JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 651

A Study of When to Release a Software Product

from the Perspective of Software Reliability
Models

Richard Lai, Mohit Gard, P. K. Kapu? and Shaoying Lit
1 Department of Computer Science and Computer Engineering,
La Trobe University, Victoria 3086, Australia.
2 Department of Operations Research,
University of Delhi, Delhi 110007, India.
3 Faculty of Computer and Information Sciences,
Hosei University, Tokyo, Japan.
Email: r.lai@latrobe.edu.au

Abstract— If a software product with a significant number reliability of the software products. There are many prob-
of defects is released too early to users, the software apilistic and statistical approaches to modelling software
manufacturer will incur post-release costs of fixing the faults. reliability. Using tools/techniques/methods, software de-

If a product is released too late, the additional development . .
cost and the risk of missing a market window could be velopers can design several testing programs or automate

substantial. Software Reliability Growth Models (SRGMs) testing tools to meet the client's technical requirements,
can capture the quantitative aspects of testing and are schedule and budget. These techniques can make it easier
used to estimate software release time. From a cost-benefit tg test and correct software, detect more bugs, save more
viewpoint, SRGMs aid developers to decide the optimal time and reduce expenses significantly [14].

release time of the software product by providing effective . o
approaches to minimising the expected total software system There has been much effort expended in quantifying the

cost. This paper helps answer the question of when to stop reliability of a software system through the development
testing a software product by presenting the perspectives of models [42]. These models are collectively called

from a study of cost models. The study focuses on aspects Software Reliability Models (SRMs). The main goal of
of the relationship between development cost and schedule these models is to fit a theoretical distribution to time-
delivery of the Software product and the total software cost between-failure data, to estimate the time-to-failure based
including the risk costs, such as the penalty cost incurred due ’ ;)
to late delivery of software product and the cost of fixing a 0N software test data, to estimate software system’s relia-
fault during the warranty period. We also investigate various bility and to design a rule for determining the appropriate
software release policies, for example, policies based on the time to terminate testing and to release the software into
dual constraints of cost and reliability. the market place [6], [41], [51]. However, the success of
Index Terms—cost models; software reliability growth ~ SRMs depends largely on selecting the appropriate model
models; software release policies; software testing; Non- that best satisfies the stakeholder’s need.
Homogeneous Poisson Process (NHPP) While testing software, SRMs are useful in measuring
reliability for the quality control and testing process
|. INTRODUCTION control of software development. In particular, SRMs that
Today, science and technology demand high perfordescribe software failure-occurrence or fault-detection
mance hardware and high quality software in order tgohenomenon in the system phase are called Software
achieve new breakthroughs in quality and productivity. ItReliability Growth Models (SRGMs). In the testing and
is the integrating potential of the software that has allowedalidation phase of the software product life-cycle, the
designers to contemplate more ambitious systems, encormemmon goal of these models is to support the trade-
passing a broader and more multidisciplinary scope, withoff between three dimensions, namely, quality, schedule
the growth in utilization of software components beingand cost. Despite their shortcomings - excessive data
largely responsible for the high overall complexity of requirements for even modest reliability claims, difficulty
many system designs. However, in stark contrast with thef taking relevant non-measurable factors (such as soft-
rapid advancement of hardware technology, proper develvare complexity, architecture, quality of verification and
opment of software technology has failed miserably tovalidation activities, and test coverage) into account etc.
keep pace in all measures, including quality, productivity- SRMs offer a way to quantify uncertainty that helps
cost and performance. in assessing the reliability of software systems, and may
When the requirements for and dependencies on conwell provide further evidence in minimizing development
puters increase, the possibility of a crisis from computercost and predicting software release time [1], [13], [17],
failures also increases. Hence, for optimizing softward24].
use, it becomes necessary to address issues such as thdlthough testing is an efficient way to detect and re-

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.4.651-661

652 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

_ Cost functions: incorporating the dual constraints of cost and reliability
Minimize risk costs during _ help to obtain possible software release time values; and
development and warranty

period cost-benefit analysis helps to decide the optimum software

release time.

