
1 0 0 0 0 0 1 0
0 1 1 1 0 0 0 0

CH

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

We use matrix 3CH to describe the third deployment

architecture. 3CH shows that 1 5,C C are deployed on host

node 1H . 4 6,C C are deployed on 2H . 2 7,C C are deployed

on 3H . 3 8,C C are deployed on 4H .

3

1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1

CH

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

2) Frequency of component interaction

On the basis of matrix CC , we calculate ifC of each

component iC in formula (5). 1F represents the set of
ifC of the first deployment architecture.

[]1 8 11 18 6 9 14 7 1F =
Therefore, it is easy to know that 3 18fC = and
8 1fC = in the first deployment architecture.

Similarly, 2F represents the set of ifC of the second

deployment architecture. 3F represents the set of ifC of
the third deployment architecture.

[]2 4 7 5 10 9 10 3 12F =
[]3 11 14 18 16 16 17 10 12F =

C. Experiments
The system includes eight software components. Each

software component can provide a different service. The
values of relevant parameters are

0otherf = and 0otherρ = .

1142 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

1) Experiment one

In this experiment, 0 0.0004λ = and 0.00001cρ = .
System reliability of three different deployment
architectures can be shown in Fig.1. EFDSR represents
system reliability of the first deployment architecture.
ESDSR represents system reliability of the second
deployment architecture. ETDSR represents system
reliability of the third deployment architecture.

0 10 20 30 40 50 60 70
0.7

0.75

0.8

0.85

0.9

0.95

1

time(hour)

sy
st

em
 re

lia
bi

lit
y

EFDSR
ESDSR
ETDSR

Figure 1. System reliability of three deployment architectures

As seen in Fig. 1, with the increasing of system
run-time, system reliability of the second deployment
architecture is obviously highest among the three. The
impact of the first deployment architecture on system
reliability is similar to the third one during [0, 70] hours.

A detailed analysis of component reliabilities of the
three different deployment architectures is shown in
Tab.I.

RH represents the highest of component reliability
among the three deployment architectures. RM
represents the medium value of component reliability

among the three deployment architectures. RL represents
the lowest of component reliability among the three
deployment architectures. RS describes that there is a
negligible difference of component reliability between
two deployment architectures.

As seen in Tab.I, component reliabilities of
component 2C and 4C of three deployment architectures
are obviously different. There is a negligible difference

of component reliabilities of 5C and 8C between two
deployment architectures. Therefore, if 4C is the most
important component, we will deploy components on
host nodes according to the second deployment
architecture.

2) Experiment two
In this experiment, the first deployment architecture is

the basis of the experiment. The value of cρ may be

different. These values are 0.00001cρ = , 0.00002cρ =

and 0.00004cρ = . The influence of the values of cρ on
system reliability can be shown in Fig. 2. With the higher

value of cρ , system reliability becomes the lower. With
the increasing of system run-time, the difference of

system reliabilities with different values of cρ is more
apparent.

0 10 20 30 40 50 60 70
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time(hour)

sy
st

em
 re

lia
bi

lit
y

ρc=0.00001

ρc=0.00002

ρc=0.00004

Figure 2. System reliability of different value of cρ

The influence of the values of cρ on reliability of

component 3C is shown in Fig. 3.

0 10 20 30 40 50 60 70
0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

time(hour)

co
m

po
ne

nt
 C

3
re

lia
bi

lit
y

ρc=0.00001

ρc=0.00002

ρc=0.00004

Figure 3. Component 3C reliability of different values of cρ

With the higher value of cρ , reliability of

component 3C becomes the lower. With the increasing of
system run-time, the difference of reliability of

TABLE I. THE EXPERIMENTAL RESULTS FOR COMPONENT

RELIABILITIES OF THREE DEPLOYMENT ARCHITECTURES

 First

deployment

architecture

Second

deployment

architecture

Third

deployment

architecture

2C RM RH RL

4C RH RM RL

5C RS RS RM

8C RH RS RS

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1143

© 2011 ACADEMY PUBLISHER

component 3C of different values of cρ is more apparent.

