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Abstract—Terrain aided positioning (TAP) is a kind of 
positioning method which acquires position information 
from the terrain elevation datum underneath the vehicle. 
This method has the characteristics of autonomy, all-
weather, anti-interference, strong stealthiness and high 
accuracy. It is widely used in the navigation system for 
various aircrafts, cruise missiles and underwater vehicles. 
The fundamentals of TAP is that it firstly measures the 
terrain elevation underneath the vehicle using relevant 
sensors, then compares these datum with the referenced 
Digital Elevation Map (DEM) and acquires the position 
information through matching algorithm. The system model 
for TAP currently used totally depends on the referenced 
DEM and the position acquired is the position referenced to 
the map rather than the true position. Due to the DEM 
error which is introduced during production procedure, the 
position on the map is not the real position. In order to 
overcome the problem, the paper proposes an improved 
TAP model which introduces the map error into the system 
model and gets the recursive solution based on the Bayesian 
framework which is numerically solved by RPF particle 
filter. From the simulation results, the new model has 
extraordinary performance for handling the error of DEM 
and the algorithm can estimate the map error and acquire 
the accurate position. 
 
Index Terms—Terrain Aided Positioning, non-linear 
estimation, Bayesian iteration, Particle Filter, RPF 
 

I.  INTRODUCTION 

Positioning and navigation system plays an important 
role on any vehicle no mater aerial, surface or underwater. 
The positioning system widely used nowadays can be 
divided into two categories: non-autonomy system and 
autonomy system. 

Non-autonomy system, represented by the satellite 
based systems, such as GPS and GNSS can give accurate 
position information by receiving signals from external 
devices. These satellite based systems can easily be 
jammed by electromagnetic interference and even the 

satellite itself may be attacked during war time. 
Meanwhile, due to the rapid attenuation of 
electromagnetic wave through sea water, such satellite 
based systems are not suitable for underwater vehicles. 

Autonomy system, include inertial navigation system 
(INS) and terrain aided navigation system (TAN), does 
not need external devices for positioning and has the 
characteristics of all-weather, anti-interference, strong 
stealthiness and so on. They are widely used in many 
kinds of military vehicles for main or backup positioning 
system. Although INS can give high accurate positioning 
information during short time period, it has time 
accumulated errors which should be corrected by other 
systems, such as TAN or GPS, during work time, while 
the positioning error of TAN system mainly depends on 
the complexity and similarity of the terrain. TAN can also 
give high accurate position information from rugged 
terrain. For example, the TERPROM system widely used 
on NATO’s military aircrafts has horizontal position 
accuracy of 10~25 meters [1]. 

From the introduction above, it can be inferred that the 
autonomy poisoning system, especially TAN system, 
plays an important role on military usage during war time 
and may be the only choice for underwater vehicles. 

However the terrain aided positioning system currently 
used severely depends on the accuracy of the referenced 
Digital Elevation Map (DEM) which can be introduced 
with errors during producing [2] and finally leads to large 
differences between true position and estimated position. 
The paper just focuses on such problem and proposes an 
improved system model which introduces the map error 
components to the system model. The paper gives 
feasibility proof for the new model based on Bayesian 
theory and uses RPF particle filter for numerically getting 
the result. The simulation results confirm that the new 
model can estimate the map error and give more accurate 
position information compared to the basic model. 

II.  SYSTEM MODEL 

The paper mainly discusses the terrain aided 
positioning system for aircrafts, but it can be easily 
extended to the underwater systems. 
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The airborne sensors for measuring terrain underneath 
the aircrafts are composed of barometric altimeter and 
radar altimeter. Fig. 1 shows the measurement procedure. 
The barometric altimeter measure the aircraft’s altitude 
above sea level while the radar altimeter gets the 
elevation above the ground, and the difference between 
the two makes the terrain elevation underneath the 
vehicle. During the measuring, the pressure fluctuation 
and atmospheric turbulence may affect the barometric 
altimeter while the terrain roughness and the ground 
vegetation may influence the radar altimeter. There are 
several papers discussed such error aspects [3, 4, 5]. This 
paper concentrates on the influence caused by the DEM 
error and does not introduce the sensor error components 
into the system model. 

 
Figure 1.  Terrain elevation measurement. 

