
Advanced Sensor Network Software Deployment
using Application-level Quality Goals

Wouter Horré, Sam Michiels, Wouter Joosen
IBBT-Distrinet, Department of Computer Science, Katholieke Universiteit Leuven, Belgium

Email: {wouter.horre,sam.michiels,wouter.joosen}@cs.kuleuven.be

Danny Hughes
Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China

Email: daniel.hughes@xjtlu.edu.cn

Abstract— If we are to deploy sensor applications in a
realistic business context, we must provide innovative mid-
dleware services to control and enforce required system
behavior. Sensor application developers typically reason
about required system behavior in terms of high-level
quality goals. Due to the extreme dynamism, scale and
unreliability of wireless sensor networks, managing these
goals using contemporary software management techniques
without support for high-level quality goals quickly be-
comes challenging. This paper presents QARI, a middleware
service which addresses these management challenges by
offering a simple yet flexible way to define, enforce, and
maintain high-level quality goals for software deployment
in wireless sensor networks. We have evaluated QARI using
the LooCI component model on two sensor node platforms;
results confirm that QARI enables quality aware software
deployment for a single application as well as multiple
applications, and even in the presence of node failure and
mobility.

Index Terms— fault tolerance, large scale networks, manage-
ment, middleware, quality awareness

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are inherently dy-
namic, unreliable and large in scale. In addition, WSNs
are evolving towards interconnected, multi-purpose sens-
ing infrastructure that is expected to host multiple appli-
cations. These applications may be deployed by diverse
actors, who make use of sensor network infrastructure
in return for direct payment or reciprocal application
hosting.

From an application perspective, an important require-
ment for software deployment in such interconnected,
multi-purpose sensing infrastructure is the compliance
with high-level quality goals. For example, to gather
sensor data with sufficient accuracy, an application might
impose coverage requirements on the deployment of its
sampling component. Current software management tech-
niques for WSNs do not provide application developers
with tools to specify these quality requirements. As a
consequence, managing software deployment on a WSN
quickly becomes challenging.

In our previous work [1], we introduced QARI (Quality
Aware Reconfiguration Infrastructure), a middleware ser-
vice for quality aware software deployment. Middleware

is traditionally used to address the software management
challenges in complex network infrastructure; the com-
plexity of WSNs is orders of magnitude greater than tradi-
tional distributed systems and thus requires sophisticated
software management support in the middleware.

In this paper, we provide a detailed description
of QARI’s quality-aware deployment specifications and
QARI’s implementation. We also show QARI’s platform
independence by providing an implementation on a sec-
ond hardware platform.

QARI addresses the software management challenge
by offering a way for application developers to express
their goals in a quality-aware deployment specification.
QARI takes these specifications as its input and automat-
ically enforces and maintains the quality requirements.
In QARI’s decentralized approach, the responsibility of
assigning nodes to applications and monitoring these
nodes to maintain the required quality level over time,
is delegated to a local management entity close to the de-
ployment target. This allows QARI to use locally gathered
context data and specific characteristics of the deployment
target to inform efficient deployment of software.

The remainder of this paper is structured as follows:
first, we discuss related work in Section II. Then, we
present details on QARI and evaluate it in Sections III
and IV. Finally, we conclude and reflect on future work
in Section V.

II. RELATED WORK

This section analyzes the state of the art in software de-
ployment support for WSNs, quality awareness in WSNs
and planning techniques in WSNs.

Three categories of runtime support for deployment and
reconfiguration can be distinguished [2]:

• Monolithic: replace all functionality during the up-
date by re-flashing and re-starting the nodes.

• Script-based: change the behavior of previously de-
ployed functionality by injecting lightweight scripts.

• Modular: replace coarse-grained units of function-
ality (modules) at run-time.

Deluge [3] is a reliable epidemic code dissemination
protocol that is used to support monolithic flashing of

528 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.4.528-535



a network of TinyOS [4] motes. Deluge focuses upon
achieving good network performance, providing high
throughput and imposing minimal additional overhead
due to control messages.

Replacing a complete code image using Deluge with
only small changes to the behavior implies a large energy
overhead for a small functionality change. Script-based
approaches such as Maté [5] address this by supporting
the injection of lightweight scripts that are interpreted on
the sensor nodes to drive the execution of pre-deployed
TinyOS functionality. DVM [6] combines this approach
with the dynamic modules of SOS [7] to remove the pre-
deployed limitation of Maté.

