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Abstract— It is widely accepted that software architectures
represent non functional attributes of software systems. Yet we
know of no Architectural Description Language that provides
automated support for reasoning about such attributes. In
this paper we discuss our ongoing research in representing
and reasoning about non functional properties of software
architectures.
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I. INTRODUCTION AND PREMISES

It is widely accepted that while the source code of
a software product represents its functional attributes, its
architecture represents its non functional attributes. The
architecture of a software product determines such attributes
as its response time, throughput, reliability, security, main-
tainability, availability, etc. A sound discipline of software
architecture consists in identifying the most important non
functional attributes that we want our software product to
achieve, and take architectural decisions to optimize these.

In light of these observations, and to the extent that they
are valid, it is rather surprising that current architectural
description languages do not give more consideration to
the ability to represent non functional attributes and reason

about them. For example, ACME [1], [2] does allow the
software architect to represent non functional attributes
through the construct of properties, but has a wide
open syntax for such attributes, and does not perform any
analysis on these. Also, because ACME represents topo-
logical information but does not represent any operational
information, it does not capture all the information that is
required to reason about non functional properties. Wright,
on the other hand, does include operational information
in the form of CSP expressions involving processes and
events; but Wright offers no constructs for representing non
functional attributes of components and connectors [1], [4].

In this paper we present a model for reasoning about
quantitative non functional attributes of software architec-
tures, and discuss our plan to develop automated support
for this model. In section II we discuss the basic idea of
our model, and in section III we present inductive rules that
form the basis of our approach. In section IV we discuss the
implementation of this model on an extension of Wright,
along with simple illustrative examples. Finally in section
V we summarize and assess, briefly discuss related work,
and sketch directions of future research.

II. A QUANTITATIVE MODEL FOR ANALYZING
ARCHITECTURES

A. Model Requirements
Given that software architectures determine the non func-

tional attributes of software products, it is important, we
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feel, that we be able to quantify, compute and reason about
these attributes on an architectural representation. In the
same way that the source code of a software system is
mapped onto executable machine code that embodies its
functional attributes, we want the architecture of the system
to be mapped onto a set of equations that capture and
characterize its non functional attributes.

We submit the following requirements as long term goals
for our research:

• If we are given values of the non functional attributes
of the components and connectors of an architecture,
we want to derive the corresponding values for the
whole architecture.

• If we are given values of the non functional attributes
of the components and connectors of an architecture,
we want to determine the sensitivity of the system
attributes with respect to component and connector
attributes. In other words, if we want to enhance a
given system attribute, which component or connector
should we alter? or, which component or connector is
the bottleneck to the current attribute value?

• Given a system requirement formulated in terms of
a quantitative non functional attribute, and given a
system architecture, we want the model to help us
propagate the requirements down the hierarchy to
components and connectors, in such a way as to ensure
that the system-level requirement is met.

• Given a non functional attribute to optimize (perhaps
at the expense of the other attributes), and given archi-
tectural constraints, which architecture or architecture
family helps to optimize the selected attribute?

The first goal is clearly a prerequisite for all the others,
hence we focus on it in this paper, and will briefly discuss
our plans for the other goals.

B. Architecture Model

For the sake of our project, we need an architectural
model that offers the following features:

1) The availability of the concepts of component and
port, as defined by ACME [3].

2) The availability of the concepts of connector and role,
as defined by ACME [3].

3) The ability to assign relevant non functional proper-
ties to components and connectors.

4) The ability to represent operational properties of the
architecture, in addition to its topological properties.
For example, if we have two components A and B
connected in parallel between a shared source and
a shared sink, we want to determine whether they
play complementary roles (in which both are needed
for normal operation) or alternative roles (if any
one is operational, the system is operational). While
these two configurations have the same topology,
they represent radically different architectures, with
different operational properties.

5) The availability of automated support for reasoning
about architectural attributes.