The basic model for terrain aided positioning is 
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where *
ke  is the position error of INS at time k which is 

modeled as time accumulated error. kx  is the horizontal 

position from INS which is the true position *
kx  plus INS 

error *
ke . ky  is the terrain elevation measurement which 

is the true terrain elevation )( **
kh x  plus the 

measurement noise kv . The process noise kw and 

measurement noise kv are independent with each other 

and also independent with the state *
ke . They have 

Gaussian distribution ),0(~ kk QNw , ),0(~ kk RNv . 

Due to the strong non-linearity of the terrain )(* ⋅h , 
this model is classified into the non-linear model and the 
terrain aided positioning belongs to the typical non-linear 
estimation problem. 

In the basic model above, )(* ⋅h  represents the terrain 
elevation map. Because the map component is denoted as 

)( **
kh x  in the measurement equation, the estimated 

position *ˆ kx  which is corrected by the  *ˆ ke  through kx  is 

the position referenced to the map )(* ⋅h . That is to say, 

if )(* ⋅h  is the real map then *ˆ kx  is the true position 

whereas if )(* ⋅h  is the map with errors then *ˆ kx  is just 

the position on )(* ⋅h  rather than the true position. Since 
the real map can not be acquired, the basic model can 
only estimate the position referenced to the map rather 
the true position. Fig. 2 depicts the relationship of the 
values in the procedure. From the correction by the TAN, 
the system can give the relative position between the 
aircraft and the mountain and the error of that position 
compared to the true position is just the map error. 
Usually the relative position is enough for anti-collision 
usages. However the true position is also preferred in 
many occasions. So a more complicated model should be 
built to estimate the map error from time to time. Hence, 
we need to introduce the map error into the system model. 

 
Figure 2.  Relationship of the values in TAN. 

To make the discussion simple, we assume that the 
map errors have the regional stability, thus they can be 
treated as constant parameters in a certain area. 

Let kHΔ , kVΔ  be the horizontal and vertical errors 

of terrain elevation map respectively where kHΔ  
composes of two components of x and y directions. Then 
the TAN referenced elevation map can be expressed as 

kkkk Vhh Δ+Δ+= )()( *** Hxx  (2) 

where )(* ⋅h  represents the real terrain elevation map, 
*
kx  is the real position. 

Let kk Hxx Δ+= * , substitute to equation (2), we get 

kk Vhh Δ−Δ−= )()(* Hxx  (3) 
Substitute (3) to the basic model (1), we get the new 

measurement equation using )(⋅h  as 

kkkkk vVhy +Δ−Δ−= )( * Hx  (4) 
Then we can get the new system model containing the 

map error components: 
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where equations kk HH Δ=Δ +1 and kk VV Δ=Δ +1  are 
the reflections of the assumption above, meaning that the 
error components are constant in the area concerned. 

The compact form of (5) is 
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III.  RECURSIVE BAYESIAN ESTIMATION 

According to Bayesian theory, a Bayesian estimation 
problem is defined by the joint density of the parameters 
and the observations, )()|(),( xpxypyxp = . The 
estimator under the minimum mean square error criterion 
is the posterior mean ∫= nRMS dxyxxpx )|(ˆ  [6]. So if 

there exists some relationship between the observation 
and the parameter, then the parameter can be estimated 
by the observation. From the information theory’s point 
of view, the observation contains the information of the 
parameter when there exists stochastic relationship 
between the two. So we can make use of the observation 
to estimate the parameter. 

Let kY  be the augmented measurement vector 
consisting of all the measurements up to time step k. 
From Bayesian formula [6] and the new system model (6), 
we have the posterior probability density function update: 
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where  
kR kkkkkkkvk N k

dpVhyp eYeHex∫ ⋅⋅Δ+Δ−−−= − )|( ))(( 1
*α . 

The priori probability density function update is 
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Given the initial prior density )()|( 010 eYe pp =− , 
we can recursively generate the posterior probability 
density through equation (7) and (8). And the state 

estimate is ]|[ˆ kkk E Yee =  with covariance matrix 

]|)ˆ()ˆ[(ˆ
k

T
kkkkk E YeeeeP −⋅−= . 

The recursive Bayesian equations above are the 
theoretical solution for model (6) and are intractable due 
to the complexities of the posterior and priori probability 
density function in the non-linear model. Usually the 
numerical methods should be used for calculating the 
result, such as point mass filter (PMF) or particle filter 
(PF). This paper uses the PF to solve the model. 