The Sun SPOT [8] and Sentilla Perk [9] WSN platforms
are Java based and allow for modular reconfiguration via
the dynamic deployment of MIDP 1.0 compliant Java
applications. SOS [7] and Contiki [10], [11] provide
similar support for the deployment of binary application
modules that are dynamically loaded into the operating
system. While this is an improvement over monolithic
approaches, the relationships between modules are opaque
and may not be reconfigured.

On top of these runtime systems, reconfigurable com-
ponent systems (such as OpenCOM [12] and LooCI [13],
[14]) provide additional support to change the compo-
sition of reconfigurable functional blocks (components).
A combination of these runtime types might be used to
achieve this: for example, DAViM [15] uses a modular
runtime to update coarse grained units of functionality
(components) and a script based approach to change the
interaction between these components.

The code distribution mechanisms used by these ap-
proaches typically provide whole network updates (e.g.
Deluge [3], Sentilla Perk [9]) or single node updates (e.g.
Sun SPOT [8]). We believe that the set of nodes where
a component needs to be deployed, depends upon the
quality requirements of the application. QARI therefore
aims to provide quality aware management of deployed
functionality regardless of the deployment approach and
code distribution technique used.

The quality-of-service (surveillance) that can be pro-
vided by a particular WSN is commonly expressed in
terms of k–coverage or related coverage metrics. Most
approaches [16], [17] calculate coverage after deploy-
ment, propose node deployment heuristics or otherwise
use coverage information in single application WSNs. We
propose to exploit the knowledge of coverage require-
ments to optimize the software deployment process in
shared WSN scenarios.

Macro-programming approaches, such as Magnet
OS [18], RuleCaster [19] and COSMOS [20], compile
a network level program into smaller programs that can
run on a single node. These node level programs are then
assigned to nodes by the system. If assignment based
on node capabilities yields multiple possibilities, these
approaches perform optimization of a certain system prop-
erty (e.g. path length of data packets between communi-
cating nodes, overall energy consumption, etc.). QARI

introduces support for user specified quality requirements
as an additional assignment requirement.

Semantic Streams [21] is a framework that allows to
pose declarative queries over semantic compositions of
sensor streams. The framework allows user specified cost
functions to be attached to queries. The planner uses
this cost function to choose between possible execution
scenarios for the query. Semantic Streams thus allows
users to influence the trade offs made by the system
(e.g. energy consumption versus accuracy). However, this
affects only the querying of pre-deployed functionality.

MiLAN [22] also addresses the topic of determining
the optimal subset of sensors that is required to reach
a desired quality-of-service level. MiLAN confirms that
there are usually multiple subsets of sensors that can
provide the required data, but with different quality-
of-service properties. We believe that this knowledge
can be exploited to improve and optimize the software
deployment process in shared sensor network scenarios.

III. QUALITY AWARE SOFTWARE DEPLOYMENT FOR
WSN

This section describes our approach to quality aware
software deployment for WSN. Section III-A provides a
high-level overview of the approach and discusses the
deployment specifications used in our approach. Sec-
tion III-B describes how network monitoring and software
deployment functionality is realized. The planning of the
deployment process is discussed in Section III-C.

A. High-level overview

Figure 1 shows an overview of QARI, with Application
Managers and Network Managers as key abstractions.
Application Managers are responsible for the management
of one or more sensor network applications. Application
Managers split their centralized deployment plans into
smaller deployment specifications for decentralized pro-
cessing by Network Managers [23]. These specifications
include a description of the component to deploy as well
as details of the desired quality level (expressed as an
interval from the minimally required level to the preferred
level). We therefore call them quality aware deployment
specifications.

The per-WSN Network Manager, which is close to
the WSN, is responsible for merging specifications into
a single target specification for the software deployment
of the WSN. It deploys and updates the software on the
WSN to reach and maintain this target state. The merger
of specifications with complex quality requirements might
require a conflict resolution strategy to deal with poten-
tial conflicting requirements, however, we have not yet
addressed this issue in the current version of QARI.

This approach provides a clean separation of concerns.
The definition of quality requirements, which requires
application specific knowledge, is handled by the Ap-
plication Managers. The responsibility for achieving and
maintaining these quality requirements, a task which
requires local, network specific knowledge, is handled by

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 529

© 2011 ACADEMY PUBLISHER



Figure 1. An overview of QARI, our approach for advanced software deployment using application-level quality goals, including the architecture
of the Network Manager (top right).

the Network Manager. The ability to specify the required
quality for a target also raises the abstraction level for
the Application Managers compared to state-of-the-art
approaches that allow only whole network or single node
deployment (cfr. Section II).