We have found that ACME meets all the requirements but
the fourth, and Wright meets all the requirements but the
third. We have chosen to adopt Wright for our purposes,
while adding to it ACME’s syntax for representing proper-
ties. We envision that an analyst uses the Wright toolset
to represent her/ his architecture and check its syntax;
then she/ he can add ACME-style specifications for non
functional attributes to the Wright source, and submit the
whole architecture specification to the compiler that we
are producing, so that it peforms the analysis of its non
functional attributes.

C. Non Functional Attributes

For the purpose of this discussion, we consider three
sample non-functional properties, namely:

• Response time, measured in milliseconds. We assume
that each component has a property of type real called
ProcessingTime and each connection has a property of
type real called TransmissionTime.

• Throughput, measured in transactions per second. We
assume that each component has a property of type
integer called ProcessingThroughput and each connec-
tor has a property of type integer called Transmission-
Throughput.

• Reliability, measured as a probability. Though reli-
ability is typically measured by the mean time to
failure, we choose to represent it here as the mean
probability of failure over a unitary period of operating
time. Under some hypotheses, it is possible to convert
failure probabilities into MTTF’s, though we do not
do that here. We assume that each component and
each connector has a property of type real called
FailureProbability.

Other standard non functional attributes that we can define
(though we do not do so in this paper) include: Security
properties (probability of intrusion, probability of intrusion
detection, probability of security violation), Buffer capacity
(maximum number of transactions received but not pro-
cessed), Availability (percentage of time a component or
connector is operational), Safety (probability of violating
no safety requirement over a unitary period of operating
time), etc.

Extensions of the model may include user-defined proper-
ties, provided the user also provides the necessary axiomati-
sation for them; subsequent discussions will highlight what
form such axiomatisations may take.

D. A Logical Framework

We consider a Wright architecture with the following
characteristics:

• All the ports of all the components are labeled for
input or for output; input ports feed data or control

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 575

© 2011 ACADEMY PUBLISHER



information to the component, and output ports receive
data or control information from the component.

• All the roles of connectors are labeled as origin or as
destination; connectors carry data or control informa-
tion from their origin roles to their destination roles.

• The architecture has a single component that has no
input port; we call this component the source.

• The architecture has a single component that has no
output port; we call this component the sink.

We refer to an architecture that satisfies these conditions
as a canonical architecture. We are not sure to what extent
these conditions constitute a loss of generality. Architec-
tures that have no source component or no sink components
cannot be transformed to satisfy the last two conditions, but
they may occur very rarely; however, architectures that have
more than one component without input port or more than
one component without output port can be transformed to
satisfy the last two conditions by adding a dummy source
and a dummy sink and connecting them appropriately. The
connectors used for this purpose will have trivial values for
their properties, such as: zero transmission time, infinite
throughput, and zero failure probability.

Given a canonical architecture, we define its system-wide
attributes as follows:

• All the dummy connectors that may have been intro-
duced to make the architecture canonical have trivial
property values: for any connector K, we have:

K.TransmissionT ime = 0,

K.Throughput = ∞,

K.FailureProbability = 0.

• For each non functional property we are interested
in (for the time being, response time, throughput,
and failure probability), associate an attribute to each
port and each role of the architecture. Each port and
each role is given the following attributes: RT (for
response time), TP (for throughout), and FP (for failure
probability). See Figure 1.

• The values of the non functional properties for the
overall system are then the values of the relevant
attributes for the output port of the source component;
hence the response time of the system is source.RT ;
the throughput of the system is source.TP ; and
the failure probability of the system is source.FP .
The values of these attributes are computed induc-
tively from the properties attached to the components
and connectors (ProcessingTime, TransmissionTime,
ProcessingThroughput, TransmissionThroughput, Fail-
ureProbability). The inductive process is defined as
follows.

• Basis of Induction. The basis of induction defines the
values of the relevant attributes for the input port of
the sink component. We write:

sink.inputPort.RT = 0.

Figure 1. Properties and Attributes

sink.inputPort.TP = ∞.

sink.inputPort.FP = 0.