IV.  PARTICAL FILTER 

The fundamental of particle filter is to use particles 
with weights for representing the probability density 
function (PDF) and uses the recursion of the particle set 
to replace the recursion of the posterior density function. 
When the complex probability density function is 
represented by the particle set the integration in kα  and 
(8) can be easily calculated according to Monte Carlo 
integration theory. 

Let M
i

i
k

i
k w 1},{ =e  be particle set for the posterior PDF 

)|( kkp Ye , where 1
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i
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where )(⋅δ  is Dirac-Delta function. The estimator and its 
covariance are 

∑

∫ ∑

=

=

⋅=

⋅−⋅⋅=

=

M

i

i
k

i
k

R k

M

i

i
kk

i
kk

kkk

w

dw

E

N

1

1

     

)(     

]|[ˆ

e

eeee

Yee

δ  (10) 

∑

∫ ∑

=

=

−⋅−⋅=

⋅−⋅⋅−⋅−=

−⋅−=

M

i

T
k

i
kk

i
k

i
k

R k

M

i

i
kk

i
k

T
kkkk

k
T

kkkkk

w

dw

E

N

1

1

)ˆ()ˆ(

)()ˆ()ˆ(

]|)ˆ()ˆ[(ˆ

eeee

eeeeeee

YeeeeP

δ   (11) 

The recursion of the particle set is simply explained 
below: 

Let M
i

i
k

i
k w 111 },{ =−−e  be the particle set at time k-1 

which represents the posterior PDF )|( 11 −− kkp Ye . At 

time k, we first draw sample i
ke  from an easy sampling 

distribution ),|( 1 k
i
kk yq −ee  and then update its weight 

using 
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Then the new particle set M
i

i
k

i
k w 1},{ =e  represents the 

posterior PDF )|( kkp Ye . Thereby this simple particle 
set recursion takes place of the intractable recursion of 
the posterior PDF. 

The distribution ),|( 1 k
i
kk yq −ee  is called importance 

sampling density function which can be selected 
according to requirements. Usually for convenient usage, 
the state transition PDF )|( 1

i
kkp −ee  is chosen [7]. 

Substitute )|( 1
i
kkp −ee  into (12) yields 

)|(1
i
kk

i
k

i
k ypww e⋅∝ −  (13) 

Because the last three components of the state vector in 
the new model are constant parameters, we need special 
treatment for random components and constant 
components respectively during particle recursion. We 
use important sampling density function for random 
components and leave constant components unchanged 
during particle transition: 
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Equations (13) to (16) finally accomplish the particle 
filter recursion for map error model (6). 

In order to decrease the impacts on PF performance 
caused by the phenomenon of particle degeneracy and 
particle collapse, we need some resampling scheme for 
effective representing the PDF. 

Since our new model (6) consists constant parameter 
which can be seen as random variable with extremely 
small process noise, common particle filters such as SIS, 
ASIR are not suitable for handling the model with small 
process noise states which can lead to severe particle 
degeneracy phenomenon due to the lose of particle 
diversity [7]. In this paper, we chose Regularized Particle 
Filter (RPF) [8] for resampling which can maintain the 
particle diversity to the maximum extent. 

During resampling, we actually resample from the 
discrete distribution  

∑
=

−⋅≈
M

i

i
kk

i
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1

)()|( eeYe δ   (17) 

which makes that the new samples cannot get rid of the 
old particle set and leads to singular composition after 
several iterations. The main idea of RPF is to make the 
PDF continuous by introducing kernel function and let 
the particle evolve in the continuous space. The 
resampling distribution function for RPF is 
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where xn  is the dimension of x, 0>h  is the bandwidth 

of kernel function )(⋅K . )(⋅K  can be seen as a 

symmetric probability density function on xnR  and 
)(⋅hK  is called the rescaled kernel. 

The kernel and the bandwidth are chosen so as to 
minimize the mean integrated square error between the 
true posterior density and the corresponding regularized 
weighted empirical measure in (18). In a special case of 
equally weighted sample, the optimal choice of the kernel 
is the Epanechnikov kernel [8]. To reduce computing cost, 
we use Gaussian kernel instead and the corresponding 
optimal bandwidth is [9] 

4
1
+

−

⋅= xn
opt NAh   (20) 

with 4
1

))2/(4( ++= xn
xnA . 

