
Using EUREQA for End-User UML Model
Development through Design Patterns

Paul G. Austrem
Dept. of Information Science and Media Studies, University of Bergen, Bergen, Norway

Email: paul.austrem@infomedia.uib.no

Abstract—This work presents the EUREQA approach for
end-user development. The purpose of the tool is to narrow
the cognitive gap between the end-user developer's mental
model and the software model. The tool uses design patterns
as building blocks allowing end-users to create UML class
diagram models that capture their domain knowledge. The
EUREQA tool hides from view the complexity of code
thereby reducing the cognitive load on end-user developers.
EUREQA makes non-functional quality issues a first-class
concern allowing end-user developers to consider both
functional and non-functional aspects of design alternatives.
The tool uses visualization techniques to aid in non-
functional quality assesment. The purpose of this paper is to
evaluate and assess the opportunities and challenges of
EUREQA. A qualitative, pilot evaluation of EUREQA
shows that the visualization techniques work well, whereas
there are issues with the abstraction gap between the
visualization and class diagram.

Index Terms—End-User Development, Tool-support, Design
Patterns, Non-Functional Qualities

I. INTRODUCTION

End-user development (EUD) is defined as the activity
of an end-user of a software system being partially or
conpletely in involved in the development effort.
Moreover, end-user development is a growing domain.
Numbers from [1] estimate that there in 2012 will be
more than 55 million end-users in American workplaces,
with 13 million of these performing programming
activities. This is in contrast to the expected 3 million
professional software developers in the US. It is evident
that end-user development is an important and ubiquitous
domain.

In spite of these numbers most software development
tools are designed with software professionals in mind.
However, the fundamental design of professional
software development tools is incongruent with the needs
of an end-user developer. First of all, professional
development tools have a high skill threshold and assume
a high degree of knowledge of its users in order to be
used productively. Secondly, professional development
tools requires the user to think in terms of the computer
model and some paradigm such as object-orientation.
These are concepts that are alien to an end-user
developer, and give rise to an issue identified as the
cognitive gap defined as the distance between the end-

user developer's mental model and the computer model
[2]. A similar concept is the communications gap, defined
as the difference in mental models between end-users and
software professionals [3].

We argue that among the expected 13 million end-user
programmers, many will be working with mobile
technology. An increasing number of businesses are
using mobile technology to improve work processes for
professionals who perform their work tasks away from a
desk with a desktop computer. This can be observed in
public transport with for instance trains where ticket
conductors print tickets and find schedules on a mobile
device. In the medical domain, doctors can use mobile
devices to retrieve real-time patient journal data [4], and
mobile computing can be highly effective in logistics [5]
and aircraft maintenance [6]. However the introduction of
mobile work also introduces new challenge as new
requirements may only emerge after deployment and use
“in the wild” [7]. Thus the introduction of moble
technology will further increase the need for end-user
development tools, techniques and methods.

Developing software solutions that support mobile
work requires domain knowledge and work process
knowledge. The professionals using mobile solutions are
the people best equipped to contribute in the area.
Traditional approaches may involve consultancy
companies or third parties performing software
development beginning with requirements elicitation
through to design and on to coding, testing and
deployment. Even with agile methods it is arguably a
time consuming effort involving also management
planning and approval processes that create further
overhead. Principally end-user development inverses this
approach. Instead of software consultants learning about
the domain from users, end-user developers become
familiar with software design. End-user development is
defined as “a set of methods, techniques and tools” [8]
(p.2) which allow users of software systems to “at some
point create, modify or extend a software artifact” [8]
(p.2).

In a mobile setting the domain knowledge becomes
even more important, because the context in which the
work is conducted will more strongly affect requirements.
For example, a home healthcare worker filling in data on
a stationary computer will have no environmental
distractions, whereas someone performing the same task

690 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.4.690-704

on-site during a visit will simultaneously have to be
aware of and tend to the needs of the patient. Thus a
different context arises than if the person was working at
a stationary computer. EUREQA is not designed
specifically to deal with end-user development of mobile
systems, but is motivated in part by the growing need
through mobile technology to involve end-users in the
development process.

This work is part of the M3W project focusing on
model-driven support for multi-channel mobile work.
EUREQA is part of the model-driven area of the project
and uses design patterns as foundational building blocks
from which UML class diagram models can be
constructed. In this work, we present EUREQA with
results from a qualitative pilot evaluation.

II. THEORETICAL FOUNDATIONS OF EUREQA

The benefits of end-user development are multi-
faceted. Firstly, the end-users get a sense of system
ownership. Reporting on first hand experience Wagner
and Picolli show that it is imperative that developers
listen to end-users, accommodate participatory design and
that user participation can be most valuable and powerful
after they have started using the system [9].

Wagner and Picolli [9] along with Klaus, Wingreen
and Blanton [10] report that end-users can topple
multimillion dollar projects through adoption resistance.
The root of adoption resistance has been investigated for
decades. A survey by Hirschheim and Newman indicated
that resistance is inherently complex, but a few aspects in
their work seem equally relevant today as they did twenty
years ago [11]. Firstly, they identified lack of
involvement in the change and lack of felt need as
concerns. These are issues that pervade software
development to this day. Similarly they state that
organizational invalidity is a contributor to user
resistance. Organizational invalidity equates to process
re-engineering in order to accommodate the changes
induced by introducing information technology. If the
changes made to work processes feel in some way
awkward for the user then this could raise tensions and
spur adoption resistance.

The second salient benefit is a reduced cost of
development. Development efforts that are reliant on
external suppliers and consultants who do not have any
tie-in to the day-to-day operations will produce
administrative and managerial overhead. Thus, any post-
deployment development effort run by an external
supplier will increase the time between a requirement is
identified from field use until it is functionally resolved.
Moreover, there may be cost issues related to the
exclusive use of external suppliers and consultants
compared to relying on in-house end-user development
efforts.

Given the aforementioned benefits of end-user driven
development, there are a few challenges in end-user
development that EUREQA attempts to resolve. Fischer,
Giaccardi, Ye, Sutcliffe and Mehandjiev report that
encouraging end-user development is from a managerial
point of view risky or even outright hazardous as it could

lead to the introduction of unreliable and unmanageable
software [12]. Costabile et al. proposed that “there is a
high level of errors in applications developed by end-
users” [3] (p. 6). Segal tenders that a major problem in
end-user development effort is the narrow focus on
achieving the functional goal(s) and ignoring everything
else, such as non-functional qualities (NFQ) [13]. This
claim is supported by Chung and Leite who describe it as
a lop-sided emphasis on functional requirements [14].
When even professional developers tend to ignore non-
functional requirements there is little hope that end-user
developers will pay any attention to them either as they
are primarily occupied with creating a solution that
satisfies their functional needs. However there are strong
reasons for focusing on non-functional requirements,
with numerous examples of the significant costs of
ignoring them. Projects such as the London Ambulance
System, the Mars Climate Orbiter and a licensing system
for the New Jersey Department of Motor Vehicles were
all scrapped or deemed failures due to not meeting non-
functional requirements according to Kassab [15].

The non-functional requirement failures described
above may not all be equally pertinent to end-user
development as some might have failed due to
performance-related non-functional requirements.
Mehandjiev, Sutcliffe, and Lee report that security, data
accuracy, maintainability and reliability of software
developed by end-user developers are all major concerns
from an ogranizational point of view [16].