Consider, for example, a warehouse monitoring sce-
nario in which a storage company, STORAGE-CO, uses a
WSN infrastructure—with LooCI [13], [14], our reconfig-
urable component model—to monitor the conditions in a
temperature controlled warehouse. Nodes participating in
the STORAGE-CO WSN are evenly distributed through-
out the warehouse. Each node has an effective radius
for which it can provide sensor readings with sufficient
accuracy (the node is said to cover this area). STORAGE-
CO’s warehouse monitoring application uses the WSN
infrastructure to monitor both temperature and relative
humidity in the warehouse. To have a usable view of the
warehouse conditions, the monitoring application requires
temperature measurements of a subset of the nodes that at
least cover all areas of the warehouse. For better accuracy,
double coverage (i.e. at least two nodes that cover each
area) is preferred. Humidity measurements of at least 40%
of the nodes in the network are required, while 60% is
preferred.

The quality aware deployment specification for this
application on the sensor network is shown in Figure 2.
The format is an extension of Service Component Ar-
chitecture (SCA) [24], a vendor and technology neutral
format for specifying component assemblies. As of now,
QARI only supports components that are wired by the
implementation. Support for composition in the quality
aware deployment specification itself is one of our top
priorities for future work on QARI.

The specification in Figure 2 contains the temperature
sampling component (TEMP-SAMPLING) and the hu-
midity sampling component (HUMIDITY-SAMPLING)
needed by STORAGE-CO’s warehouse monitoring ap-

1 <?xml version="1.0" encoding="UTF-8"?>
2 <composite name="TEMP-HUMIDITY">
3 <component name="TEMP-SAMPLING">
4 <target name="WSN1">
5 <goal.coverage min="1" pref="2"/>
6 </target>
7 <implementation.looci.sunspot file="

tempsample.jar"/>
8 </component>
9 <component name="HUMIDITY-SAMPLING">

10 <target name="WSN1">
11 <goal.fraction min="0.40" pref

="0.60"/>
12 </target>
13 <implementation.looci.sunspot file="

humidity.jar"/>
14 </component>
15 </composite>

Figure 2. Example of a quality aware deployment specification. The
format is an extension of Service Component Architecture (SCA) [24].
Non-essential parts have been left out for brevity.

plication. Both components have a target named WSN1
(cfr. lines 4 and 10), i.e. they need to be deployed on the
sensor network with name WSN1. The target specification
includes a quality requirement: in this case the TEMP-
SAMPLING component requires single coverage and
prefers double coverage (cfr. line 5). The HUMIDITY-
SAMPLING component requires at least 40% of the
nodes in the network, but prefers 60% (cfr. line 11). In
addition, the specification contains a hint about the type
and location of the component implementation (cfr. lines
7 and 13).

B. Enacting and monitoring deployment

The Network Monitor and Deployment Executor are
the building blocks of QARI responsible for monitoring
the WSN and enacting deployment actions on the WSN

530 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER



respectively. The Planner is responsible for deployment
planning and maintenance (see Section III-C). It uses
the feedback from the Network Monitor and Deployment
Executor to keep its view of the WSN (stored in the repos-
itory called Network Model) up to date (see Figure 1).

The Network Monitor and Deployment Executor are
the interface to the WSN and apart from their deployment
and monitoring functionality, they perform two additional
tasks: (1) they provide a point of virtual synchrony (i.e.
they expose monitoring of and deployment to the WSN as
operations on a synchronous system, although the WSN
is asynchronous in nature) [25] and (2) they abstract
over the platform specific details of WSN. To perform
their tasks they use platform specific knowledge, e.g. to
select appropriate timeouts for node failure detection, to
select the appropriate deployment mechanism for a given
deployment request, etc.

The Network Monitor uses platform specific knowl-
edge and mechanisms for gathering information about
the WSN. It implements a publish-subscribe interface
over which this network information is disseminated to
interested software entities (such as the Planner). Remote
entities that wish to be notified of changes in the WSN
environment, should implement the IMonitoringListener
interface (pseudocode):
void nodeOffline(address)
void nodeOnline(address)
void componentChanged(component, address,

state)

The interested parties subscribe themselves at the Network
Monitor which then pushes notifications of node failures,
notifications of node arrivals and notifications of status
changes of a deployed component through the IMonitor-
ingListener interface.