For implement, the new particle set can be generated 
by 

i
kopt

i
k

i
k h εDxx +=*   (21) 

where kD  is the square root of the empirical covariance 

matrix of the samples M
i

i
k

i
k w 1},{ =x . iε  is the sample 

drawn from the kernel function. 
The resampling procedure of RPF is 

--------------------------------------------------------------------- 
 Calculate the effective number of particles effN  [10] 

 IF threff NN <  

 Calculate the empirical covariance matrix kS  

for particle set M
i

i
k

i
k w 1},{ =x  

 Calculate the square root kD of kS  
 Resample the particle set using Systematic 

Resampling [11] method, and get the new set 
M
i

i
k

i
k w 1},,{ =−x  

 FOR i=1:M 
 Draw sample iε  from kernel 

 Update particle i
kopt

i
k

i
k h εDxx +=*  

 END FOR 
 END IF 

--------------------------------------------------------------------- 

V.  SIMULATION RESULTS 

The reference DEM data for the simulation is from 
ASTER GDEM produced by METI and NASA, which 
has grid size of 30 meters [12]. The area we use is 
between 40 and 41 degrees latitude north and 105 and 
106 degrees longitude west.  
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In our simulation, we use the DEM from ASTER 
GDEM to be the real terrain )(* ⋅h  and add some map 
errors to get the reference DEM used for filtering. We use 
bilinear interpolation method to draw elevation data from 
the grid map. 

The simulation procedure is as follows: 
--------------------------------------------------------------------- 

Step 1, chose a trajectory on the real map to be the 
reference trajectory and get N

kk 1
*}{ =x . 

Step 2, get the output of the INS N
kk 1}{ =x  by equation  

⎩
⎨
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+=
+=+

**

**
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kkk

kkk
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wee

 and the initial INS error *
0e . 

Step 3, given the initial distribution of state )( 0ep , 

we can get estimate N
kk 1}ˆ{ =e  through RPF particle filter 

and acquire N
kk 1

*}ˆ{ =x  using equation  ** ˆˆ kkk exx −= . 
Step 4, repeat Step 2 and Step 3 to do Monte Carlo 

simulation several times and get average estimation error 
to evaluate the system performance.  
--------------------------------------------------------------------- 

The map errors used in our simulation are 
T]150,200[=ΔH , 30=ΔV . 

The DEM and the flight path used are depicted in Fig. 
3. This area has a mountain from north to south and the 
flight path we chose is a uniform speed trajectory with a 
turn round in the middle of the path. Fig. 3 shows an 
estimated result for map error model. 
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Figure 3.  Flight path and estimation result for map error model. 

Fig. 4 is the average root mean square error (RMSE) 
curve for horizontal position estimation which is 
generated by using 100 Monte Carlo simulations. The 
solid line is the RMSE of the map error model while the 
dash line is for the basic model. Because the map error 
model actually estimates the map errors and corrects the 
position with them, so it can get more accurate position 
information. From the figure, the horizontal RMSE of the 
new model is about 200 meters smaller than the basic 
model which is close to the horizontal map error we set, 

thus confirms the new model’s capability of map error 
estimation. However, the new model has much slower 
convergence speed than the basic model which may 
caused by the high dimensionality of the state vector in 
the new model. 
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Figure 4.  Horizontal RMSE with MC=100. 

Fig. 5 shows the terrain elevation estimation error for 
both map error model and the basic model. The terrain 
elevation estimation for map error model is acquired by 

kkkk Vhh ˆ)ˆˆ()( *** Δ−Δ−≈ Hxx   (22) 

where ** ˆˆ kkk exx −= , while for basic model 

)ˆ()( ***
kk hh xx ≈ . (23) 

Apparently, the new model takes map errors (both 
horizontal and vertical error) into consideration and uses 
the estimated error to correct the measurement while the 
basic model just depends on the map itself. So from the 
simulation results shown in Fig. 5, the error of basic 
model is about 20 meters higher than the new model 
which is close to the vertical error of the map we set.  
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Figure 5.  Terrain Elevation Estimation Error with MC=100. 