Release policy:
Incorporating both cost and
reliability requirements

N Cost
Optimization

A. Uncertainty in Releasing a Software Product

Software product development is characterized by un-
predictability, and there are often large discrepancies
]) between the initially planned and actual project objestive
Rg;fig::;:fge?x::fgst The unpredictability of software product development is
and schedule not new. Different criteria can be identified to formulate
the cost optimization problem. Firstly, if the requirement
is fault-free software or any other reliability goal, then
the problem is to determine the minimal testing time to
reach the reliability requirement. Secondly, if the total
solve faults to avoid failure of a software system, exhaussoftware cost (i.e., combined cost of developing and
tive testing is impractical. Therefore, software devetspe maintaining a software product) is to be considered, then
need to decide when to stop testing and release thiée optimum release time is determined using appropriate
software to the customers. From a cost-benefit viewpoingost functions, so that the total expected software cost
SRGMs aid developers to decide the optimal releaséan be minimized. Based on the Jelinski and Moranda
time of the software product by minimising the expected(J-M) model [16], Koch and Kubat in their paper [28]
total software system cost. This paper helps answer thigtroduced a balanced cost-benefit function considering
question of when to stop testing a software product byniot only the total costs of testing, but also the benefits
presenting the perspectives from a study of cost modelglerived from the application to determine the optimal
The study focuses on aspects of the relationship betwegelease time. This cost-benefit function takes into account
development cost and schedule delivery of the softwaréhe planned delivery time, cost of correcting faults (infbot
product and the total software cost including the risktesting and implementation phases of software product
costs, such as the penalty cost incurred due to late delivetife-cycle), cost of goodwill due to faults after delivery,
of the software product and the cost of fixing a faultloss due to delayed delivery, benefits of using the testing
during the warranty period. We also investigate variougeam after the software release, and benefits associated
software release policies, for example, release policiewith successful operation of the software per time unit.
based on dual constraints of cost and reliability. The ainin such cases, the expected total software cost can be
of this study is to help provide a better understandingninimized using their cost function together with any
of the usefulness of SRGMs in determining when to re-SRM. Therefore, software release time is associated with
lease a software product from the viewpoint of achievingthe cost of software testing and the gain of an earlier
an optimization between development cost and softwartelease of the software. Gain is defined as the difference
quality. in cost incurred when all the faults are removed during the
operational phase as against the cost when some faults are
1. COSTOPTIMIZATION removed during the testing phase and others are removed
Before releasing a software product, an important deciguring the operational phase_[2]. n pra_ctice, a s_oftw_are
sion from an economic standpoint is whether to continudh@nufacturer wants to determine the optimum testing time
testing, stop testing or scrap the software [38]. ThougH'®M @ cost-benefit point of view. _
prolonged testing is desirable from a reliability point of !f the software industry is unable to find easy-to-
view, it adds substantial cost to the software developmentTPlément improvement strategies, the typical software
On the other hand, if the cost of testing or the cost 0tmanufacturer o.rgamzat_lon is likely to become increas-
delay in release is very high, the solution will tend toNdly less predictable in terms of cost and quality. In
be not to test and to scrap the software due to higﬁnarke_ts with increasing competition anq smaller'mar-
risk costs. In practice, cost optimization is a trade-offket Windows, software manufacturer might experience
between three dimensions, namely, cost functions, releaddcréasing pressure to release software products prema-
policy and cost-benefit analysis where the objective is tdUrely disregarding the total life-cycle effects [3]. Inid
minimize total cost, i.e., development cost and risk costcaS€, uncertainties are:
while maximizing benefits to the software manufacturerUnknown software product behaviour. It is difficult,
[42]. In Figure 1, we have identified these perspectivesf not impossible, to guarantee that the software product
which contribute equally towards cost optimization of ameets the exact functional and non-functional require-
software product. While appropriate cost functions aidments. This may lead to dissatisfied customers/end-users
project managers to minimize risk costs during developand to unforeseen, even potentially dangerous, situations
ment and in the warranty period, software release policiedpart from the fact that people’s lives may be at risk,

Figure 1. Identified Perspectives for Cost Optimization

© 2011 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 653

such situations can have an enormous financial impact orham and Zhang [35], [36], developing a generalized cost
the software manufacturer. model which considered fault removal cost, warranty cost,
Unknown operational maintenance cost The post- and software risk cost due to software failures; Liu and

release or maintenance cost of the software may beconfe@nd [32] also addressing the risk cost, and Kimura
unexpectedly high. If the exact status of the softwaré®t al- [27] developing a software cost model considering
with its documentation is unknown, a software m(.Jmu_softvv_are maintenance cost during the warranty period.
facturer may be confronted with high maintenance costs Using the G-O Non-Homogeneous Poisson Process
for correcting failures. Future adaptive and perfective(NHPP) reliability model, Okumoto and Goel [34] sug-
maintenance activities may be severely hampered. gested a S|mplg cost model which determlnes a point in
The presence of these uncertainties may have a drdM€ as an optimal software release time and cost of
matic impact on a software manufacturer's market posit€sting per time unit. The expected cas{T) of the
tion. Releasing a software product too late might severelgOftware product released at a given tiffigs calculated
undermine its market position, releasing a software prod?y using the following cost function:
uct prematurely might lead to recalls and warranty, or

even liability problems. C(T) = Ci(T) + Co(T) + C3(T) 1)
The actual cost of a software project is given®@yT’),
B. Cost Overruns and is often called the software cost modél. is the