• Inductive Step: Within Components and Connectors.
For each component, we write an equation that links
the attributes of the input ports, the attributes of the
output ports, and the properties of the component.
Likewise, for each connector, we write an equation
that links the attributes of the origin role, the attributes
of the destination role, and the properties of the
connector. These equations will be discussed in some
detail in section III.

• Inductive Step: Between Components and Connectors.
Whenever a port of a component is attached to the
role of a connector, their attributes are equated. For
example, if the output port of component C is attached
to the origin role of connector K, we write:

C.outputPort.RT = K.originRole.RT.

C.outputPort.TP = K.originRole.TP.

C.outputPort.FP = K.originRole.FP.

The inductive formulas within a component and within
a connector depend on the attribute in question (RT, TP,
FP), on the topology of the component and connector,
and on relations between ports and roles within the same
component or connector. We present them in the next
section.
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III. INDUCTIVE RULES

The purpose of the inductive rules is to formulate equa-
tions that allow us to propagate values of the relevant
attributes (RT , TP , FP ) through the architecture. For each
component, these equations link the values of the attributes
at the input ports and output ports with the values of
internal properties (ProcessingTime, ProcessingThroughput,
FailureProbability). Likewise, for each connector, these
equations link the values of the attributes at the origin roles
and destination roles with the values of internal properties
(TransmissionTime, TransmissionThroughput, FailureProb-
ability). For the sake of readability, we first present these
rules in the simple context where each internal component
has a single input port and a single output port, and each
connector has a single origin role and a single destination
role.

A. Single Entry, Single Exit

We let C designate a component, whose ports are called
inputPort and outputPort, and let K designate a connector,
whose roles are called originRole, and destinationRole. We
review in turn, the attributes of response time, throughput,
and failure probability.

Response time. For each component C, we write:

C.inputPort.RT =

C.outputPort.RT + C.ProcessingT ime.

For each connector K, we write:

K.originRole.RT =

K.destinationRole.RT +K.TransmissionT ime.

Throughput. For each component C, we write:

C.inputPort.TP =

min(C.outputPort.TP, C.ProcessingThroughout).
For each connector K, we write:

K.originRole.TP =

min(K.destinationRole.TP,

K.TransmissionThroughout).

Failure Probability. For each component C, we write:

C.inputPort.FP =

1− (1− C.outputPort.FP )

×(1− C.FailureProbability).

For each connector K, we write:

K.originRole.FP =

1− (1−K.destinationRole.FP )

×(1−K.FailureProbability).

B. Multiple Exits, Entries

If all our components have no more than one input port
and no more than one output port, and if all our connectors
have no more than one origin role and no more than one
destination role, then the only architecture we can represent
is a linear topology such as the pipe-and-filter architecture.
But we want to analyze architectures that have arbitrary
topologies, where components have an arbitrary number of
ports of any type (inout or output) and connectors have
arbitrary an arbitrary number of roles of any type (origin/
destination).

The study of general inductive rules for components with
multiple input ports and output ports and for connectors
with multiple origin roles and destination roles is beyond
the scope of this paper. What we will do, in this paper, for
the sake of illustration, is present sample inductive rules for
two output ports and two destination roles, in two discrete
cases:

• The case where the output ports and the destination
roles provide complementary information; for exam-
ple, an order processing component sends payment
information to the financial processing component and
shipping information to the warehouse management
component.

• The case where the output ports and the destination
roles provide duplicate information: for example, a
real time component sends time critical sensor data to
two redundant components, so that the first component
that analyzes it and produces actuator data can control
the actuator (and temporarily override the slowest
component).

For the sake of brevity, we will present the rules for
components, and leave it to the reader to imagine how the
rules for connectors can be derived by analogy.