Fig. 6 is the average map error estimate with 100 
Monte Carlo simulations. The dash line is the true error 
while the solid curve is the estimated parameter. From the 
figure, the filter is best for the vertical error estimation 
which has rapid convergence, high accuracy and good 
stability. That because the vertical error component has a 
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linear structure in the system model that can be even 
extracted from the system model and use Kalman filter 
for solving, such as Rao-Blackwellize method [13]. So 
when using particle filter, such component with simple 
structure can be easily estimated. For horizontal map 
errors, the convergence of Y direction is worse than the X 
direction, that because the terrain in the second half path 
varies more on the X direction than Y direction which 
benefits the component estimation on X direction. 
Meanwhile, the convergent speed for horizontal errors is 
very slow which may caused by the constant 
characteristic of these states. 
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Figure 6.  Map error estimation. 

Fig. 7 and Fig. 8 show the particle evolution process 
for SIS and RPF respectively for comparison of the 
effectiveness of these two different algorithms. The 
figures show the histogram of one component of the state 
in the particle set at different time step which can be seen 
as the distribution of that component.  The component we 
chose to show is the X direction error of the map error 
component which is a constant parameter in the state 
vector. 

Fig. 7 is for SIS. As mentioned above, the commonly 
used particle filter is not suitable for solving the model 
with constant parameters. For these parameters the initial 
particle set at k=1 contains the whole data values for the 
evolution that there will be no new values generated in 
later time step since they have no process noise. So the 
initial distribution must cover the true value we estimated 
otherwise the filter can not give that value. From Fig. 7, 
after several iterations the distribution is concentrated to 
some distinct values and the state can hardly move to 
other values.  

In Fig. 7, when k=1, the initial distribute is a Gaussian 
distribution with mean equal to 180 and can cover the 
true value of 200 which is the map error we set. After 
some iterations, the amount of effective values decreases 
and when k=16 there are only two bars in the histogram 
which do not contain the true value thus after that the 
filter can not give the accurate value of 200. 

In SIS, since the parameter components in the particle 
do not change during state transition step, the degeneracy 
phenomenon of these components will affect the 
evolution of the other state components and lead to slow 

convergent speed, low accuracy and even divergent when 
the particles fall into bad bars. 
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Figure 7.  particle evolution for SIS. 

Fig. 8 is for RPF. RPF uses an effective resampling 
scheme which draws new particles from a continuous 
distribution constructed from the discrete one. It can 
make the singular bar extent to a region according to 
some distribution which can generate new values during 
evolution. From Fig. 8, the distribution of the parameter 
moves towards the true value with time and concentrate 
to the true value when convergent.  
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Figure 8.  particle evolution for RPF. 

In Fig. 8, the initial distribution is also Gaussian. When 
k=7, the mean of the parameter move away from 180 and 
the right side of the distribution expands. The mean 
becomes 190 when k=29 and finally gets to 200 which is 
the true value when k=37. During each time step, RPF 
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can maintain the particle diversity to the maximum extent 
and the particle set can move towards the right direction 
as long as the true value is covered by the distribution. 
However, this moving procedure is much slower than SIS. 

According to the comparison above, the common SIS 
particle filter can hardly handle the constant parameter 
estimation in our model and the particle degenerate 
phenomenon always occurs after several iteration steps. 
When using the resampling scheme of RPF, the particle 
diversity can be maintained and the particle set can move 
to the true value. Meanwhile, we found that the constant 
parameter incorporated in the complex non-linear system 
is hard to estimate, the filter is slow on convergence 
speed and sensitive to the initial value. 

V. CONCLUSION 

In this paper, the system model of terrain aided 
positioning system is studied and an improved system 
model is proposed which overcomes the disadvantage of 
the dependency on the accuracy of the map that exists in 
the basic model. The new model can estimate map error 
and correct the position to acquire more accurate position 
information. The paper selects particle filter for this 
nonlinear model and compares the performance of SIS 
and RPF particle filters. From our simulation, the RPF 
has much better performance for our new model which 
contains constant parameter in the state vector. With RPF, 
our simulation results confirm the better performance of 
the new model than the basic model that the accuracy of 
the horizontal position estimation is improved by around 
200 meters which is close to the map error we set. 

With this map error model, our terrain aided 
positioning system can give actual position information 
other than just the position on the map. This progress will 
make the system more preferable for use. 
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