Estimation of accurate time-to-market (schedule) of &£0St incurred by fault removal activities during testing,
software product is a major topic of concern in the soft-C= is the c_ost incurred by fault removal activities during
ware product development industry [9]. Having computedh® Operational phas€;; is the general cost of software
a nominal value for a schedule, a software manufacturdSting. Despite the fact that many software cost models
may face the question of adjusting the schedule to eithdt@ve been proposed, for most of thea,(T), C5(T),
deliver the software product at an accelerated pace, or f"d Cs(T) are common cost components that have been
improve efficiency. Any adjustment to the schedule will2dopted. Using a formula given by Yang et al. [49] the
have a subsequent cost impact. As a schedule is furth&Pftware cost can be formulated as:
stretched, the manufacturer faces severe cost penalties. 6
Since it is expensive to fix post-release failures, software C(T) = Co + Z Ci(T) @)
manufacturers frequently decide to release the system Py
as late as possible, i.e., at the deadline or after the
deadline. If the software fails during the warranty period,.
additional costs are incurred by the manufacturer, whic
are known as the risk costs [35]. Risk costs also includ
the penalty cost which is incurred by the manufacture
for not delivering the software within the scheduled time
[20], [45]. The penalty cost is usually proportional and
exponential to the delivery time.

where Cy is the setup cost for software testing,
s the risk cost due to software failureSj is the cost
éo remove faults in the warranty period aidg is the
Ipenalty cost. In existing research, different formulagion
of cost components’;(T), 1 < i < 6, have been
proposed. Moreover, other cost components can be con-
sidered and added to the generalized cost model as well.
It is known from [19] that the costs of quality can be
categorized into prevention costs, appraisal costs,riater
failure costs, and external failure costs. Later, Slaughte
SRMs offer a way to quantify uncertainty that helpset al. [40] elaborated that while developing a software
in assessing the reliability of software systems, and maproduct, appraisal cost comprises cost of code inspections
well provide further evidence in minimizing development testing, software measurement activities, etc.; preganti
cost and predicting software release time. In the litemtur costs includes the costs of training man-power in design
several researchers have developed models for cost-benefiethodologies, quality improvement meetings, software
analysis of the testing process, all based on the initiaflesign reviews, etc.; internal failure costs is a mixture
cost model described by Goel and Okumoto (G-O) [10].of the costs of rework in programming, reinspection,
Models are described, for example, by Yamada and Osaketesting, etc.; external failure costs represent expgense
[47]; Brettschneider [5], presenting a simplified decision incurred in field service and support, maintenance, liabil-
making model; Xie and Yang [43], incorporating the ity damages, litigation expenses, etc. In the generalized
effect of imperfect debugging on software cost; Huangcost model above(, (T') and C5(T) can be viewed as
et al. [14], incorporating ways to improve test efficiency;a mixture of appraisal costs and internal failure costs;
Yamada et al. [44], incorporating life-cycle distribution C2(T), C4(T), C5(T), and Cs(T) can be viewed as
and applying discount rate; Pham and Zhang [37], incorexternal failure costs. Therefore, it can be noted that the
porating test coverage; Leung [29], incorporating a budgetost defined in (2)C(T), is only part of the total cost
constraint; Kapur and Garg [20]; Ehrlich et al. [7]; Yang incurred in the development of the software product.
and Chao [50]; Boland and Singh [4]; Hou et al. [12]; The formulation ofC;1(T") is generally considered to
Koch and Kubat [28], incorporating the penalty cost whenbe proportional to the number of software faults removed
the software is delivered after the scheduled delivery timeduring the testing phase.