Response Time. We consider a component C with a
single input port called inputPort and two output ports
that provide complementary information, called half1Port
and half2Port. We submit the following inductive rule
pertaining to response time:

C.inputPort.RT =

C.ProcessingT ime+max(C.half1Port.RT,
C.half2Port.RT ).
We consider a component C with a single input port called
inputPort and two output ports that provide redundant/
duplicate information, called copy1Port and copy2Port. We
submit the following inductive rule pertaining to response
time:

C.inputPort.RT =

C.ProcessingT ime+min(C.copy1Port.RT,
C.copy2Port.RT ).
Note that to determine which case we are in requires a
through analysis of the roles that the two output ports play
in the computation. For example, if the output ports produce

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 577

© 2011 ACADEMY PUBLISHER



safety critical data that is sent to two redundant components
in a fault tolerant scheme, where their outputs are compared
before they are used, then the first formula is used, rather
than the second. The precise analysis of Wright’s behavior
description code under computation for components, and
glue for connectors, is necessary to determine what situation
we are in, and possibly to identify other situations. This
analysis is beyond the scope of this paper, and is currently
under investigation.

Throughput. We consider a component C with a sin-
gle input port called inputPort and two output ports that
provide complementary information, called half1Port and
half2Port. We submit the following inductive rule pertaining
to throughput:

C.inputPort.TP =

min(min(C.ProcessingThroughput, C.half1Port.TP ),
min(C.ProcessingThroughput, C.half2Port.TP )).
We consider a component C with a single input port called
inputPort and two output ports that provide redundant/
duplicate information, called copy1Port and copy2Port.
We submit the following inductive rule pertaining to
throughput:

C.inputPort.TP =

max(min(C.ProcessingThroughput, C.half1Port.TP ),
min(C.ProcessingThroughput, C.half2Port.TP )).

Failure Probability. We consider a component C with a
single input port called inputPort and two output ports that
provide complementary information, called half1Port and
half2Port. We submit the following inductive rule pertaining
to failure probability:

C.inputPort.FP =

1− (1− C.FailureProbability)×

(1− C.half1Port.FP )×

(1− C.half2Port.FP ).

Justification: In order for a computation that is initiated
at C.inputPort to succeed, component C has to succeed,
and the computations initiated at the two output ports of
C have to succeed. Assuming statistical independence, the
probability of these simultaneous events is the product of
probabilities.

We consider a component C with a single input
port called inputPort and two output ports that provide
redundant/ duplicate information, called copy1Port and
copy2Port. We submit the following inductive rule pertain-
ing to failure probability:

C.inputPort.FP =

1− (1− C.FailureProbability)×

(1− C.copy1Port.FP × C.copy2Port.FP ).

Justification: In order for a computation that is initiated at
C.inputPort to succeed, component C has to succeed, and
one of the computations initiated at output ports copy1Port
and copy2Port has to succeed. Whence we write:

C.inputPort.FP =

1− (1− C.FailureProbability)×

PsPorts,

where PsPorts is the probability that (at least) one of the
computations initiated at the ports succeeds. We have

PsPorts = 1− PfPorts,

where PfPorts is the probability that both computations
initiated at the output ports fail. Under the hypothesis of
statistical independence of port failures, we find

PfPorts = C.copy1Port.FP × C.copy2Port.FP.

C. Prospects

The formulas discussed above illustrate the kind of
inductive argument we want to build as we compute sys-
tem attributes, but they are too piecemeal to be generally
applicable. The model we are envisionning for arbitrary ar-
chitectures can be characterized by the following premises:

• Equation Generation is Local, and Equation Analysis
is Global. When components have a single input port
and a single output port, and when connectors have
a single origin role and a single destination role,
we basically have one equation per component and
one equation per connector. But when components
(resp. connectors) have multiple ports (resp. roles) of
each type (input/ output, resp. origin/ destination), it
becomes impossible to catalog all the possible con-
figurations of inter-port (resp. inter-role) relations and
generate an equation for each. What we envision are
localized equations that use partial information, and do
not require a global knowledge of other related ports
(resp. roles).