The Deployment Executor provides an abstraction on
top of one or more platform specific deployment mech-
anisms. The Planner interacts with the Deployment Ex-
ecutor through the IDeployment interface (pseudocode):
address[] deployComponent(component,

address[])
address[] startComponent(component, address

[])
address[] stopComponent(component, address

[])
address[] undeployComponent(component,

address[])

The IDeployment interface allows the Planner to de-
ploy, start, stop and undeploy a component—in the re-
mainder of the paper, we use the term component for a
piece of software that is independently deployable— on a
given list of addresses. Each of the methods indicates in
its return value for which addresses the action succeeded.
The interface is called in synchronous fashion by the
Planner, thus it is up to the Deployment Executor to
decide when an action must be considered unsuccessful
(and thus provide virtual synchrony over the asynchronous
WSN).

Although state-of-the-art code distribution techniques
do not provide code deployment to groups of nodes,

the IDeployment interface is defined in terms of groups
nonetheless. This will allow the Deployment Executor to
take advantage of group deployment techniques as soon as
they become available. In the meantime, the Deployment
Executor can easily realize the interface through sequen-
tial or parallel single node deployments.

C. Deployment planning and maintenance

The Planner of the Network Manager assigns compo-
nents to sensor nodes based on the specifications it re-
ceives from the Application Managers. The calculation of
these assignments uses local knowledge about the WSN.
The Planner also updates the assignments in reaction to
significant changes in the WSN, which it is notified of
through the Network Monitor.

As discussed in Section III-A, the specifications contain
a description of the component that is requested—called
component type in the remainder of this paper—and a
deployment target with two quality levels: a minimal and
a preferred level.

Initial deployment: When a component type is to be
deployed for the first time, the Planner first calculates an
assignment that achieves the minimal quality level needed
for the component type. After the component type has
been deployed to this initial assignment, the assignment
is updated to achieve the preferred quality level for the
component type.

Combining specifications: The Planner calculates
only one assignment per component type. If there are
multiple specifications for the same component type com-
ing from different sources, the Planner calculates an
assignment for the component type that satisfies at least
the minimal quality level of all specifications. If possible,
the Planner will try to satisfy all preferred quality levels.

If for example the fire detection application of
STORAGE-CO also wants to use the WSN infrastruc-
ture in the warehouse to monitor the temperature, it
will submit a deployment specification for a TEMP-
SAMPLING component. Suppose the fire detection needs
more accurate data and requests a minimal coverage of
two nodes and a preferred coverage of three nodes. The
Planner will merge this specification with the one shown
in Figure 2, resulting in a minimal coverage of two and
a preferred coverage of three for the TEMP-SAMPLING
component.

The possibility of sharing component deployments
across multiple applications is a clear benefit of delegating
deployment to the WSN edge. The individual Application
Managers have no means to optimize deployments based
on the requirements of other applications. However, since
the Network Manager is responsible for enacting all
deployments, it has the knowledge required to perform
such optimization.

Failures: The Planner reacts to node and component
failures by calculating a new assignment. The new assign-
ment is updated locally—i.e. only in the vicinity of the
failed node—to repair the quality level while making as
little changes as possible to the original assignment. This

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 531

© 2011 ACADEMY PUBLISHER



minimizes the disturbance to the network and the time
needed to reach the targeted quality level again.

Node mobility: Node mobility is handled in a similar
manner to node failure: the component assignment is
updated locally around the area where the node left. If
the node is not needed to ensure the quality level in the
area it moved to, the corresponding component will be
removed from the node.

Network sharing: The Planner uses local knowledge
about the state of the WSN (gathered through the Network
Monitor) to minimize the interference between applica-
tions. As discussed above, the Planner combines multiple
specifications for the same component type.

For different component types, two measures are taken
to minimize the interference. First, the Planner takes the
state of a sensor node into account during the calcula-
tion of an assignment. One of the parameters which is
accounted for is the number of components already de-
ployed on a sensor node. This way, different components
are spread as evenly as possible across the WSN.

Second, the Planner schedules deployment actions so
that at least the minimal quality level of other component
types is maintained during the deployment. To realize
this, the Planner splits a deployment into multiple smaller
deployments that have less effect on the network. That
way, the minimal quality level of other component types
is only broken if it is absolutely necessary.

Consider the example where a security application of
STORAGE-CO wants to deploy a light sampling com-
ponent to detect unauthorized overnight accesses to the
warehouse. This application will require a decent cover-
age, thus resulting in a deployment to a significant subset
of the nodes. If QARI would simultaneously deploy to
this complete set of nodes, these nodes would be busy
deploying the new component all at the same time. This
would result in too many nodes being unavailable simul-
taneously and the quality requirements for the TEMP-
SAMPLING and HUMIDITY-SAMPLING components
would be broken. Therefore QARI will deploy the new
component to smaller groups sequentially.