Ill. SOFTWARE COSTMODELS

© 2011 ACADEMY PUBLISHER

654 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

Finally, the penalty cost [12], [20], [281,s(T"), can be
C(T) = eym(T) (3) formulated as:

wherec; is the deterministic cost to remove each fault
per unit time during testing aneh(T") is the expected
number of saftware failures by tinie. where,I(.) is an indicator function, defined a(t) =
Similarly, C2(T') is considered to be proportional to the 1, if t > 0, else 0.
number of software faults removed during the operational |t is of great interest to determine an optimum software

Co(T) = I(T — Ty)C,p(T — Ty) (10)

phase. Thus, release time satisfying both cost and reliability require-
ments. Both the expected total software c6%t") and
Ca(T) = co[m(Tre) — m(T)] (4) the software reliabilityR(z|T) are assumed to be the

evaluation criteria satisfying software cost and software

where ¢, is the cost of fixing each fault during oper- =") 4
reliability requirements simultaneously.

ation andm(T¢) is the expected number of software
failures in the life-cycle length of the software product.
Since,c; is the deterministic cost to remove each fault perA. Cost Model for Imperfect and Explicit Debugging

unit time durig testing and:(T") is the cost of removing Usually the costs of testing are based on software

a fault in the operational phase; normally, > c;. _ reliability models which assume that the fault is debugged
~ C3(T) is assumed to be a power function of testingaq soon as it is detected, and the debugging process is per-

timeT, Le., fect. According to Gokhale et al. [11], the time required
i to debug a fault, however, cannot be neglected; and hence

C3(T) = c5T ®) at any given time, the number of faults debugged will be

The parametek(0 < k < 1) reflects the fact that the 1€ss than the number of faults detected. Thus, the cost of

increasing gradient is different in the beginning and af€solving a failure in practice consists of two parts: the
the end of testing. In the simplest cases 1. For SRMs ~ cost of opening a modification request and diagnosing

considering test effort [13], [1515(T) is formulated as: the fault that caused a failure; and the cost of removing a
fault and verifying that the failure no longer occurs. The

Cs(T) = o [W(T))F (6) former depends on the fault detection process, and the
_) o latter depends on the debugging process. Gokhale et al.
The risk cost due to software failureS,(T'), is given [11] denoter; (total cost of detecting a fault and resolving
as: a failure during testing) as the cost associated with the
former, andecy (cost of debugging a fault in the testing
Cu(T) = cal = R(z[T)] (7) phase) with the latter. For a release tiffiethe economic
Pham and Zhang [36] developed a Net Gain in Reliabilmodel presented by Ehrlich et al. [7]:
ity (NGIR) model and defined the expected NGIR(T"),
of the_so_ftware developm_e_nt process as the economical E = Cy(T) + eim(T) +
net gain in software reliability that exceeds the expected T N Tl
total cost of the software development. cz(a —m(T)) + cs(Aln, T)nl)
E(T) = Expected gain in reliability - (total (11)
development cost + risk cost) is modified by Gokhale et al. [11] to be:

Using (3, 4, 5 and 7) the NGIR is, therefore, given by

Pham and Zhang [36] is: E =Cg(T)+ cimp(T) 4+ comp(T) +
ca(a —mp(T)) + cs(X (n,)nl)
E(T) = R(z|T)(Cy + 1) — (12)
Cu
{CS(T) +m(T) [Cl + 7m(T)} + 04} wheremp(t) andmp(t) denote the expected number

(8) of faults detected, and removed respectively, by tithe
cg (cost to customer operations in the field) is considered

where,m(T) [e1 + Sm(T)] is the expected total costs a5 4 function of the adjusted failure rate(n,) of the
to remove all faults detected during the periodT’). software.

Pham and Zhang [35] and Sgarbossa and Pham [8]
suggested the cost to remove a fault during the Warranté]
period, Cs(T), given by: . Cost Factor for Release of New \ersions
To ensure ongoing software quality, new releases of
given software are required. These releases provide the
C(T) = Co + Cs(T) + exml(T)py + customer with improved and fault-free versions and the
Cs i [m(T + Ty) — m(T)] + Cr[1 — R(x|T)] process of providing new versions continues throughout
(9) the software product life-cycle. A common situation in

© 2011 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 655

practice is that the same software is released severatliability requirement have been studied by Koch and
times in different versions. Usually, these packages ar&ubat [28]; Okumoto and Goel [34]; Shanthikumar and
not static and require changes to correct faults, improv&ufekci [39]; Yamada et al [45], [48]; Kimura et al.
performance, and add new and improved features [42]. [27]; Kapur and Garg [21]; Huang [13]; Ahmad et al.
In this light, Levin and Yadid [30] proposed a model [1], and Yang et al. [49]. Software release policies based
for determining the release time of a new version ofon cost and reliability criteria and their variants such
software by using the G-O model for the software failureas controlling the test effort expenditures are discussed
process. The optimization is carried out by minimizingby [13], [24] and estimation of penalty cost by [20].
the expected total development cost. Four different codin addition, Kapur and Garg studied software release
factors associated with the release of new release are: policies for Continuous time SRGMs [22], optimising
1) Based on the G-O model with parameterandb, ~ two conflicting objectives, namely software cost subject
the expected number of faults detected during timdo budget and reliability constraints. The policies for the
[0,1), is given bya[l — exp~"*]. Taking the sum of Discrete time SRGMs are discussed by [26], [46]. These
the fix costy associated with the next release andrelease policies are useful to control the total software
the average cost of Correcting an fagit given by testing cost in both testing and validation phases of the
Levin and Yadid [30] is: software product life-cycle.