Mørch, et al. state that from an EUD perspective,
professional development tools and IDEs (for example
Visual Studio or Eclipse) lack certain qualities that must
be present in an EUD tool [17]. They state that an EUD
tool should a) offer “metaphors that provide meaningful
abstractions for end-users, allowing them to break up
applications into suitable components and assemblies”
[17], (p. 60) and b) offer the possibility for end-user
developers to gradually learn to build or modify software
components. This is referred to as the gentle slope theory,
a design heuristic which stipulates that moving from one
level of abstraction or activity to the next should not incur
a sharp increase in the environment's complexity or in the
skills required of the user [8]. End-user development is an
increasingly important domain and currently most
software development tools are designed with
professional developers in mind. A major challenge is
providing an environment that does not cognitively
overload the end-user developer. This can be achieved
through limiting a tool to only dealing with a portion of
the software development life-cycle. End-user
development environments should provide a gentle slope.
Another design goal of end-user development tools is
reducing the cognitive gap, that is providing a
development environment which aligns with the end-user
developer's mental model. A final concern is making end-
user developers aware of the non-functional aspect of
software artifacts.

The domain of end-user development is rich with
various techniques, methods and approaches. A
discussion and summary of the various techniques is

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 691

© 2011 ACADEMY PUBLISHER

offered in [8]. A common distinction in end-user
development is made between tools for use during
design-time and use-time. Design-time tools encourage
the end-user to partake or perform development before
the software solution is implemented. Use-time tools are
more often aimed at what is known as end-user tailoring,
where an end-user adopts an existing artifact during use.
Another dimension along which end-user development
tools are separated is their level of abstraction. At the
lowest level of abstraction are techniques such as
scripting in spreadsheets, the most widespread technique
currently in use. The benefits are that it is quick with little
overhead and allows for immediate execution. The
obvious drawbacks are a) that it requires the end-user
developer to have a basic understanding of programming
concepts such as variables and variable scope, along with
learning script syntax and b) scripting does not scale well
to larger solutions.

At the intermediate level of abstraction, one finds
model-based and component-based approaches. Mørch et
al. have done work on the components-based approach
within end-user tailoring [17]. The principle is that an
end-user developer can combine various components to
create a software solution. The components act as
containers of a pre-defined functional behavior. They can
be combined through connections according to a set of
rules. Won, Stiemerling and Wulf provide an
implementation where they dub these connections ports
with rule-based checking of connections [18]. A major
benefit of the components-based approach is that it hides
from view the inner workings and software complexity of
each component. The end-user works at a higher level of
abstraction relating only to descriptions of what the
component does at a high functional level. Moreover the
rule-enforced connections between components stops the
end-user from making any syntactical errors. However a
limitation of the component-based approach is the black
box nature of the components and that end-user
developers cannot natively express their domain
knowledge in the environment. Another issue identified
by Mørch et al. relates to how end-user developers deal
with situations where the application framework does not
provide the component they need [17]. This would
require them to develop the component themselves.

At the highest level of abstraction are tools such as
Hands [19]. High abstraction level environments are
often domain-oriented and use modeling notation that are
direct representations of the specific domain. This
removes any issues caused by closeness of mapping [20]
and aligns with an end-user developer's mental model.
However the most obvious issue with such environments
are their narrow scope and lack of flexibility. Moreover,
if the tool is aimed for high-level model-based
application development, it would further require a
potentially complex, proprietary model tranformation
engine for forward-engineering.

The three levels of abstraction described above are
only a sample, with other approaches existing inbetween
these. Within each level of abstraction are a plethora of
techniques that enable end-user development. We will not

go into details here as [8] provide a good descriptive
coverage but some of the key techniques are visual
languages, model-based development, programming-by-
example, parameterization and annotation.

All of the three approaches above have their relative
strengths and weaknesses, however a common
denominator among all of them is that none of them deal
explicitly with non-functional requirements. Again the
non-functional aspect is treated as an inevitable
consequence which one can do nothing about. Exceptions
to this are few and far between. One example is the State
of Oregon who uses an information system named
Oregon Public Employees Retirement System (PERS).
The system is used to manage pension payouts to former
state employees. In their IS development guidelines, they
provide a separate end-user standard development
guidelines documentation that highlights non-functional
requirements as a separate section [21].

Design patterns are an industry-wide approach to
software design reuse. They also exist at an intermediate
level of abstraction. Design pattern solutions are
represented in UML class diagram form that requires
little to no model transformation in order to be forward-
engineered. At the same time they are presented in a
higher level form using metaphors and analogies to real-
world situations making them more understandable and
focus on overall solution properties rather than specific
technical details. Surprisingly design patterns have, to the
best of our knowledge, not previously been used in an
end-user development setting.

We propose the EUREQA tool for end-user
development which aims to resolve some of the issues
with the aforementioned tools and make non-functional
requirements a first-class concern in end-user
development. EUREQA uses design patterns as
foundational building blocks from which an end-user
developer can construct a UML model solution. The
following section will outline the theoretical framework
upon which EUREQA is built.

A. Design Patterns
Design patterns were introduced to the domain of

software in 1994 through the seminal work of Gamma,
Helm, Johnson and Vlissides [22] A design pattern is a
solution to a problem within a certain context. We
consider design patterns to be a strong candidate to
resolve the issues presented earlier for three reasons. First
of all, a key feature of design patterns is the use of
metaphors and analogies in describing the technical
solutions. They are not exact blueprints of implemented
code but rather abstracted models based on object-
oriented software principles. As such, they exist at a
higher level of abstraction than UML models. Design
patterns are often presented in the form of UML class
diagrams wherein each class has a specific role within the
overall behavior of the design pattern. The classes can be
renamed to closer align with the domain the design
pattern is being used in. Finally, the solution portion of a
design pattern is often tried and tested, as such design
patterns contain a certain level of quality assurance. A

692 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

notable trait of design patterns is that they expose the
non-functional result of applying them. These are
described through textual descriptions titled
consequences. Design patterns therefore natively
elucidate non-functional requirements and bring them to
the forefront of consideration in design decisions. In
EUREQA, we leverage design patterns because of these
traits and use them as building blocks for UML class
diagram model construction.

B.Non-functional requirements
As discussed, non-functional requirements are

important in any non-trivial software solution, and if
neglected can have disastrous consequences. They are
also a challenge on a conceptual level. There is no mutual
agreement on what they are although many definitions
have been proposed. Although standard definitions have
been proposed by bodies such as ISO [23] but there is
still contention in the research community as to whether
they are accurate and complete. Chung and Leite
deliberate the various definitions and tender that the most
precise one is “NFRs constitute the justifications of
design decisions and constrain the way in which the
required functionality may be realized” [14] (p. 366).

One of the reasons non-functional requirements are
neglected is because they are hard to measure and
quantify. Therefore one often aims to satisfice non-
functional requirements rather than objectively satisfy
them through metrics. Glinz discusses the complexity of
non-functional requirements and proposes a taxonomy
separating between various types of non-functional
requirements [24]. One group is what he dubs “quality
attribute requirements”. A non-functional quality attribute
requirement, often known as “ilities”, is “a requirement
that pertains to a quality concern other than the quality of
meeting the functional requirements” (p. 4). This is a
somewhat ambiguous definition, but it only highlights the
inherent ambiguity of quality attributes. They cannot be
directly operationalized the same way performance
requirements can. Performance requirements can be
quantitatively measured through CPU cycles or data
throughput. Quality attributes on the other hand can be
qualitatively assessed. Glinz states that for qualitative
verification “no direct verification [is possible]. May be
done by subjective stakeholder judgment of deployed
system, by prototypes or indirectly by goal refinement or
derived metrics” [24] (p. 4). The non-functional
requirements identified by Mehandjiev et al. as major
issues in end-user development all belong to the category
of non-functional quality attributes [16].