IV. EVALUATION

This section evaluates a prototype implementation of
QARI. We evaluated the Planner in two ways. First, we
implemented a prototype of the Network Monitor and
Deployment Executor for a WSN using the LooCI com-
ponent model [13] on a test-bed of 9 standard Sun SPOT
motes (180MHz ARM9 CPU, 512KB RAM, SQUAWK
VM ’RED’ version) [8]. Second, we implemented a stub
version of the Network Monitor and Deployment Executor
that simulate a grid of 10x10 sensor nodes. This allowed
us to move beyond simple feasibility tests and conduct
the analysis provided in the Sections IV-C to IV-E.

A. Implementation

We implemented the Monitoring for both a simulated
testbed and for the LooCI component model on Sun
SPOT hardware. The implementation for LooCI depends

Figure 3. Coverage for Node A

upon the LooCI introspection capabilities that allow to
query the state of nodes and components. The Monitoring
performs periodic discovery of the network state using the
LooCI introspection calls. When changes are detected, the
subscribers will be notified through the IMonitoringLis-
tener interface.

We have implemented this basic version of the Mon-
itoring to support our proof-of-concept implementation
and the evaluation in this paper. There is clear potential
for further improving the Monitoring, for example in
case of highly dynamic networks; yet, we consider these
optimizations out of scope for this paper.

The Deployment Executor has also been implemented
for a simulated testbed and for LooCI on Sun SPOT.
The loose coupling between LooCI components is of
great benefit to QARI. It allows QARI to easily reas-
sign components to other nodes if the network situation
changes. The flexible loose bindings of LooCI can be
easily updated without the need to put all components
involved in the binding in a reconfiguration safe state.

In addition, to confirm the platform independence of the
IDeployment interface, we implemented the Deployment
Executor for the Contiki 2.4 [10] port of the LooCI
component model on AVR Raven hardware [26]. To date,
we only used the Contiki/AVR Raven platform to perform
measurements of the deployment time. Since these first
results are promising, we intend to use the platform in an
industrial case study to further evaluate QARI outside the
lab.

B. Case Study and Coverage Heuristic

We evaluated our approach in the context of the
warehouse monitoring scenario introduced in Section III.
The nodes participating in the STORAGE-CO WSN are
evenly distributed throughout the warehouse which is
divided into 100 unique areas (9 areas for the physical
testbed). For the purposes of our case study, we simplify
the effective radius of a node to the unique areas adjacent
to the location of the node. Figure 3 illustrates our notion
of coverage for Node A, which is deployed in unique
area 6 and may be used to monitor the surrounding areas
(2,5,7,10).

The optimal assignment of components to nodes in a
distributed system is known to be a hard problem, for
which heuristics are often used. Our implementation of
the Network Manager Planner also uses a heuristic algo-
rithm to calculate an assignment that satisfies a coverage
requirement. The algorithm (see Figure 4) orders the areas
based on the number of nodes that are able to cover the
area. It then considers each of the areas in this order.

532 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER



assignment := empty set
areas := all areas in warehouse
sort areas by number of covering nodes
for area ∈ areas do

candidates := nodes covering area
sort candidates by score
while area.coverage < required coverage

∧ candidates not empty do
candidate := candidates.remove(0)
if candidate ̸∈ assignment

then assignment.append(candidate)
fi

od
od

Figure 4. The heuristic algorithm used to calculate an assignment
(pseudocode).

For each area, the algorithm adds the best nodes to the
assignment until the area is sufficiently covered. The best
nodes are defined as the nodes that are not already in
the assignment and have the best score associated with
them. The score is calculated based on the number of
currently uncovered areas the node covers, the number
of components already running on the node and the
reputation of the node. The reputation of a node is used
to penalize nodes that have failed in the recent past.

If there is an assignment that satisfies a coverage re-
quirement, the algorithm is always able to find it, since it
keeps adding nodes until all areas are sufficiently covered.
The algorithm doesn’t always find the best assignment
(i.e. minimal number of nodes), but our experiments show
that it always finds a good assignment (i.e. close to the
minimal number of nodes) with respect to the current state
of the WSN.

C. Single application coverage

To demonstrate the feasibility and correctness of our
coverage heuristic, we applied different coverage require-
ments for a single component type to our 10x10 simulated
testbed. The experiments defined quality requirements by
setting the following minimal/preferred coverage param-
eters: 0/1, 1/2 and 2/3. We executed each experiment 10
times, each of which yielded the same deployment pattern.