7+ cra[l —exp™™] (13) A Release Policy for Continuous Exponential SRGM

where fix cost includes the cost of documentation, For an Exponential SRGM in Continuous time, Kapur
distribution, installation, customer training etc., andet al. in [22], [23] defined the mean value function as
the average cost of correcting a fault is assumed ton(t) = a(1 — exzp~"") and the failure intensity ast =
be proportional to the number of detected faults. m’'(t) = abexp™". It may be observed thak(t) is a

2) Cost of improving the software during time (0,t] is decreasing function it with A\(0) = ab and A(o0) =

thus given by: 0. Substituting cost components (") and cz(7") from
equations (3) and (4) in (1), the total cost function can be
csvlexp ™ — 1+ 2t]z (14) obtained as:
3) Next cost factor is called the cost of software
obsolescence, obtained as: C(T) = cxm(T) + c2(m(Trc) —m(T)) + 3T (17)
coxfexp ¥t — 1+ yt] and the expected software reliabiliig(x|7) given that
” (15) the last failure occured iff > 0(z > 0)) is defined as:
This factor_ represents the loss of markgt share since R(z|T) = eap~m(T+a)-m(T)] (18)
the longer it takes to release a new version, the more
users turn to other competitors. While determining software release policies for

4) The optimum time to release a new version is therSRGMSs, three types of criteria are commonly considered:

determined by minimizing the total cost per unit cost Criteria: The objective in this case is to find a
time, given by: release timé’, such that the total expected software cost
during the software product life-cycle is minimised. By
v+ cra[l — exp™®] + csv[exp™*! differentiating total cost functior”(7") in equation (17)
ot) = with respect tal’, one obtains:

—1 + 2t]z + cozlesp Volbyt
t - C(T) = —(c2 — c))m/(T) + 3 (19)
(16) whereC’(T) = 0 if m/(T) = Z=-.
Reliability Criteria : The objective in this case is to find
IV. SOFTWARE RELEASE POLICIES a release time’, satisfying R(x|T") > Ry, where (0 <
After the prescribed reliability goal is set and the focusR, < 1) is the required level of reliability. From (18)
is to achieve the target reliability, for any software costR(z|0) = exp~™*) and R(z|co) = 1. By differentiating
model there is a need to determine the optimum releasg(z|T) with respect tal', one obtains:
policy by minimizing the expected total cost subject to the
reliability goal. A lot of software release policies dissus (T2 —mm
the best time to make a decision to stop testing software R (2|T) = exp” e =m (@)
and release it to the customer. In the literature, the (abexp™" (1 — exp™"*))
optimal software release problem has been discussed by (20)
researchers since the early 1980s [13], [20], [22—26]..[46]
Software release policies which explain dual constraint€ost and Reliability Criteria : The objective in this case
of minimizing a total average software cost satisfying ais to either minimise cost subject to reliability not less

© 2011 ACADEMY PUBLISHER

656 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

than a predefined reliability level or to reliability subjec
to cost not exceeding a predefined finite budget. The B B ,
objective is, therefore, either minimisg(T") subject to C(T) = C(T|T:) = cxm(T) + CQZF(m(TLC —m(T))
R(z|T) > Ry or maximise R(z|T) subject toC(T) < +03T+/ Cp(T — 1)dG(1)
Cp, whereCjp is the predefined budget level. 0

(27)

B. Release Policy for Discrete Exponential SRGM Later, Kapur and Garg [20] added that the expected
The mean value function (number of faults detected irpenalty cost is an increasing functiontinDifferentiating
n test run) for a Discrete Exponential SRGM is given by C(T') in (24) with respect td’, they the authors obtained

Kapur et al. [23], [25] as: the expected penalty cost as:
m(n)=a[l — (1 —=5)"],a >0,0<b< 1 (21) C'(T) = —[(ca — c1)m/(T) —
T
and the discrete failure intensity is given as: / %OP(T —1)dG(t)] + ¢3
0

(28)

Using (28), Kapur et al. [20], [23] derived the release
given that \(N) decreases asV increases, where policy under penalty cost based on minimizig(T)
A(0) = ab and A(c0) = 0. The cost during the software subject toR(x|T") > R, whereT > T,. Two were cases
product life-cycle N..c, when the software is released considered: (i) whefl’, is deterministic; and (i) wheff,
after N test runs is: has an arbitrary distribution.