EUREQA aims to deal specifically with quality
attribute non-functional requirements. First of all, this is
because most of the projects mentioned earlier failed due
to quality attribute neglection. This highlights the
importance of dealing with them to sustain a software
solution long-term. Secondly, and as the next section will
show, previous work has investigated the use of design
patterns as a way of dealing with these types of non-
functional requirements.

C. Using design patterns to satisfice and trace non-
functional requirements

Gross and Yu [25] explored the use of design patterns
as a means of satisficing non-functional requirements.
Specifically they proposed systematic treatment of non-
functional requirements in design pattern descriptions and
analyzing them using the NFR-Framework [26]. Cleland-
Huang [27] proposes design patterns as a means of
achieving non-functional traceability in software
solutions. Hsueh and Shen [28] propose a “pattern-aided
approach to handling non-functional requirements and
assisting the resolution of conflicting requirements” (p.
614), whereas Cleland-Huang and Schmelzer [29]
elaborated on their approach by using design patterns as
trace artifacts between a soft goal interdependancy graph
and the underlying object-oriented model. The approach
was based on creating user-defined links between classes,
or class clusters, and non-functional requirements. The
class clusters are the group of classes belonging to a
design pattern. The underlying theory is that “if an NFR
is implemented through a design pattern, and if that
design pattern can be detected, then finely grained
traceability links can be generated” [29] (p. 6). Fletcher
and Cleland-Huang [30] propose using design patterns
within a soft-goal framework as design solution
candidates. The design pattern is then “contextualized”
according to the given constraints and context of the
specific problem. As such the generated UML class
diagram operationalizes the softgoals.

As we can see, some work has been done showing
how design patterns can be used to deal with non-
functional requirements. Simultaneously design patterns
exhibit many traits which are desirable in an end-user
development setting. However, no work has been done
which uses design patterns and deals with non-functional
requirements in an end-user development setting.

III. METHOD

This work employs design science [31][32] as its main
research methodology. The reason for choosing design
research as the method is because it is a widely applied
research approach when dealing with novel and new
technologies / techniques and allows the focus to be on
the designed artifact. The development effort itself is part
of the epistemological basis of design science research.
The development of the tool has been driven by
specifications and requirements emerging through
extensive literary review.

March and Smith [33] propose four artifacts that can
result from design research in information systems,
namely constructs, models, methods, instantiations,
wherein the EUREQA tool is an instantiation. The
literature research that has been conducted provides the
theoretical framwork on which the instantiation is built.
Vaishnavi and Kuechler [34] present design science as an
iterative research effort with each iteration involving five
steps. The steps are awareness of problem, suggestion,
development, evaluation and conclusions. Our
awarenesss of problem, as discussed above, stems from

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 693

© 2011 ACADEMY PUBLISHER

an identified lack of end-user development tools that are
both oriented at model-driven development and consider
non-functional requirements. From this we have
formulated the research question can the use of design
patterns reduce the cognitive gap in end-user
development? The EUREQA tool and the theoretical
foundations correspond to the suggestion step. The
following section briefly presents the case problem used
to evaluate EUREQA. This will be followed by a section
describing the development of EUREQA, which
corresponds to the development step described by
Vaishnavi and Kuechler [34].

A separate section presents the evaluation that aligns
with the evaluation step. We have used qualitative
methods for the evaluation. The use of qualitative
methods in design science evaluation is important.
Hevner et al. [31] state that “the rich phenomena that
emerge from the interaction of people, organizations, and
technology may need to be qualitatively assessed to yield
an understanding of the phenomena adequate for theory
development or problem solving” (p .77). At the core of
design science is the designed artifact. Using the
qualitative technique of content analysis and coding in a
design science research setting makes it natural to define
constructs around the key properties or features of the
designed artifact before data analysis begins. This is
known as a priori construct definition and is described by
Eisenhardt [35] and Flick [36]. A priori constructs can be
generated through literature review and in our case from
specific features of the designed artifact.

Finally the analysis and discussion sections
correspond to the conclusions step of Vaishnavi and
Kuechler's [34] model.

The case problem
In Bergen, Norway a large project is currently being

undertaken to build the “Bybanen”, a light rail system
through the city center. In this work, we have conducted a
semi-structured interview with an operations manager
(OM) with one of the subcontractors involved in the
building of the “Bybanen”. The OM noted that a lot of
time was spent and to a certain degree wasted as part of
logistics and materials deliveries. Quite often materials
would be addressed to a specific engineer on the project,
however the engineer himself would not be there to sign
for it, instead someone else would and the engineer
waiting for the delivery would not be notified. The
engineers carry with them mobile devices. Such
challenges could be resolved with mobile technology. On
all projects, the construction company utilizes a web
solution called a “project hotel” where all progress is
registered daily. The OM reflected that an ideal solution
would be some sort of mechanism allowing an engineer
to be notified whenever materials/resources arrived for
him/her and was registered in the “project hotel” website.
To summarize, the engineers require timely notifications
whenever materials or resources arrive. These
notifications should ideally be sent to their mobile
devices.

IV. DEVELOPMENT OF EUREQA

During the development of the EUREQA tool
requirements have emerged through internal testing and
evaluation, thus these have spurred further literature
review and development of new functionality creating a
cyclic process, as described by Vaishnavi and Kuechler
[34]. Functional requirements have also emerged through
discussions and feedback from other researchers and
colleagues.

Although design patterns explicate the non-functional
consequences of their use and apply metaphors to make
the underpinning software design principles more
accessible, end-users may still find it challenging to
assess the appropriateness of a given design pattern. This
is because end-user developers will find it hard to decide
on whether a given design pattern disqualifies itself due
to its non-functional consequences. For inexperienced
end-user developers, this is a major issue. They will not
have the background knowledge required to select a
design pattern given their non-functional requirements.
To relieve this, a non-functional requirements-driven
design pattern-based tool was developed to assist end-
user developers in making coherent design choices
reflecting the context and non-functional requirements of
a system. The tool forces the end-user developer to
consider the non-functional consequences of using a
specific design, and provides advice and guidance until
they have a complete design model from which code can
be generated. The end-user developer creates a non-
functional profile for the application reflecting the
context of the domain in which the application will be
used. This profile forms the basis upon which solutions in
the form of design patterns are selected. The tool utilizes
vsiualisation with radar charts and Goal-oriented
Requirements Language (GRL) [37] models to show the
non-functional consequences and appropriateness of
various design patterns chosen from a design pattern
repository.

The second approach is the use of EUD project
history. When a user or a group of users work with the
tool, they first have to define the project on which they
are working. All design solutions they generate during
their work session will be saved and appended to that
specific project along with a log of all design decisions
(as recorded in audio) they made. EUREQA encourages
cross-project learning and knowledge distribution, since
it also allows users to share design solutions and design
decisions in the form of attached audio recordings.

EUREQA is based on a step-by-step approach
wherein the user is required to perform certain tasks
before progressing to the next step. This is to a) limit the
amount of information shown in one screen and b)
provide a gentle slope of increasing complexity by the
user performing the easier tasks first before moving on to
the more complex tasks. In EUREQA, this is
implemented through a tab-based environment.

A. Step 1 in EUREQA – define a non-functional profile
The first tab the user works in is the Main Tab. In this

tab the user performs one, or optionally two tasks. The

694 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

main task is defining their non-functional profile. The
tool allows for the definition of a non-functional profile
by quantifying each non-functional quality on an ordinal
scale ranging from 0-10. This is done in the area with a
white border in Fig. 1. The lowest value of 0 indicates
that the non-functional quality is of no importance, and
thus does not need to be supported by the design.
Conversely, a value of 10 indicates that the non-

functional quality is extremely important. An issue with
this can be that users assign high values for all of the non-
functional qualities, however this would lead to few, if
any, design patterns satisficing their requirements. The
set of non-functional qualities can not be extended by the
end-user. However, the end-user can modify and reduce
the set through the Setup tab.