• Local Equations are Inequalities, and Global Analysis
is Optimization. In section III-A we had generated
straightforward equations that reflect our analysis of
the architecture; all that remained was to combine
the equations and solve them in the unknowns that
interest us (the attributes of the output port of the
source component). Under the more general model, the
individual equations are inequalities, reflecting partial/
localized information. Global analysis then takes the
form of an optimization step, whereby we seek the
smallest value for RT (the response time), the largest
value for TP (the throughput) and the smallest value
for FP (the failure probability).
For example, if we know that component C passes
part of its output information to output port Port1 (and
assume that the system computation completes only if
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all parts of the data have been processed), then we can
write:

C.ProcessingT ime+C.Port1.RT ≤ C.InputPort.RT.

To write this equation, we only need to look at port
Port1. On the other hand, if we know that component
C passes part of its output information to output
port Port2 (and assume that the system computation
completes only if all parts of the data have been
processed), then we can write:

C.ProcessingT ime+C.Port2.RT ≤ C.InputPort.RT.

To write this equation, we only need to look at port
Port2. If Port1 and Port2 are the only two output
ports that component C has (a global property) then
the smallest value of C.InputPort.RT can be derived
by optimization as:
C.InputPort.RT = max(C.ProcessingT ime +
C.Port1.RT,C.ProcessingT ime+ C.Port2.RT )
which we can write as:
C.InputPort.RT = C.ProcessingT ime+
max(C.Port1.RT,C.Port2.RT ).

The main research challenge that we face in implementing
this approach is to derive the inequations using architectural
information; Wright and ACME appear to be too detailed
for our purposes in some aspects, and too sketchy in others.
This matter is currently under investigation.

IV. AN AUTOMATED TOOL FOR ANALYZING NON
FUNCTIONAL ATTRIBUTES

A. A Synthesized Attribute Grammar

In order to put the proposed model into practice, we have
resolved to proceed as follows:

• We adopt Wright [1], [4] as the architectural de-
scription language on which we attach our analysis
model. We add to this language ACME’s properties
construct, in which the property value is a quantitative
value of predefined unit (millisecond for response time,
transactions per second for throughput, probability for
failure probability, etc).

• We define an attribute grammar on top of Wright’s
syntax, which assigns attributes such as response time,
throughput, failure probability, etc to all the ports
and all the roles of the architecture. This attribute
grammar can in principle be used as a synthesized
grammar, propagating actual attributes up the syntax
tree, or as an inherited grammar, propagating required
/ hypothetical attributes down the syntax tree. Because
the downward propagation is not deterministic, we
restrict ourselves to the first interpretation for now.

• We define semantic rules in the form of equations
that involve these attribute, and attach them to various
reductions of Wright’s BNF. The equations in question
are nothing but the inductive equations we have dis-
cussed in the previous section, along with associated

bookkeeping operations (symbol table operations and
the like).

• We use compiler generation technology to generate
a compiler for the augmented Wright language. The
purpose of this compiler is to generate equations that
involve the attributes associated to the ports and roles
of the architecture.

• To compute the system wide properties of the
architecture (such as response time, throughout,
failure probability), all we have to do is solve
the equations derived by the compiler taking for
unknowns the values attached to the output port
of the source component (source.outputPort.RT ,
source.outputPort.TP , source.outputPort.FP ,
etc).

This compiler is currently under construction, using com-
piler generation technology; the equations it generates are
written in Mathematica ( c©Wolfram Research). Some of the
difficulties that arise in this task include:

• The difficulty of identifying the input ports and output
ports of a component.

• The difficulty of identifying the origin roles and the
destination roles of a connector.

• Most especially, the difficulty of identifying the re-
lations between the input ports of a component, the
output ports of a component, the origin roles of a
connector, and the destination roles of a connector,
even in the simple case where we have no more than
two ports and no more than two roles of the same type.

An easy solution to these difficulties would be simply to
increase the language to force the architect to make these
determinations. But for principled reasons (not to create a
new language for each new problem), as well as pragmatic
reasons (not to worry about maintaining a viable support
environment for the language), we are reluctant to give in
to this option, yet.