AN)=m(N +1) —m(N) =ab(1 - b~ (22)

C(N) = clm(N) + 02(m(NLC) — m(N)) +csN (23) D. Release PO|Icy with Test Effort
Comparing the cost when the software is released after For softwar_e release po"c"?s' the testing cost IS di-
(N + 1) and N test runs yields: rectly propor_tlo_ngl to the testing timé'. Ther_efore, if
T becomes infinitely large, so does the testing cost. In
reality, no software developer will spend infinite resosrce
C(N+1)—C(N)=—(c2—c1)AM(N)+c3 (24) on testing the software. Test effort curves are typically
used to measure testing resources, such as CPU time,
man power etc. Assuming test effort to be Exponential,
Kapur & Garg [23] discussed the release policy for an
Exponential SRGM with the added assumption that test-
ing resources are described by an Exponential curve. For
an Exponential type test effort curvey(t) = aBexp= !

Discrete software reliabilityR(z|N) is defined as the
probability that software failure does not occur(iN, N+
x] test runs, given that the last failure occurredNntest
runs, given by Kapur et al. [23], [25] is:

_ —m(N+z)—m(N)
R(z|N) = exp (25) describes instantaneous testing resources. The test effor
wherez is the number of test cases. expenditure in time is generally given as:
Combining (24) and (25), the cost and reliability crite- .
ria are discussed by Kapur et al. in [25]. W(t) = / w(z)dz = a(l — exp~P) (29)
0
C. Release Policy under Penalty Cost Generally, the total test effort expenditures does not

If the software manufacturer fails to release the Soft_e_xceeda even if the software is tested for an indefinite

. : » ime. Based on minimizing cost subject to reliability not
ware product at the scheduled delivery time, additiona) - L
. ess than a predefined reliability objectivg,, Kapur &
costs are incurred by the manufacturer termed as penal) .
. arg [23] formulated the software release policy with test
cost. To determine penalty cost, Yamada et al. [45 ffort as:
assumed’, i.e., scheduled delivery time of the software, ’
is a random variable with cumulative distribution function
(CDF) G(t) and finite probability density function (PDF) C(T) = c;m(T) +ca(m(Trec —m(T)) +c,, W (T) (30)
asg(t). UsingCp(t) as the penalty cost incurred in time
(0,t] due to delay in software release, they obtained the
expected penalty cost iff, 7] as:

The software reliabilityR(z|T) is given by:

R(x‘T) _ exp[expfb'm(T)_ez_pfbm(T«#a;)] (31)

T
/ Cp(T —t)dG(t) (26) When the test effort curve is a Weibull curve instead of
0 Exponential, release policies for cost, reliability andneo
Thus, the total expected software cost during the softbined cost and reliability are discussed by Lin and Huang
ware product life-cycle obtained by Yamada et al. [45][31]. In this paper, the authors assumed that in certain
is: cases, the policies of testing resources allocation could

© 2011 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 657

be changed. Based on this assumption, they presentedlf A\; = 0 and A = 1 and Cp is sufficiently large,
concepts of multiple change-points into Weibull-type testthis formulation reduces to the classic cost optimisation
effort functions. The testing resource allocation problenmproblem discussed by Okumoto and Goel [34]. Whereas,
has also been studied by Jha et al. [18] by minimizing théf A\, = 1 and A\, = 0, this formulation reduces to the
total software testing cost of a modular software systemieliability optimisation problem to suit high reliability
given a reliability constraint and an upper bound on theprojects, such as nuclear reactors, space exploration etc.
amount of available testing resources. since the reliable operation of these projects is critjcall
dependent on the reliable operation of their software
components.

However, in the Bicriterion software release poligy,

For Exponential Continuous time models, the Bicri-and A, can be fixed or variable according to the priority
terion release policy is discussed by Kapur and Gar@ttached to the reliability and cost functions. Usifig=
[23]. This policy optimizes two objectives simultaneoysly £-, i = 1,2, 3 the objective functior¥'(T’) is formulated
namely total expected software cost not exceeding as:
specified budget and software reliability not less than a
given reliability level. Such a release policy gives enough o
flexibility in finding the optimum release time for the F(T) = m(T)[A1 + Az(e2 — &1)] —
software, based on relative importance associated with Mm(T +) — 2 dom(TrLo) — e3\oT
both cost and reliability. The Bicriterion software releas (32)
policy aims at minimizing cost and maximizing reliability
simultaneously such that the total expected cost during the The different values of; and A, give rise to different
software product life-cycle does not exceed a specifieyalues of optimal software release tin€*j and hence,
budget and conditional reliability is not less than a pre-different R(z[T*) and C(T~). Giving more weight to
specified reliability objective. reliability (i.e., higher\;) helps obtain an optimal solution