Figure 1. Main tab in the EUREQA tool.

The design patterns are retrieved from a repository
(database) where their non-functional qualities also are
quantified, indicating how well the given design pattern
resolves each non-functional quality. The design pattern
are listed in a library shown on the left-hand side of Fig.
1 with a grey border. The non-functional quality attribute
values are presented in a radar chart where an overlay of
the selected design pattern(s) show how well they match
the user-defined non-functional profile. Below this is a
table detailing the degree of support of each non-
functional quality of the design pattern given the user-
defined profile. The table uses the nomenclature of the
GRL language [37] and allows for degrees of support
through use of fuzzy sets. The radar chart and GRL fuzzy
table are shown in the black border in Fig. 1.

B. Step 2 in EUREQA – Selecting a design pattern
The second step in the EUREQA approach is selecting

a design pattern. In the pilot evaluation version of
EUREQA we only allow for the selection of one pattern

that can be manually augmented at a later stage on a
class-by-class basis. Selecting a design pattern can be
done in one of two places. The first is through the Main
tab with the radar chart information as the foundation for
making a decision. However, it is not guaranteed that
end-user developers can manually do the mapping
between the functional task that they wish to solve and
the appropriate design pattern(s). Often several design
patterns may resolve the same functional requirement(s)
with the variation existing at the non-functional level.
Martin [38] for instance shows the different approaches
that can be used to solve the following problem “…a
need to add a new method to a hierarchy of classes, but
the act of adding it will be painful or damaging to the
design.” [38] (p.525). This can be solved by various
patterns, collectively known as the Visitor family of
patterns [38]. But most end-user developers will not
know that this functional problem statement can be
solved using the aforementioned Visitor family of
patterns.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 695

© 2011 ACADEMY PUBLISHER

Figure 2. The Common Cases tab in EUREQA

Thus EUREQA provides a second approach to
choosing a design pattern and way of mapping from the
functional description to appropriate patterns in the
Common Cases tab (see Fig. 2). Here, a selection of
common functional tasks are shown in use case form.
They are shown on the left in the white-bordered area of
Fig. 2. When selecting one of the common cases, the tool
will search the database for patterns that are related to the
chosen common case and present a table containing the
patterns. It will also match the profile of each design
pattern against the current user-defined profile and
indicate how the various patterns align with the profile.
This is shown in the grey bordered area of Fig. 2. The

user can also click on the name of a pattern and retrieve
additional information such as the intent and purpose of
the pattern, as shown in the black bordered area of Fig. 2.
As such, the second step of the EUREQA approach is
doable in two separate tabs.

C. Step 3 in EUREQA – Class diagram
The final step in EUREQA is working with the chosen

design pattern at the class diagram level. This is done by
selecting the tab with the name of the pattern the user has
selected. Here the end-user developer can access the
structural details of it through a Visio model (Fig. 3) and
use domain specific naming to replace the standard
naming of the design pattern classes.

Figure 3. Class Diagram tab in EUREQA

The user can read information about the specific
classes in the class diagram by clicking a class name
contained in the black-bordered section on the right-side
of Fig. 3. The tool offers support for audio recording of
design rationale and decisions as they are made, for
instance every time the end-user developer moves or
changes an element in the model (s)he can record a short
oral note on the why and how. The toolbar at the top of
Fig. 3 shows the audio recording controls. This is all
stored for future reference in a database linked to the
specific session.

As mentioned, the tool currently does not provide for
automated integration of other design patterns. In the

pilot evaluation version, a UML toolbox is available
providing the user with model elements to further work
on the diagram by manually adding UML elements. The
section on the left-hand side with a white border in Fig. 3
shows the UML toolbox. The grey bordered section in the
middle is the class diagram canvas. Obviously there are
inherent problems with manual UML manipulation. First
of all, it is unlikely that end-user developers will have the
required skillset to successfully manually add UML
diagram elements with incurring syntactic and semantic
errors. Secondly, manually adding UML elements, even
if they are syntactically and semantically correct, can
cause model inconsistencies in relation to the overall

696 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

solution satisficing non-functional requirements.
However, for our protoype evaluation, we are mainly
interested in the novel functional aspects of the tool such
as defining a non-functional profile, the radar chart,
Common Cases and their use of design patterns. Offering
the users the possibility to manually add to the design
patterns in the class diagram can give us a gauge of their
confidence in the design pattern model solution.

D. GRL Tab and Model
EUREQA provides a GRL view model in a separate

tab using a subset of the GRL ontology [37]. It provides a
different perspective on the non-functional effects of the
selected design pattern by using elements from the GRL
language such as Task, Softgoal and Contribution
relationships to indicate how the pattern affects the
various non-functional characteristics relative to the user-
defined profile.

The use of GRL is motivated by its semantic simplicity
furthered by the use of a subset of its ontology. The GRL
model allows for a larger perspective, providing a holistic

view of how the pattern affects the various non-functional
requirements. End-users can utilize the GRL map of the
design pattern they have selected to see if any non-
functional requirement is becoming overly burdened.

E. Fuzzy set support in the tool
When working with software design, every design

decision is a trade-off. Rarely do you encounter cases
where it is either completely apparent to either use or
discard a solution. Most of the time there are some
benefits and some drawbacks to using a design solution,
often in the form of non-functional conflicts. Moreover a
design solution may provide some support for a given
non-functional requirement, but one is dealing with
degrees of support rather than an either/or scenario. To
remedy this, the tool applies fuzzy set theory to aid with
the inherent vagueness and ambiguity of non-functional
quality attributes that may confuse the novice. Fig. 4
shows the five fuzzy sets for the Reliability Operational
non-functional attribute of the Observer pattern.

Figure 4. Fuzzy set configuration tab

In Fig. 4 a screenshot of the fuzzy set setup is shown.
The EUREQA tool allows for complete customization of
the fuzzy sets which constitute the basis for
recommendations on specific non-functional
characteristics of individual patterns in case the end-user
developers desire to customize the fuzzy sets at the micro
level. However, it is unlikely that an end-user would feel
comfortable altering these values. We would consider a
feasible approach to be an end-user developer/domain
expert altering the values in collaboration with a software
professional. This can be considered tuning the fuzzy sets
to reflect the specific domain it is going to be used in. A
caveat with this is the difficulty of fine-tuning a fuzzy set,
we consider it to be an incremental process performed
over time with only small adjustments made after an

initial broad-stroke tuning. We have not evaluated the
tuning of fuzzy sets by end-user developers in our pilot
evaluation. The fuzzy sets reflect by default a standard
setup for a generic domain. The fuzzy sets are used as
follows. When a user selects a design pattern, from the
design pattern library or common cases, EUREQA
performs a simple calculation for each non-functional
quality attribute. It subtracts the design pattern's value for
the given non-functional quality attribute from the user-
defined value for the same attribute. The difference is
then used in the fuzzy set membership degree calculation.

Currently the tool supports design pattern selection
and deals with presenting the non-functional effects of
choosing a design pattern. The tool builds on the promise
of model-driven development (MDD), wherein the end-

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 697

© 2011 ACADEMY PUBLISHER

user can generate UML class diagrams and sequence
diagrams along with other platform independent models
(PIM) that can then be used as a basis for further
refinement in other tools or as the source for code-
generation in an MDD environment.

V. EVALUATION

This section presents the evaluation phase of the
design science process. The next section will describe the
data collection. This is followed by the analysis section
and finally the results section.