3) Experiment three
In this experiment, we investigate the impact of

system redeployment on system reliability. The value

of cρ is 0.00004. Before thirty hours, system runs the
third deployment architecture. At thirty hours, system
reliability is less than 0.8. After thirty hours, we improve
system reliability by redeployment, as shown in Fig. 4.

0 10 20 30 40 50 60 70 80
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time(hour)

sy
st

em
 re

lia
bi

lit
y

BDA
BDE
ADA

Figure 4. System reliability with system redeployment

After thirty hours, system begins to redeploy and run
the second deployment architecture. In Fig.4, BDA
represents system reliability of third deployment
architecture during [0, 30] hours. BDE represents system
reliability without system redeployment during [30, 80]
hours. ADA represents system reliability with system
redeployment during [30, 80] hours.

After system redeployment, component reliability has
changed. Component reliability can be calculated in
formula (8).

0

0

()

()

,0 30
, 1,2, ,8

,30

i c

i c

bfC t

i afC t

e t
RC i

e t

λ ρ

λ ρ

− + × ×

− + × ×

⎧ ≤ ≤⎪= =⎨
≤⎪⎩

…
 (8)

ibfC represents interaction frequency of component
iC before redeployment. iafC represents interaction

frequency of component iC after redeployment.

4) Experiment four
In this experiment, we investigate the difference of

system reliability by replicating components and system

redeployment. The value of cρ is 0.00004. When system
reliability drops to some value, system reliability need to
be improved by system redeployment or replicating
components, as shown in Fig.5.

0 10 20 30 40 50 60 70 80
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time(hour)

sy
st

em
 re

lia
bi

lit
y

BDA
BDE
ADA
CC3
CC38

Figure 5. System reliability with redeployment and component replica

3CC represents system reliability with replicating

component 3C during [30,80]hours. 38CC represents

system reliability with replicating component 3C and
8C simultaneously during [30,80]hours. The meanings of

BDA, BDE and ADA are illustrated in experiment three.
As seen in Fig. 5, system reliability with replicating
multiple components is higher than system redeployment.
System reliability with redeployment is higher than
replicating single component. System reliability will be
improved by replicating components and system
redeployment. However, if replicating components, we
need to take into consideration the computational
resources required and those available at each host node;
if system redeployment, we need to consider the time to
redeploy and the cost of system redeployment.

VI. CONCLUSIONS AND FUTURE RESEARCH

It is very important to estimate system reliability based
on software architecture. Reliability is one of the most
critical extra-functional properties of a software system.
This paper analyzes the defects of existing
architecture-level reliability estimation approaches, and
proposes a novel system reliability estimation model
incorporating the influence of component reliability,
software deployment and component replica. Different
deployment architectures have a significant influence on
system reliability and component reliability. We present
how to calculate system reliability and component
reliability. We present the approaches of improving
system reliability and the conditions of applying these
approaches. In future research, system reliability
estimation model based on SA will include other
influence factors, such as software architectural styles,
component replica strategies and so on.

ACKNOWLEDGMENT

The authors wish to thank Tao Liu for his kindly help
with checking.

1144 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

REFERENCES

[1] C.Seo, et al, “Exploring the role of software architecture in
dynamic and fault tolerant pervasive systems,” First
International Workshop on Software Engineering for
Pervasive Computing Applications, Systems, and
Environments (SEPCASE), Los Angeles, CA, pp. 9-15,
May 2007.

[2] J. P. Sousa and D. Garlan, “Aura: an architectural
framework for User Mobility in Ubiquitous Computing
Environments,” Proc. of the 3rd Working IFIP/IEEE
Conference on Software Architecture, Montreal, pp.1-18,
2002.

[3] D. E. Perry and A. L. Wolf, “Foundations for the study of
software architecture,” Software Engineering Notes, vol.17,
pp.40-52, Oct.1992.

[4] M. Shaw and D. Garlan, Software architecture:
perspectives on an emerging discipline. Prentice Hall,
1996.

[5] F. Brosch and B. Zimmerova, “Design-time reliability
prediction for software systems,” Proc. of 3th CSMR
Workshop on Software Quality and Maintenance,
Honolulu, Hawaii, pp.17-23, 2009.