Mathematically, Kapur and Garg [23] state, with higher value of R(xz|T™). If the emphasis is on

maximising reliability only (i.e.,A\; = 1, A\, = 0), then
the highest possible reliability value can be achieved by

E. Bicriterion Release Policy

maximize logR(z|T), exhausting the total budget.
minimize C(T)
subject to F. Data Analysis
C(T)<1 To obtain the cost and reliability values for the software
R(z|T) > Ry release policies discussed in this section, we consider the

data provided by Musa et al. [33]. The G-O model was
used for this study, which is one of the earliest NHPP-
where C(T) = %TB“) This is reduced to a single pased SRGMs develpped and has been widely used in the
objective optimization problem by introducing: literature. The data is for software tested for 125 CPU
hrs over 11 days with a total of 32 faults being detected.
Using this data set, cost parameters were assumed=as

T>0,0<Ry<1

\ =)A\; € R?, 150, ¢ = 250,c3 = 70, the desired reliability level as 0.87,
budget cosCp = 20000 and penalty cost = 150. We have
where\; > 0, A2 >0, assumed these values as an example, since it is expected
2 that software developers have reliable estimates of variou
Z Ai =1 model and cost parameters from past experiences. In
=1

table I, we have summarized the cost parameters and the
Here R? is the coefficient of multiple determinations desired reliability level. From the failure data recorded
and \;(i = 1,2) is the priority for thei® component, in this study, the constant parametersand b for both
Using \; and)., a degree of flexibility is introduced Continuous and Discrete Exponential G-O model were

over the other release policies where optimization jbtained asa = 58.07821 andh = 0.0703236. Under

based either on cost or reliability functions and thus thdhese parameters, the optimal release time obtained for
previously stated formula is further reformulated as the Discrete Exponential model is 47.55 days at the time

point when reliability is 0.87 and cost is $ 11870.43. The
plots of (a) cost function and (b) reliability growth curve

rcl maximize F(T) = \; log R(z|T) — \2C(T) for the Discrete time G-O exponential model are shown
subject to in Figs. 2a and 2b, respectively.
o) <1 For software release policy under penalty cost, the
- optimal release time is 47.55 days at the time point when
R(z|T') < Ro reliability is 0.87 and cost is $ 58070.81. The plots of
T>00<Ry<1 (a) cost function and (b) reliability growth curve for the

© 2011 ACADEMY PUBLISHER

658 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

1.00 -
. Reliability grow th

18 - —— Cost function 0.80 -
&+
S 16 4 o
z = 060 |
il S
£ 143 T 0.40 -
% 12 “
8 0.20 -

10 A i i e 0.00 7 E— N R — N .

11325374.1961738597109121 NA DO P A DR P R
Time (days)
Time (days)
(a) (b)
Figure 2. Plots of (a) cost function and (b) reliability gtbmcurve for the Discrete Exponential software releasecgoli

200 - Cost function for Ts =30 hrs 19
- 09 A Reliability growth
8 150 | 08 curve
=]
=
£ 100 4
B 5
(8]

O TTTTIT T I I T T AT T A AT T T T T T T AT T I T T AT T I T T I I r rrrrrrrrrm
1 5 9 1317 212529 33 37 41 45 49 53 57 61

Time (days) 1‘ i
Time (days)
(@) (b)
Figure 3. Plots of (a) cost function and (b) reliability gttmcurve for the Penalty cost software release policy

TABLE I. TABLE II.

SUMMARY OF SELECTED DATA SET [33] DATA VALUES FORBICRITERION SOFTWARE RELEASE POLICIES
. Notation . Value . . A1 . A2 . T™(days) . R(x|T™) . C(T™) .

c1($) 150 0.6 | 0.4 | 68.62418 | 0.968868 | 13187.19
c2($) 250 0.5 | 0.5 | 63.18735 | 0.954702 | 12828.30
c3($) 70 0.4 | 0.6 | 57.9011 | 0.934981 | 12489.00
z(days) 1
TrLc (days) 52
R, (Desired reliability level)| 0.87 policy are shown in Figs. 4a and 4b, respectively.
Cp (Budget) 20,000 For the Bicriterion software release policy, different
Penalty cost($) 150 values for \; and). give rise to a different optimal

release tim&™ and hence, differen®(z|7*) andC(T™).
These values are given in table Il. The introduction of
A1 and)\, gives more flexibility to the software project
policy under penalty cost are shown in Figs. 3a and 3bmanager in setting objectives and thus one may have a
respectively. trade-off between cost and reliability depending upon the