The equations generated by the compiler can be used in
one of two ways:

• Numerically, by assigning actual values to component
properties and connector properties, and having Math-
ematica produce actual numerical values for the overall
architecture. This is illustrated in section IV-B.

• Symbolically, by keeping component properties and
connector properties unspecified, and having Mathe-
matica produce an expression of the overall system
attributes as a function of the component and connector
properties. This form is useful for, e.g., sensitivity
analysis. If we want to increase the throughput of
the overall system and are interested to know which
component or connector needs to have its throughput
increased to maximize overall impact (in other words,
which component or connector is a throughput bottle-
neck), then we could compute the derivatives

d(source.outputPort.TP )

d(C.Throughput)
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Figure 2. A Simple Pipe-and-Filter Architecture

for all components C, and

d(source.outputPort.TP )

d(K.Throughput)

for all connectors K and see which derivative takes
the largest value in the present configuration. Sev-
eral computer algebra systems, such as Mathematica
( c©Wolfram Research) can help with such steps, by
computing derivatives, performing optimizations, etc.

Interested readers may look up a short demo
of our prototype tool, available online at
http://web.njit.edu/m̃ili/arcdemo.exe.
This demo works only on linear architectures, and shows
how system attributes are computed from component and
connector attributes by generating then solving equations.

B. A Sample Linear Architecture

As an illustrative example, we consider a very simple
architecture, made up of two components, a producer and a
consumer, and one connector, a channel. To this very simple
configuration we add, solely for the sake of illustration, the
dummy components source and sink, and their associated
connectors; this is represented in Figure 2. To make matters
simple, we adopt standard names for all the ports, and
roles of the architecture: component ports are called inputP
and outputP; connector roles are called originR and destR
(destination role). We write, in turn, the basis of induction
equations then the inductive step equations, involving the
attributes of response time, throughput, and failure proba-
bility.

Basis of Induction. We write the following equations:

sink.inputP.RT = 0.
sink.inputP.TP = ∞.
sink.inputP.FP = 0.

Induction Step: Attachments Between Ports and
Roles.

From downstream to sink:

downstream.destR.RT = sink.inputP.RT .
downstream.destR.TP = sink.inputP.TP .
downstream.destR.FP = sink.inputP.FP .

From consumer to downstream:

consumer.outputP.RT = downstream.originR.RT .
consumer.outputP.TP = downstream.originR.TP .
consumer.outputP.FP = downstream.originR.FP .

From channel to consumer:

channel.destR.RT = consumer.inputP.RT.
channel.destR.TP = consumer.inputP.TP.
channel.destR.FP = consumer.inputP.FP.

From producer to channel:

producer.outputP.RT = channel.originR.RT.
producer.outputP.TP = channel.originR.TP.
producer.outputP.FP = channel.originR.FP.

From upstream to producer:

upstream.destR.RT = producer.inputP.RT .
upstream.destR.TP = producer.inputP.TP .
upstream.destR.FP = producer.inputP.FP .

From source to upstream:

source.outputP.RT = upstream.originR.RT .
source.outputP.TP = upstream.originR.TP .
source.outputP.FP = upstream.originR.FP .

Inductive Equations Within Connectors.

We have three connectors, upstream, channel and down-
stream. We apply the equations of section III, and find, for
downstream:

downstream.originR.RT
= downstream.destR.RT
+downstream.TransmissionT ime.
downstream.originR.TP
= min(downstream.destR.TP,
downstream.Throughput).
downstream.originR.FP
= 1− (1− downstream.destR.FP )×
(1− downstream.FailureProbability).

For upstream:

upstream.originR.RT
= upstream.destR.RT + upstream.TransmissionT ime.
upstream.originR.TP
= min(upstream.destR.TP, upstream.Throughput).
upstream.originR.FP
= 1− (1− upstream.destR.FP )×A
A = (1− upstream.FailureProbability).