[6] V. Cortellesa and V. Grassi, “A modeling approach to
analyze the impact of error propagation on reliability of
component-based systems,” Journal of component- based
software engineering, vol.4608, pp.140-156, 2007.

[7] S. Gokhale, et al, “Reliability prediction and sensitivity
analysis based on software architecture,” Proc. of 13 th
International Symposium on Software Reliability
Engineering, CT, USA, pp.64 -75, 2002.

[8] K. G. Popstojanova, et al, “Architecture level risk analysis
using UML,” IEEE Transactions on Software Engineering,
vol.29, pp.946-960, 2003.

[9] K.G. Popstojanova and K.S.Trivedi, “Architecture- based
approaches to software reliability prediction,” Journal of
Computers & Mathematics with Applications, vol.46, pp.
1023-1036, 2003.

[10] R. H. Reussner, H. W. Schmidt and I. H. Poernomo,
“Reliability prediction for component-based software
architectures,” Journal of Systems and Software, vol.66, pp.
241-252, 2003.

[11] W. Wang, Y. Wu and M. Chen, “An architecture- based
software reliability model,” Proc. 1999 Pacific Rim
International Symposium on Dependable Computing,
pp.143-150, 1999.

[12] S. M. Yacoub, B. Cukic and H. H. Ammar, “Scenario-
based reliability analysis of component-based software,”
Proc. 10th International Symposium on Software
Reliability Engineering, Boca Raton, Florida, pp.465-480,
1999.

[13] N. Medvidovic and S. Malek, “Software deployment
architecture and quality-of-service in pervasive
environments,” International workshop on Engineering of
software services for pervasive environments: in
conjunction with the 6th ESEC/FSE joint meeting (ESSPE),
pp.47-51, 2007.

[14] T. Jin, “Hierarchical variance decomposition of system
reliability estimates with duplicated components,” IEEE
Transaction on Reliability, vol. 57, pp. 564-573, 2008.

Xihong Su was born in 1981 in China. She
received the M.S. degree in school of
computer science and technology from
Harbin Institute of Technology, Harbin,
China, in 2007. She is currently pursuing the
Ph.D. degree at Harbin Institute of
Technology. Her research interests include
software architecture, software deployment
and system reliability estimation.

Hongwei Liu was born in 1971 in China. He received the
Ph.D. degree in school of computer science and technology
from the Harbin Institute of Technology, PR China, in 2004. He
is a professor of the School of Computer Science and
Technology at the Harbin Institute of Technology. His main
research interests are fault-tolerant computing, software
reliability evaluation, software testing. He is a senior member
of the CCF.

Zhibo Wu was born in 1947 in China. He received the Ph.D.

degree in school of computer science and technology from
Harbin Institute of Technology, Harbin, China, in 1980. He is a
professor and Ph.D. supervisor in school of computer science
and technology at Harbin Institute of Technology. His research
interests include fault-tolerant computing, mobile computing
and system reliability estimation. He is a senior member of the
CCF.

Xiaozong Yang was born in 1939 in China. He received his

B.S.degree in School of Computer and Science from Harbin
Institute of Technology, in 1964. He is currently a professor
and Ph.D. supervisor in School of Computer Science and
Technology at Harbin Institute of Technology (CS HIT), the
computer science institute director, the wearable computing
Engineering and Research center Director of CS, HIT, vice
director of fault tolerant computing committee under China
computer federation and the head of wearable computing group
under china computer Federation. His main research interests
include computing architecture, fault tolerant computing. He
has implemented many research projects and has received
progress in his research work, and won about 10 awards of
ministries. He published 2 books and about 100 papers, 10 PHD
students graduated from his group, and was appointed as
conference chair, session chair of China conference and
international conference.

Decheng Zuo was born in 1972 in China. He received the
Ph.D. degree in School of Computer and Science from Harbin
Institute of Technology, in 2001. He is a professor of the
School of Computer Science and Technology at the Harbin
Institute of Technology. His main research interests include
fault-tolerant computing, mobile computing and system
reliability estimation. He is a senior member of the CCF.

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1145

© 2011 ACADEMY PUBLISHER