A. Data collection and evaluation method
We recruited three master level information science

students to participate in this pilot evaluation. The
evaluation was set up with 40-50 minute sessions for
each of the three participants, with a final open group
discussion lasting approximately 20 minutes. Each
participant was initially given a quick demonstration of
the tool along with a brief user guide describing the tool's
main functions and the problem case. The user guide was
to be used for reference when using the tool if the
participant at any time felt uncertain or unsure of what to
do.

Data capture was done through audio- and screen-
recording. We used the think-aloud protocol [39]
encouraging participants to talk about their experiences as
they were working with the tool. This technique provides
“a valuable source of the data about the sequence of
events that occur whilst a human subject is solving a
problem or performing a cognitive task” [40] (p. 10).
Ericsson and Simon [41] have shown that the think-aloud
protocol does not disturb or detract the participant from
the problem-solving task. However, with the think-aloud
protocol “there is no room left for reflecting” according
to van Someren et al. [39] (p. 26). The observer sat 3
meters behind the participant at a slight angle in order to
see the screen. The participants could, if they felt
completely at a loss, ask questions. Each participant used
the tool for approximately 30 minutes, this was then
directly followed by a semi-structured interview with
each participant. The same broad topics were discussed
with all three participants thus making it possible to
synthesize laterally. The evaluation was concluded with a
final group discussion. This was to allow the participants
to discuss openly in a more reflected manner, something
which is not directly supported in the think-aloud
protocol. The data has been analyzed using an emergent
open coding procedure [39] [42].

B. Analysis
We have previously discussed the concept of a priori

constructs and emergent constructs. In Table 1, we show
the most important constructs, both a priori and emergent.
Constructs marked with a * symbol were defined a priori.
Some a priori defined constructs were adjusted during
coding, these are marked with a ** symbol. From Table 1
we can see that many of the constructs which were a
priori constructs were adjusted. During the coding, we
discovered that our descriptive feature constructs were

being discussed in relation to how the users understood
them. This is reflected in the high number of adjusted a
priori sub-constructs in the Understanding and
Comprehension construct group.

Thus, we had a set of descriptive constructs prior to
the data analysis, specifically constructs which were of
interest to us, such as design patterns, user-defined non-
functional profile and radar chart. During initial
transcribing, raw data analysis and open coding several
other central constructs become apparent. We call these
emergent constructs, an example of how an emergent
construct was created is as follows. For instance the
following topically similar statements were all the
foundations of emergent constructs.

“I haven't worked with the UML for like three or four
years, so please bear with me if I am making a lot of
mistakes understanding it” - Participant 1

“I am not quite up to scratch on my UML and didn't reall
y understand how the boxes were related” - Participant 2

“I just lacked the upfront knowledge about UML
diagrams” - Participant 2

“I really feel I need some help here. Because I can't
grasp this diagram. Like these arrows, what do they
mean?” - Participant 3

The four statements were among the foundations of the
emergent construct background knowledge and UML
model understanding. That these became important
constructs was interesting since the hypothesis was that
using design patterns would allow one to abstract away
the details of the UML models, thus reducing the amount
of background knowledge required in order to develop a
UML model solution.

The first phase of the analysis was counting how many
times each construct was used in the coding effort. After
the open coding was completed the various a priori and
emergent constructs were assembled in exclusive sets.
In total there are seven main construct that contain 28
sub-constructs with a reference count from 1 to 53. The
results are presented in Table 1.

698 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

TABLE I.
MAIN CONSTRUCTS AND SUB-CONSTRUCTS

Construct Sub-constructs Construct
frequency and
percentage

Decision
Making

Non-functional value
tweaking**

10 2.45%

Design Pattern Selection* 12 2.94%

Rationale Class Diagram changes
reasoning

14 3.43%

Design Pattern selection
reasoning

16 3.93%

Non-functional quality
value tweaking reasoning

18 4.42%

Understanding
and
comprehension

Case problem
understanding**

18 4.42%

Design pattern
understanding**

47 11.5%

GUI understanding** 15 3.68%

Non-functional qualities
understanding**

24 5.89%

RadarChart
understanding**

10 2.45%

UML model
understanding**

35 8.59%

Negative
Experience

Cognitive Overload 7 1.71%

Confusion 32 7.86%

Feeling of being restricted 2 0.49%

Forced Fit 4 0.98%

Sense of being lost or
uninformed

18 4.42%

Time consuming 3 0.73%

Unfamiliar action, not the
normal way of doing things

3 0.73%

Unintended use of tool 2 0.49%

Positive
Experience

Positive experience 3 0.73%

Sense of control 12 2.94%

Well reasoned decision 9 2.21%

Retrospective Personal preference 5 1.22%

Preferred approach 27 6.63%

Reflection 53 13%

Supporting different user
profiles

2 0.49%

Background knowledge 1 0.24%

Tool
functionality

Audio recording* 5 1.22%

Common Cases* 1 0.24%

Table 1 provides a high number of coding occurences
for some of the negative experience sub-constructs and
similarly for the understanding and comprehension sub-
constructs. We used NVIVO 8 for our qualitative
analysis. A feature of the analysis tool is what is called a
matrix coding query. It allows us to analyze the relations
between the negative experience sub-constructs and the
understanding and comprehension sub-constructs. A
relation exists whenever coding of both a construct from
the negative experience constructs AND a construct from
the understanding and comprehension constructs exists.

C. Results
We present the results along two dimensions by using

a dichotomous separation between negative and positive
coded constructs. The following section presents the
negative constructs and their relations to other constructs.
Fig. 5 shows the results in a 3-axis column chart.

In Fig. 5, we can see that there are few negative
experiences associated with the Radarchart
understanding for displaying the fit between the user-
defined non-functional profile and design pattern's non-
functional profile. The most obvious negatively coded
issues relate to Design Pattern understanding and UML
model understanding. There exists a relation between the
sub-constructs sense of being lost or uninformed along
with confusion and the sub-constructs UML model
understanding and Design Pattern understanding. There
is a parallell between these two spikes in Fig. 5, the
purpose of design patterns was to abstract away the need
for detailed knowledge of the semantics of UML and
class diagram modeling. However when this abstraction
fails it requires the end-user developer to rely more on the
UML model which causes increased confusion or sense
of being lost or uninformed. Moreover it became clear
that from a task process progression point of view the
participants struggled when they reached the class
diagram phase. Participant 3 upon reaching the class
diagram phase (Fig. 3) commented that “I really do not
know where to even start” and during the semi-structured
interview debriefing stated that “when I got to this step
here [the class diagram] I didn’t know what to do at all”
and “I didn't feel I could get much help at all. I tried readi
ng the description but it wasn't very useful”. Participant 1
echoed the sentiment of Participant 3 stating that “If I had
been more familiar with UML this would have gone
much quicker. It is such a long time since I have worked
with this”. This reveals that they both immediately started
focusing on the semantics and syntax of the UML which
ideally would not be a focal area if they could continue
thinking at the abstract level of design patterns and the
various design pattern roles.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 699

© 2011 ACADEMY PUBLISHER

Figure 5. 3-axis column chart showing relations between
coding of the Negative Experiences sub-constructs and the
Understanding and Comprehension sub-constructs

In regards to the design pattern understanding, one
participant noted that the design pattern descriptions
came across as “a wall of text” rendering the participant
overwhelmed. This view was not shared among all
participants. Another participant stated that the design
pattern text was quite helpful once he had read it
thoroughly. But the participant did note that briefer “at a
glance” descriptions would be useful. The disposition of
the text descriptions could to a certain extent explain why
the anticipated level of abstraction through design
patterns was not achieved.