For channel:

channel.originR.RT
= channel.destR.RT + channel.T ransmissionT ime.
channel.originR.TP
= min(channel.destR.TP, channel.Throughput).
channel.originR.FP
= 1− (1− channel.destR.FP )×A
A = (1− channel.FailureProbability).

Connectors upstream and downstream are fictitious connec-
tors, that have zero transmission time, infinite throughput,
and zero failure probability. We use this information to
simplify the inductive equations above, and find, not un-
expectedly: For downstream:
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downstream.originR.RT = downstream.destR.RT.
downstream.originR.TP = downstream.destR.TP.
downstream.originR.FP = downstream.destR.FP.

For upstream:

upstream.originR.RT = upstream.destR.RT .
upstream.originR.TP = upstream.destR.TP .
upstream.originR.FP = upstream.destR.FP .

Inductive Equations Within Components. We have
four components, namely source, producer, consumer, and
sink. Component source has no inpput port, hence we need
not apply inductive rules to it; also, component sink has
no output port, hence we need not apply inductive rules to
it. We are left with two components, whose equations we
write below. For component producer, we write:

producer.inputP.RT
= producer.outputP.RT
+producer.ProcessingT ime.
producer.inputP.TP
= min(producer.outputP.TP,
producer.Throughput).
producer.inputP.FP
= 1− (1− producer.outputP.FP )
×(1− producer.FailureProbability).

For component consumer, we write:

consumer.inputP.RT
= consumer.outputP.RT
+consumer.ProcessingT ime.
consumer.inputP.TP
= min(consumer.outputP.TP,
consumer.Throughput).
consumer.inputP.FP
= 1− (1− consumer.outputP.FP )
×(1− consumer.FailureProbability).

Numeric Application. As an application, we take the
following values for component properties:

Component
Processing
Time (ms)

Throughput
(tr/sec)

Failure
Probability

producer 2.0 500 0.0002
consumer 1.5 479 0.00015

For the channel connector, we take the following property
values:

Connector
Transmission

Time (ms)
Throughput

(tr/sec)
Failure

Probability
channel 0.5 2000 0.00005

System Properties. By substituting component properties
and connector properties by their values, given in the tables
above, we find the following system attributes:

System
Attribute

Response
Time (ms)

Throughput
(tr/sec)

Failure
Probability

expression
source.

outputP.RT
source.

outputP.TP
source.

outputP.FP
value 4 470 0.00039

C. A Sample Parallel Architecture

We consider the sample architecture represented in Figure
3. We assume that the output ports of A provide com-
plementary information, and we call them (respectively)
A.half1Port and A.half2Port. Using the inductive rules
we have presented for single input port/ single output port
components and connectors, we derive the RT , TP and
FP attributes of these ports. Applying the rule for multiple
output ports to component A, we find the RT , TP and
FP for the input port of A. By virtue of the inductive
step as it applies between components and connectors,
the attributes of A.inputPort are identical to those of
SA.DestinationRole. Using the inductive steps within a
connector and the trivial values of the properties of con-
nector SA, which is a dummy connector, we find that the
origin role of SA has the same attributes as its destination
role. Applying again the inductive step between the output
port of the source component and the origin role of the SA
connector, we find that the attributes of source.outputPort
are identical to those of SA.originRole. By definition (see
Figure 1), the attributes of source.outputPort are those
of the overall architecture. For the sake of illustration,
we only show the explicit formulas for response time and
throughput. We write:

System.ResponseT ime = max(RT1, RT2).
RT1 = A.ProcessingT ime+AB1.T ransmissionT ime
+B1.P rocessingT ime+BC1.T ransmissionT ime
+C1.P rocessingT ime.
RT2 = A.ProcessingT ime+AB2.T ransmissionT ime
+B2.P rocessingT ime+BC2.T ransmissionT ime
+C2.P rocessingT ime.
System.Throughput = min(TP1, TP2).
TP1 = min(A.ProcessingThroughput,
AB1.T ransmissionThroughput,
B1.P rocessingThroughput,
BC1.T ransmissionThroughput,
C1.P rocessingThroughput).
TP2 = min(A.ProcessingThroughput,
AB2.T ransmissionThroughput,
B2.P rocessingThroughput,
BC2.T ransmissionThroughput,
C2.P rocessingThroughput).