The realized coverage patterns for each experiment are
shown in Figure 5. In the case of 3/4-coverage, there is
no assignment that provides 4-coverage since the corner
areas have only three neighboring nodes. In such cases,
our system generates an “as good as possible” assignment:
all other areas still maintain sufficient coverage to meet
the requirements.

Once the areas in the grid are sorted, the prototype
calculates the assignment in O(n) time, where n is the
number of areas. The calculation of 1000 assignments for
a 10x10 grid requires on average 6233 ms (10 samples;
standard deviation 25 ms) on a standard desktop (Sun
Java 1.6.0 16, Pentium D 3.2GHz, 1GB RAM). The time
to calculate the assignment is thus orders of magnitude

Figure 5. Calculated deployment patterns for a single component type.

Figure 6. Calculated deployment patterns for a shared network: TEMP-
SAMPLING (light gray) and HUMIDITY-SAMPLING (dark gray). The
preferred coverage for each deployment is also indicated in the figure.

smaller than the time it takes to actually enact it in the
network (see below).

Transferring the TEMP-SAMPLING component re-
quires 1664 bytes to be sent to a selected Sun SPOT node,
installing and starting it takes on average 8.63 seconds
(10 samples; standard deviation 0.24s). Deploying the
TEMP-SAMPLING component to an AVR Raven node
with LooCI and Contiki 2.4, requires 1576 bytes to be
sent and takes on average 11.62s (10 samples; standard
deviation 0.01s) to deploy and start. Even though the
implementations used in these experiments are not op-
timized, the results show considerable improvement in
throughput compared to manually updating each sensor
node in the field (even in the case of this relatively small
test case).

D. Multiple application coverage

QARI not only enables the deployment of components
for a single application (i.e. the same component type
on every selected node), it also allows for sharing the
WSN infrastructure by multiple applications. We have
verified this by deploying both a TEMP-SAMPLING and
a HUMIDITY-SAMPLING component.

Figure 6 shows the deployment patterns of this test
case; again, three experiments were defined with dif-
ferent minimal/preferred coverage requirements: (1) sin-
gle coverage for both the TEMP-SAMPLING and the
HUMIDITY-SAMPLING component, (2) double cover-
age for the TEMP-SAMPLING component, and single for
the HUMIDITY-SAMPLING component, and (3) double
coverage for both applications.

As illustrated, QARI is able to maximally spread dif-
ferent applications over the WSN, while not breaking the
coverage requirements of other applications. Only when
no alternative deployment patterns exists (Figure 6 right
side), QARI will deploy multiple applications on a single
node.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 533

© 2011 ACADEMY PUBLISHER



Figure 7. Minimal and average coverage over time in the presence of
node failures.

E. Resilience to node failure and mobility

Having sketched the feasibility of QARI to achieve
coverage requirements in an automated and correct way,
we finally show that QARI is able to maintain quality
requirements in the context of unreliable network con-
ditions, i.e. deployment failures, node failures and node
mobility.

We have reevaluated the single application test case
(cfr. Section IV-C), and randomly injected failures during
component deployment. QARI succeeded in establishing
a usable deployment pattern; obviously, in case of fail-
ures, the generated deployment patterns deviate from the
patterns in Figure 5 (more nodes are needed to achieve
sufficient coverage).

In addition, we evaluated the capability of QARI to
maintain coverage requirements in case of node failures.
We evaluated this by randomly removing nodes from
and reinserting nodes into the testbed and verifying the
system’s reaction. As expected, QARI was able to (1)
detect that coverage was no longer optimal and (2) reapply
the heuristic to start a new deployment cycle. As long as
enough nodes were alive, QARI was able to re-establish
a coverage pattern that satisfies the requirements.

QARI minimizes the impact of a node failure by
locally—in the vicinity of the failed node—repairing an
assignment instead of globally re-assigning component
types to nodes. For each of the 10 experiment runs, recov-
ering from a failure that affected an existing assignment
took at most 3 repair actions; on average only 1.69 repair
actions were needed.

Figure 7 shows the minimal and average coverage over
time for one of these runs. The coverage requirements
for this experiment were 1 and 2 (minimal and preferred).
QARI is able to keep the minimal coverage that is actually
achieved between these bounds. It can be seen from the
figure that at around 3s, the minimal coverage achieved
is lower than the preferred coverage for about 1.5s. This
is because not enough nodes were available to realize
the preferred coverage for some areas. QARI recovers
from this situation when enough nodes reappear. Even
if it is not possible to meet the requirements—preferred
coverage or in the worst case minimal coverage—, QARI

tries to do “as good as possible”, resulting in a good level
of average coverage despite the fact that the coverage of
some areas is lower than preferred.