If we consider a similar diagram for the set of positive
experiences with the set of understanding and
comprehension, in Fig. 6, then we see that the two
constructs of NFQ-understanding and RadarChart
understanding sustain spikes. During both the think-
aloud part of the evaluation and the following interview,
all the participants noted the intuitive approach
accommodated by the radar chart.

Figure 6. 3-axis column chart showing the relations
between the sub-constructs of positive experiences and the sub-
constructs of comprehension.

The ease of use associated with the radar chart acted as
a catalyst for the high number of well-reasoned decisions
and NFQ understanding codings. There are also
similarities between the spike of NFQ understanding and
Sense of Control compared to the spike of NFQ
RadarChart understanding and Sense of Control. Given
that the participants did not express any positive
experience related to NFQ understanding, it is reasonable
to argue that their experiences with the radar chart gave
them more confidence in their NFQ choices. This also
trickles through to the well-reasoned decisions related to
design patterns since the radar chart provides a graphical
bridge between design patterns and non-functional
qualities. This bridge allows an EUD to directly assess
the suitability of a design pattern.

VI. DISCUSSION

Our results suggest that some of the features such as
the radar chart and use of fuzzy sets can be useful.
Granted this was only a pilot evaluation with few
participants, but as early results they are encouraging.
Similarly the participants acknowledged that non-
functional requirements were not something they
considered in their day-to-day development efforts. They
also commented that they liked the concept of being able
to numerically create a cohesive profile that acts as
constraints on their design choices.

EUREQA is an environment that combines both
visual/pictorial and textual information. However, the
programming form in EUREQA is visual. The debate as
to whether or not visual programming is by default a
superior form of programming has been ongoing for
decades [43]. An issue is the lack of empirical evidence
by those who claim natural superiority of visual
languages [44]. Visual programming can be beneficial
depending on the context. Arguably the use of the radar
chart to create a coherent visual profile of the non-
functional requirements and allowing overlays is
valuable. The radar chart is used in the tool to make it
cognitively easier to comprehend how a design pattern
relates to the user-defined non-functional profile. It
allows for an immediate impact assessment of n selected
design patterns versus the user-defined profile, and thus
acts as a high-level primitive in the modeling space. In
our results the participants were positive to the radar
chart visualizations.

Beringer [45] identifies several issues that need to be
addressed in order to realize EUD such as “Intelligent
System, High-level semantic building blocks” and
“Metaphors” [45] (p. 40). The tool offers support for all
these aspects through the use of fuzzy sets, radar charts
accompanied by GRL models and Design Patterns
respectively. The fuzzy sets give a sense of intelligence in
the form of soft computing by allowing for vagueness
and degrees of appropriateness when selecting design
patterns and matching them against the non-functional
profile. Work by Mussbacher, Weiss, and Amyot [46]
investigated using URN (which the GRL is a part of) as a
means of formalising design patterns and assisting in
selecting between design pattern-based solutions.

700 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

Moreover their work allows for depiction of the system-
wide impact design patterns have on non-functional
qualities. Our work uses the same epistemological
foundation, but rather than formalizing design patterns
using URN we leverage the GRL as a view of how the
design pattern selection affects the non-functional
constraints. Our evaluation showed that the participants
did not find much value in the GRL view, and preferred
using the radar chart to assess the fit between their
selected design pattern and non-functional profile.
However, we believe the value of GRL might only
become apparent for users when they can combine
multiple patterns. This is because the GRL view can
show in more detail the overall impact each pattern has
on the non-functional quality attributes of the system.

The most interesting finding was that they struggled
with the UML class diagram. One reason for this can be
due to the participants not having created the diagram
from scratch, as they are used to. This creates a gap in
their mental mapping of domain concepts to class
diagram elements. Our findings are congruent with
findings of Jalil and Noah [47], who observed that
novices had trouble mapping from domain pattern roles
to class diagram elements. The users did manage to
produce partially correct mappings after a while but they
were not certain about them. Moreover, gentle slope has
been promoted as pivotal in end-user development
environments. If EUREQA provided this, we should
expect an even distribution of negative experiences across
all steps, however instead we see that most of the
negative experiences are clustered around activities that
take place in the last step. As such EUREQA does not
provide a gentle slope through all the steps by
introducing a gap in complexity moving from the second
to the third, and final, step.

As such, concerns may be raised against the use of
UML as the only abstraction level for working with
design patterns. Although, in this pilot evaluation version
the participants could only create one design pattern in
model instantiated form and augment it by manually
adding new classes, the question of scalability is
pertinent. Burnett et al. [48] discuss the issue of scaling
up visual languages. A concern in EUREQA would be
the cognitive overload which would occur as a class
diagram grows over time during further development.
Research by Yusuf, Kagdi and Maletic [49] used eye-
tracking equipment to show that providing additional
semantic information could aid in understanding growing
class diagrams. Currently EUREQA does not provide that
visually, but the user can add audio annotations. These
could be incorporated as visual cues in the class diagram
elements showing which classes have audio annotations
attached.

Comparing our results to some of the properties of the
cognitive dimensions framework of Green and Petre [20]
for visual languages we observe that EUREQA provides
an environment supporting closeness of mapping. This
property delineates the effort of mapping from the
problem world to the computer world. However we
expected the closeness of mapping to be even more

efficient. Although the participants did after a while
manage to map the design pattern roles to the classes, it
required a lot of effort and they leveraged their previous
experience from similar tasks to accomplish it. This is
against the design goal of EUREQA allowing even
novices to perform this task with relative ease. Another
property of Green and Petre [20] is error-proneness, how
easy it is to make mistakes in the visual language. The
radar chart was useful in the sense that it makes it
impossible to make any errors, along with floor and
ceiling limits to the acceptable values when defining the
user's non-functional profile. However, in the UML class
diagram – even if exclusively using generated design
patterns to erradicate any syntactical errors, the
participants struggled with both the class and connector
notational semantics. In EUREQA they should not really
be of a concern as the primary task in the class diagram is
mapping of roles to classes, but we found the participants
fretting over the semantics of the UML at a very basic
level. This is a concern because, as one participant
mentioned, he couldn't even grasp what the boxes
represented. As such there is a high degree of error-
proneness if the basic conceptual understanding of how a
class relates to the design pattern is lost. This continues
on to the next property discussed by Green and Petre
[20], namely role-expresiveness which pertains to how
difficult is it to answer “what is this bit for?” (p. 31). The
results suggested that the users felt it was clear to them
what they were supposed to do in the Main and Common
Cases tab. They understood the logic of the activities in
those two tabs. However, this faded at the class diagram
tab. Arguably a lack of additional information, or what
Green and Petre [20] call secondary notation and escape
from formalism, augmented the issue. Both comparing
our results to other empirical results and to theoretical
frameworks we see that EUREQA is promising with
design patterns existing at a fuitful level of abstraction
and the visualization with the RadarChart being
considered informative. But there is an issue with lack of
information supporting the transition to the class diagram
tab.

Of other current end-user development approaches,
the component-based one is the most similar to
EUREQA's use of design patterns. They both exist at an
intermediate level of abstraction and provide finished
templates in the form of components and design patterns
respectively. A benefit of the component-based approach
is that the user works in a strictly managed environment
in terms of the component repository and connectivity
between components. Moreover component compositions
are directly executable allowing the end-user to test a
running solution immediately. In EUREQA the user
works at a lower level by being given access to the
individual classes of the design patterns. It does not
sustain the same black-box quality as the component-
based approach. This allows end-user developers to
incorporate their domain knowledge. However,
EUREQA does not allow for immediate execution of a
designed artifact. This can be considered both a positive
and a negative issue. On one hand being able to create a

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 701

© 2011 ACADEMY PUBLISHER

running artifact is important in end-user development.
Won, et al. found that a barrier to end-user development
was that end-user developers were afraid of making
changes that would break a run-time solution [18]. In
EUREQA this can be managed since a) the end-user only
creates models that need to be forward-engineered to
create a running solution, and b) during forward-
engineering, professional developers can be involved for
quality assurance purposes.