Had the output ports of component A been providing
redundant information, such that processing one copy or
another were sufficient, we would have had the following
formulas:

System.ResponseT ime = min(RT1, RT2).
RT1 = A.ProcessingT ime+AB1.T ransmissionT ime
+B1.P rocessingT ime+BC1.T ransmissionT ime
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Figure 3. A Simple Parallel Architecture

+C1.P rocessingT ime.
RT2 = A.ProcessingT ime+AB2.T ransmissionT ime
+B2.P rocessingT ime+BC2.T ransmissionT ime
+C2.P rocessingT ime).
System.Throughput = max(TP1, TP2).
TP1 = min(A.ProcessingThroughput,
AB1.T ransmissionThroughput,
B1.P rocessingThroughput,
BC1.T ransmissionThroughput,
C1.P rocessingThroughput).
TP2 = min(A.ProcessingThroughput,
AB2.T ransmissionThroughput,
B2.P rocessingThroughput,
BC2.T ransmissionThroughput,
C2.P rocessingThroughput).

This is intuitively appealing: in the case of complementary
ports, the response time is the max of those achieved
by each port and the throughput is the min; in the case
of duplicate ports, the response time is the min of those
achieved by each port and the throughput is the max.

V. CONCLUSION

A. Summary and Assessment

In this paper, we have presented a tentative model that can
be used to analyze the properties of a software architecture
as a function of the properties of its components and
connectors. The main idea of this paper is that system
wide properties can be derived from local component and

connector properties, as well as from attachments between
components and connectors, using an inductive argument.
We have illustrated our idea on simple examples, that have
trivial topologies: a single source component, a single sink
component, each internal component has a single input port
and one or two output ports, each connector has a single
origin role and a single destination role. This example is
not meant to showcase the proposed approach as much as
it is meant to illustrate it. The interesting applications of
this approach begin with compnents and connectors having
an arbitrary number of ports and roles, which then allows
us to build architectures with arbitrary topologies.

We have discussed some simple rules for components
with more than one output port, just to show that these
general cases are not beyond the reach of our model,
though they clearly make it more complicated, but also
more interesting and more useful. We have also discussed
how the inductive rules we propose for computing system
wide properties can be used to build an attribute grammar
for an architectural description language, and have briefly
discussed our plans to do so on an extension of the Wright
architectural description language.

In [5] Van Eenoo et al raise the question of representing
non functional attributes in software architectures and pro-
pose an extention of Wright that enables them to represent
required non functional properties as well as ensured non
functional properties. Our work goes one step further by
providing means to reason about ensured properties. Our
model can also be used to reason about required properties,
but we have not discussed this aspect of it in this paper. In
[6], [7] Bernardo et al. present an architectural description
language under the name of PADL, which is based on
process algebra, and use its algebraic expressions to model
and analyze operational aspects of system performance. Our
approach differs from the work of Bernardo et al, in the
sense that we are interested in a broader set of properties,
we rely on less detailed descriptions of the architecture, and
analyze the system at a higher level of abstraction.

B. Prospects
This work is currentloy in progress, and is pursued in

many directions. What we view as the most pressing issues
in our research plan are the following:

• How to determine, for a particular component or
connector written in Wright, the classes of ports of
a component (input/ output) and the classes of roles
of a connector (origin/ destination).

• For a given set of ports or roles, how to determine,
by analyzing topological and operational information,
what relations exist between the ports and roles of the
same class. This determines the choice of inductive
rule, as we have seen in section III-B.

• For a given component or connector with arbitrary
degree (number of neighbors), how to derive general
inductive rules for the various non functional attributes,
along the lines discussed in section III-C.
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