Node mobility is handled in a similar way to node
failure: a mobile node disappears in one area (cfr. node
failure) and appears in another (cfr. node reappearing).

F. Discussion

In the previous sections we illustrated the feasibility of
our approach and presented a quantitative evaluation of
our prototype implementation. While we did not perform
quantitative scalability tests, we expect that these tests
would show that the scalability of QARI is bounded by the
scalability of the underlying deployment mechanism. This
belief is based on the fact that the Network Manager runs
on a resource rich device at the edge of the WSN and our
measurements in Section IV-C indicate that the Network
Manager offers good performance on such devices.

The number of node failures that QARI can tolerate
without breaking the quality requirements will of course
depend on the level of node redundancy in the network.
Also the failure pattern will influence the failure rate that
can be tolerated in the case of a coverage requirement.
If the failed nodes are concentrated in a certain area of
the network, less failures can be tolerated than when the
failed nodes are spread over the whole network. If the
number of component types on the network is larger, the
number of possible assignments will also be limited by
the capabilities of the nodes to run multiple components
simultaneously. This will also have an effect on the
number of failed nodes that can be tolerated.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented QARI, a decentralized,
quality aware deployment service for inclusion in man-
agement middleware for interconnected, multi-purpose
sensing infrastructure. QARI provides separation of con-
cerns between defining quality goals (requiring applica-
tion knowledge) and achieving these goals in a wireless
sensor network (requiring knowledge of the physical
deployment).

QARI offers application developers a simple, yet flex-
ible way to specify deployment goals, including speci-
fication of the desired quality. The realization of these
specifications is delegated to an entity close to the sensor
network. This entity uses locally gathered contextual
data to achieve the required quality and to maintain it
throughout the lifetime of the application.

We have realized a prototype implementation of QARI
for the LooCI component model on both the Sun SPOT
platform and the Contiki/AVR Raven platform. We eval-
uated QARI using this prototype as well as a simple
simulation environment.

We are currently evaluating QARI in the IBBT-AdMid
project in a real-world case study in collaboration with
industrial partners. To support this work, we will develop
additions that further increase the applicability of QARI
in such real-world use cases. First, we intend to extend the

534 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER



deployment specifications with support for compositions
and more rich quality specifications. Second, we will
extend our approach to support the deployment of policies
using the policy-based management framework for LooCI
(PMA) [27]. Third, we will investigate the possibility to
allow the network administrator to express constraints for
its network (e.g. the maximum number of components per
node or minimum battery level required for deploying a
new component to a node).

ACKNOWLEDGMENT

Wouter Horré is a PhD fellow of the Research Founda-
tion - Flanders (FWO). This research is partially funded
by the Interuniversity Attraction Poles Programme Bel-
gian State, Belgian Science Policy, by the Research Fund
K.U.Leuven, by the Flemish agency for Innovation by
Science and Technology (IWT) in the context of the IWT-
SBO-STADiUM project No. 80037, and by the IBBT in
the context of the IBBT-AdMid project.

REFERENCES

[1] W. Horré, D. Hughes, S. Michiels, and W. Joosen, “Qari:
Quality aware software deployment for wireless sensor
networks,” in Proceedings of the seventh international
conference on Information Technology: New Generations
(ITNG 2010), April 2010.

[2] C.-C. Han, R. Kumar, R. Shea, and M. Srivastava, “Sensor
network software update management: a survey,” Interna-
tional Journal of Network Management, vol. 15, no. 4, pp.
283–294, 2005.

[3] J. W. Hui and D. Culler, “The dynamic behavior of a
data dissemination protocol for network programming at
scale,” in SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems. New
York, NY, USA: ACM Press, 2004, pp. 81–94.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister, “System architecture directions for networked
sensors,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 93–
104, 2000.

[5] P. Levis, D. Gay, and D. Culler, “Active sensor networks,”
in Proceedings of the 2nd USENIX/ACM Symposium on
Network Systems Design and Implementation (NSDI), May
2005.

[6] R. Balani, C.-C. Han, R. K. Rengaswamy, I. Tsigkogiannis,
and M. Srivastava, “Multi-level software reconfiguration
for sensor networks,” in ACM Conference on Embedded
Systems Software (EMSOFT), Oct. 2006.