We argue our use of a priori constructs coupled with
the user guide strengthened the internal validity of the
results. The user guide used the same terms to present the
features of the EUREQA tool as the a priori constructs.
The user guide served two purposes. The first purpose
was being a guide and reference for the participant. The
second purpose was to establish a feature-specific
vocabulary with the participant. The user guide used
terminology derived from a priori constructs. This led to
very precise feature-specific statements from the
participants increasing the validity of the analysis results.
We could have further improved the validity of the results
by introducing questionnaires to control for any bias
introduced in the semi-structured interviews. However,
with such a small sample the questionnaires would not
have yielded any valuable statistical results.

One obvious limitation of this work is the small
number of participants in the evaluation. This reduces the
external validity and generalizability of the results.
Another external validity threat is that the participants
were not actual end-user developers. First of all they are
more experienced than an average end-user developer.
Secondly since they do not work in an organization
related to the case problem they have no vested interest in
the case problem or domain knowledge. However this is a
pilot evaluation and our research goal at this stage is to
assess opportunities and challenges with EUREQA rather
than empirical generalizable results.

VII. CONCLUSIONS AND FURTHER WORK

End-user development has been touted as the “holy
grail for tool developers” by Sutcliffe, Lee and
Mehandjiev [50] and there is little doubt that end-user
development will become a more important and feasible
software development approach as more and more
companies move towards frameworks and middleware
solutions for increased flexibility and extendability. One
of the main barriers to end-user development is the
cognitive complexity of entering into the realm of coding
and software development [51]. Although we have come
along way with 4th generation programming languages we
are still short of delivering on the promise of accessible
model driven development. End-user developers need to
work at the model level with a high level of abstraction
closely tied to their real-world domain [19]. This paper
has introduced a first versioin of the EUREQA tool for
EUD using design patterns as the point of departure from
which UML model design solutions are built. The tool
was evaluated using a qualitative approach based upon
the think-aloud protocol as participants attempted to solve
a real-world case using the tool. The evaluation disclosed

that at the tool level there are several usability issues that
need attention. However, of greater interest, the
evaluation also indicated that the concepts and premise of
using novel graphical presentation techniques for design
solution choices focusing on non-functional qualities
worked well, and design patterns proved, although less
than expected, to provide abstraction and suffice as a
plateau from which end-user developers could select
viable solutions.

The challenge of producing end-user developed quality
software that precisely meets business requirements is
still not resolved. This work shows that using
visualization techniques can help end-user developers in
dealing with non-functional requirements. The results
also show that design patterns can aid in reducing the
cognitive gap between the domain- and computer-model.
But this requires high-level descriptions besides the
problem-, solution-, context-, and intent descriptions of
design patterns.

Further work on EUREQA will involve additional
evaluations with a higher number of participants, and
incorporate a wider range of data collection techniques,
such as questionnaires. Our findings and data from this
evaluation will be used as valuable input to redesign in
accordance with the design science method. The most
urgent issue is improving the transition and work in the
final class diagram modeling step. As stated in the
previous section, EUREQA must also be extended to
handle automated composition of multiple design
patterns.

A different area is investigating the use of analytic
hierarchy process (AHP) as a means of comparing and
selecting between design patterns that only differ in their
non-functional profile. An AHP approach would be
robust in that it would allow us to capture both objective
and subjective evaluation measurements.

Currently, EUREQA only allows for a single-
stakeholder view, where the GRL allows modeling of
multiple stakeholders. This is a feature we envisage could
be valuable in an EUD-setting and will be investigated in
our further work.

A final aspect aspect are the values set for the non-
functional properties of the design patterns. Currently,
they are derived through subjective consideration. This
does detract from their validity. In a pure pilot evaluation
for usability testing, we argue this is acceptable, however
if used for real-world development, it would be necessary
to use a formal and verifiable approach to set the design
pattern non-functional profile values such as the
techniques proposed by Hsueh and Shen [28] or Fletcher
and Cleland-Huang [30].

ACKNOWLEDGEMENTS

This work has been done using a grant by the Norwegian
Research Council on VERDIKT project no. 10280903.

702 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

REFERENCES

[1] C. Scaffidi, M. Shaw, B. Myers. Estimating the Numbers
of End Users and End User Programmers IEEE Symp. on
Visual Languages and Human-Centric Computing. Dallas,
TX, USA. September 2005.

[2] D. Buck, D.J. Stucki. JKarelRobot: a case study in
supporting levels of cognitive development in the
computer science curriculum. Proceedings of the thirty-
second SIGCSE technical symposium on Computer
Science Education. Charlotte, NC, USA. February 2001.

[3] M.F. Costabile, P. Mussio, L.P. Provenza, A. Piccinno.
End users as unwitting software developers. Proceedings
of the 4th international workshop on End-user software
engineering. Vancouver, Canada. May 2008.

[4] M. Ancona, G. Dodero, F. Minuto, M. Guida, V.
Gianuzzi. Mobile computing in a hospital: the WARD-IN-
HAND project. Proceedings of the 2000 ACM symposium
on Applied computing - Volume 2.

[5] Rugge, C. Ruthenbeck, J. Piotrowski, C. Meinecke, F.
Bose. Supporting mobile work processes in logistics with
wearable computing. Proceedings of the 11th
International Conference on Human-Computer Interaction
with Mobile Devices and Services. Bonn, Germany.
September 2009.

[6] T. Nicolai, T, T. Sindt, H. Kenn, H. Witt. Case Study of
wearable Computing for Aircraft Maintenance.
Proceedings of International Forum on Applied Wearable
Computing IFAWC'05, Zurich, Switzerland. March 2005.

[7] J. Krogstie, K. Lyytinen, A.L. Opdahl, B. Pernici, K. Siau,
K. Smolander. Research areas and challenges for mobile
information systems. International Journal of Mobile
Communications, 2(3), (2004) 220-234.

[8] H. Lieberman, F. Paterno, M. Klann, M. Wulf. End- User
Development: An Emerging Paradigm. In H. Lieberman,
F. Paterno & V. Wulf (Eds.), End User Development. AA
Dordrecht, The Netherlands: Springer. (2006)

[9] E.L. Wagner, G. Piccoli. Moving beyond user
participation to achieve successful IS design.
Communications of the ACM, 50(12), (2007) 6.

[10] T. Klaus, S. Wingreen, J.E. Blanton. Examining user
resistance and management strategies in enterprise system
implementations. Proceedings of the 2007 ACM SIGMIS
CPR conference on Computer personnel research: The
global information technology workforce. St. Louis, MO,
USA. April 2007.

[11] R. Hirschheim, M. Newman. Information Systemand User
Resistance: Theory and Practice. The Computer Journal,
31(5), (1988) 398-408.

[12] G. Fischer, E. Giaccardi, Y. Ye, A.G. Sutcliffe, N.
Mehandjiev. Meta-Design; A Manifesto for End- User
Development. Communications of the ACM, 47(9),
(2004) 5.

[13] J. Segal. (2007). Some Problems of Professional End User
Developers. IEEE Symposium on Visual Languages and
Human-Centric Computing. VL/HCC 2007. Coeur
d'Alène, Idaho, USA. September 2007.

[14] L. Chung, J. d. P. Leite. On Non-Functional Requirements
in Software Engineering. In A. T. Borgida, V. Chaudhri,
P. Giorgini & E. Yu (Eds.), Conceptual Modeling:
Foundations and Applications (pp. 363-379). Berlin /
Heidelberg: Springer. (2009)

[15] M. Kassab. Non-Functional Requirements: Modeling and
Assesment. Saarbrucken, Germany: VDM Verlag, Dr.
Müller. (2009)

[16] N. Mehandjiev, A. Sutcliffe, D. Lee. Organizational view
of End-User Development. In H. Lieberman, F. Pateró &
V. Wulf (Eds.), End-user Development (pp. 492):
Springer. (2006)

[17] Mørch, G. Stevens, M. Won, M. Klann, Y. Dittrich, V.
Wulf. Component-based technologies for end-user
development. Commun. ACM, 47(9) (2004) 59-62.

[18] M. Won, O. Stiemerling, V. Wulf. Component-based
Approaches to Tailorable Systems. In H. Lieberman,
Paternò, F., Wulf, V. (Eds.), End-User Development (pp.
115-141). Dordrecht, NL: Springer. (2006)

[19] J.F. Pane, B. Myers. More Natural Programming
Languages. In H. Lieberman, Paternò, F., Wulf, V. (Eds.),
End-User Development (pp. 31-50). Dordrecht, The
Netherlands: Springer Verlag. (2006)

[20] T. R. G. Green, M. Petre. Usability Analysis of Visual
Programming Environments: A Cognitive Dimensions'
Framework. Journal of Visual Languages & Computing,
7(2) (1996) 131-174.

[21] PERS, (2006, 28th of April, 2006). PERS End-User
Development (EUD) Standards. Retrieved 5/9, 2010, from
http://www.oregon.gov/DAS/EISPD/ESO/SecPlan/PERS/
End_User_devstandards.pdf?ga=t

[22] E. Gamma, R. Helm, R. Johnson, J.M. Vlissides. Design
Patterns: Elements of Reusable Object- Oriented
Software: Addison-Wesley Professional. (1994)

[23] ISO/IEC Standard 9126-1 Software Engineering –
Product Quality – Part 1: Quality Model, 2001.

[24] M. Glinz On Non-Functional Requirements. Proceedings
of the 15th International Requirements Engineering
Conference, RE'07. New Delhi, India. October 2007.

[25] D. Gross, E. Yu. From Non-Functional Requirements to
Design through Patterns. Requirements Engineering, 6(1),
(2001) 18.

[26] L. Chung, B.A. Nixon, E. Yu, J. Mylopolous. Non-
Functional Requirements in Software Engineering (1st
edition ed.): Springer. (1999)

[27] J. Cleland-Huang. Toward improved traceability of non-
functional requirements. Proceedings of the 3rd
international workshop on Traceability in emerging forms
of software engineering. Long Beach, CA, USA.
November 2005.

[28] N.-L. Hsueh, W.-H. Shen. Handling Nonfunctional and
Conflicting Requirements with Design Patterns.
Proceedings of the 11th Asia-Pacific Software
Engineering Conference. Busan, Korea. November 2004.

[29] J.Cleland-Huang, D. Schmelzer. Dynamically Tracing
Non-Functional Requirements through Design Pattern
Invariants. Workshop on Traceability in Emerging Forms
of Software Engineering, in conjunction with IEEE
International Conference on Automated Software
Engineering. Montreal, Canada. October 2003.

[30] J. Fletcher, J. Cleland-Huang. Automated Generation of
UML Class Diagrams from Softgoal Patterns. DePaul CTI
Research Symposium / Midwest Software Engineering
Conference (CTIRS/MSEC 2006). Chicago, IL, USA.
April 2006.

[31] A.R. Hevner, S.T. March, J. Park, S. Ram. Design
Science in Information Systems Research. Management
Information Systems Quarterly MISQ, 28(1), (2004) 30.

[32] S. March, V. Storey. Design Science in the Information
Systems Discipline: An Introduction to the Special Issue
on Design Science Research. MIS Quarterly, 32(4),
(2008) 725-730.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 703

© 2011 ACADEMY PUBLISHER

[33] S.T. March, G. F. Smith. Design and natural science
research on information technology. Decis. Support Syst.,
15(4), (1995) 251-266.

[34] V. Vaishnavi, B. Kuechler. (2007, 4th of August 2007).
Design Research in Information Systems. Retrieved 2/2,
2007, from
http://www.isworld.org/Researchdesign/drisISworld.htm

[35] K.M. Eisenhardt. Building Theories from Case Study
Research. The Academy of Management Review, 14(4),
(1989) 532-550.

[36] U. Flick. An Introduction to Qualitative Research.
Thousand Oaks, CA: SAGE Publications. (2009)

[37] ITU-T. ITU-T, Recommendation Z.151 (11/08), User
Requirements Notation (URN) – Language definition.
Retrieved 11/1-2011 http://www.itu.int/rec/T-REC-
Z.151/en November 2008.

[38] R.C. Martin. . Visitor. Retrieved 2/11, 2008, from
http://staff.cs.utu.fi/~jounsmed/doos_06/material/Visitor.p
df (2002).

[39] M.W. van Someren, Y.F. Barnard, J.A.C. Sandberg. THE
THINK ALOUD METHOD: A practical guide to
modelling cognitive processes. London, UK: Academic
Press. (1994).

[40] K.A. Ericsson, H. Simon. Protocol Analysis. Protocol
Analysis Retrieved 19/9-2010, 2010, from
http://octopus.library.cmu.edu/cgi-
bin/tiff2pdf/simon/box00082/fld06587/bdl0003/doc0001/s
imon.pdf (1981, 28th of December 1981)

[41] K.A. Ericsson, H. Simon. Protocol Analysis: Verbal
Reports as Data (revised edition). Cambridge, Mass: MIT
Press. (1993).

[42] C.F. Auerbach, & L.B. Silverstein. Qualitative Data
Analysis: an introduction to coding and analysis Available
from http://site.ebrary.com/lib/bergen/docDetail.action?
docID=10078435 (2003).

[43] N.C. Shu. Visual Programming: John Wiley & Sons, Inc.
(1992).

[44] B. Nardi. A Small Matter of Programming: Perspectives
on End User Computing. Cambridge, Mass: MIT Press.
(1993).

[45] J. Beringer. Reducing Expertise Tension. Commun.
ACM, 47(9), (2004) 3.

[46] G. Mussbacher, M. Weiss, D. Amyot. Formalizing
Architectural Patterns with the User Requirements
Notation. In Taibi, T. (Ed.) Design Pattern Formalization
Techniques. (pp. 302-323) Hershey, New York IGI
Publishing Group. (2006).

[47] M.A. Jalil, S.A.M. Noah. The Difficulties of Using
Design Patterns among Novices: An Exploratory Study.
The Fifth International Conference on Computational
Science and Applications. Kuala Lumpur, Malaysia.
August 2007.

[48] M.M. Burnett, M.J. Baker, C. Bohus, P. Carlson, S. Yang,
P. Zee. Scaling Up Visual Programming Languages.
Computer, 28(3), (1995) 45-54.

[49] S. Yusuf, H. Kagdi, J.I. Maletic. Assessing the
Comprehension of UML Class Diagrams via Eye
Tracking. Proceedings of the 15th IEEE International
Conference on Program Comprehension (ICPC '07),
Alberta, Canada. June 2007.

[50] A.G. Sutcliffe, D. Lee, N. Mehandijev. Contributions,
costs and prospects for end-user development.
Proceedings of the third International Human Computer
Interaction Conference. Crete, Greece. June 2003.

[51] Y. Wang, J. Shao. Measurement of the cognitive
functional complexity of software. Proceedings of the
Second IEEE International Conference on Cognitive
Informatics. London, England. August 2003.

704 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