[7] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Sri-
vastava, “A dynamic operating system for sensor nodes,”
in MobiSys ’05: Proceedings of the 3rd international
conference on Mobile systems, applications, and services.
New York, NY, USA: ACM Press, 2005, pp. 163–176.

[8] Sun Microsystems, “Sun SPOT world,” http://www.
sunspotworld.com/, Aug. 2008.

[9] Sentilla Corporation, “Sentilla website,” http://www.
sentilla.com/, Aug. 2008.

[10] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors,” in LCN ’04: Proceedings of the 29th
Annual IEEE International Conference on Local Computer
Networks (LCN’04). Washington, DC, USA: IEEE Com-
puter Society, 2004, pp. 455–462.

[11] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-
time dynamic linking for reprogramming wireless sensor
networks,” in Proceedings of the Fourth ACM Conference
on Embedded Networked Sensor Systems (SenSys 2006),
Boulder, Colorado, USA, Nov. 2006.

[12] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee,
J. Ueyama, and T. Sivaharan, “A generic component model
for building systems software,” ACM Transactions on
Computer Systems, vol. 26, no. 1, pp. 1–42, 2008.

[13] D. Hughes, K. Thoelen, W. Horré, N. Matthys, J. Del
Cid, S. Michiels, C. Huygens, and W. Joosen, “LooCI:
a loosely-coupled component infrastructure for networked
embedded systems,” in Proceedings of the 7th Interna-
tional Conference on Advances in Mobile Computing and
Multimedia (MoMM2009), Kuala Lumpur, Malaysia, Dec.
2009.

[14] “LooCI google code project,” http://code.google.com/p/
looci, May 2010.

[15] W. Horré, S. Michiels, W. Joosen, and P. Verbaeten,
“Davim: Adaptable middleware for sensor networks,”
IEEE Distributed Systems Online, vol. 9, no. 1, Jan. 2008.

[16] S. Kumar, T. H. Lai, and J. Balogh, “On k-coverage in
a mostly sleeping sensor network,” Wireless Networks,
vol. 14, no. 3, pp. 277–294, 2008.

[17] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and
M. Srivastava, “Coverage problems in wireless ad-hoc sen-
sor networks,” in INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 3, 2001, pp. 1380–1387
vol.3.

[18] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer,
“Design and implementation of a single system image
operating system for ad hoc networks,” in MobiSys ’05:
Proceedings of the 3rd international conference on Mobile
systems, applications, and services. New York, NY, USA:
ACM Press, 2005, pp. 149–162.

[19] U. Bischoff and G. Kortuem, “Rulecaster: A macropro-
gramming system for sensor networks,” in Proceedings
of the OOPSLA ’06 Workshop on Building Software for
Sensor Networks, Oct. 2006.

[20] A. Awan, S. Jagannathan, and A. Grama, “Macroprogram-
ming heterogeneous sensor networks using cosmos,” in
Proceedings of EuroSys 2007, Mar. 2007.

[21] K. Whitehouse, F. Zhao, and J. Liu, “Semantic streams:
A framework for composable semantic interpretation of
sensor data.” in EWSN, 2006, pp. 5–20.

[22] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and
M. A. Perillo, “Middleware to support sensor network
applications.” IEEE Network, vol. 18, no. 1, pp. 6–14,
2004.

[23] W. Horré, K. Lee, D. Hughes, S. Michiels, and W. Joosen,
“A graph based approach to supporting reconfiguration
in wireless sensor networks,” in Proceedings of the 1st
Workshop on Applications of Graph Theory in Wireless
Ad hoc Networks and Sensor Networks, Dec. 2009.

[24] OASIS, “Open SCA,” http://www.oasis-opencsa.org/, Mar.
2010.

[25] A. Schiper, K. Birman, and P. Stephenson, “Lightweight
causal and atomic group multicast,” ACM Trans. Comput.
Syst., vol. 9, no. 3, pp. 272–314, 1991.

[26] Atmel Corporation, “The RZRAVEN 2.4 ghz evaluation
and starter kit,” http://www.atmel.com/dyn/products/tools
card.asp?tool id=4291, Apr. 2010.

[27] N. Matthys, C. Huygens, D. Hughes, S. Michiels, and
W. Joosen, “Flexible integration of data qualities in wire-
less sensor networks,” in Proceedings of the 4th interna-
tional workshop on Middleware Tools, Services and Run-
Time Support for Sensor Networks. ACM, Dec. 2009, pp.
31–36.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 535

© 2011 ACADEMY PUBLISHER