From the failure data, the constant parameterand importance of each. The plots of (a) cost function and
b for the Continuous G-O model with exponential test(b) reliability growth curve for the Bicriterion software
effort function were obtained as = 61.09838 and) = release policy are shown in Figs. 5a and 5b, respectively.
0.00634789, and the parameters’ of test effort function From the above data analysis of the policies discussed
were obtained asr = 2171.339 and v = 0.004861476. earlier, it is clear that the optimal software release time i
Note that the value of for the test effort-based software very close. In practice, the type of policy to be adopted
release policy is 56 CPU hr. Under these parameters, thedepends mainly on the cost model chosen to estimate the
optimal release time obtained for the test effort modelexpected cost. For example, if we consider the penalty
is 52 days when the reliability level is 0.87 and cost is $cost in the cost model then the cost incurred would
42694.57. The plots of (a) cost function and (b) reliability be more after the scheduled time of software delivery
growth curve for the test effort-based software releaseompared to the cost incurred if a cost model is chosen

©2011 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 659

100 - —— Cost function for Ts = 30 hrs 1.00 -
& 80 - 0 J
8 - .80
2 60 = 0.60 -
£ 2
= 40y 5 0.40 -
7] 4 5 g
8 20 | 0.20 | Reliability grow th
curve
0 AL L R e 0.00 7
1 13 25 37 49 61 73 85 97 109 121 133 1
Time (days) Time (hrs)
(@) (b)
Figure 4. Plots of (a) cost function and (b) reliability gttmcurve for the Test Effort software release policy
1 4
18 - —— Cost function for Ts = 30 hrs 0.9 — Reliability grow th
17 4 0.8 4 curve
2 16 - BF 1
g 15 206 -
= S05 |
£ 144 204 J
= 13 4 o
73 S
0 12 0.2
0 -
11 4 01
10 A 0

1 12 23 34 45 56 67 78 89 100 111 122 N o

] NN R RGP
Time (days) Time (days)
(a) (b)

Figure 5. Plots of (a) cost function and (b) reliability gtbmcurve for the Bicriterion software release policy

without penalty cost. Therefore, the type of the softwardow level (i.e., has been minimized). In fact, what has

release policy to be chosen depends on: been minimized or guaranteed to be below a certain level
. the objectives of the release policy; is the expected cost either during the testing or in the
« system constraints; warranty period, not the total expected cost; thus, there
« cost model; and exists a certain level of risk that the cost of the software

« the SRGM chosen to describe the failure process. Mmay be unexpectedly high and the project may run over

In general, no particular policy can be considered a?uldgft:z h wdied th ¢ optimizati
best in general. It solely depends on the objectives set TJI IS pz(ijpter,_ we tave Sl:. 1€ eft\(/:vos opl |m|zat_|on
by the software project manager/developers, the systett?{O em and Its impact on optimum software rejease ime

constraints and the testing profile to be attained at thd! detail. _lt is clearly shown that cosF-peneﬁt analy3|§,
release time. Hence. one must first define these an%ostfunctlons and software release policies are the dksire

formulate the policy accordingly to obtain the optimum criteria for scheduled delivery of a software product and
software release time to minimize cost overruns during the warranty period. The

main contribution of the research presented is to demon-
strate the important fact that, in the optimal software
release problem, the uncertainty involved in computing

Most of the existing research on determining the op-otal software cost should not be neglected. Based on this
timal time to release software gives insufficient consid-standpoint, we have discussed the existing cost functions
eration to cost optimization, and the formulations of thewhich are important in studying the total cost of a
problem are generally based on the treatment (such a®oftware product during its life-cycle and are incorpodate
minimization) of the expected cost, either during thein obtaining optimum release policies. Further, we have
testing or in the warranty period. Since considering cossurveyed the software release policies based on the dual
control during both development and maintenance phaseonstraints of cost and reliability for both Continuous
is more meaningful in achieving the overall goal of and Discrete time SRGMs. In addition, we have also
minimization of total expected costs than simply consid-discussed the Bicriterion policy and the release policies
ering cost in relation to only one of these phases, thestr penalty cost incurred due to missed schedules and to
formulations are flawed. If these formulations are usedgontrol the test effort expenditures during testing. These
then the solution obtained may give management a falsgoftware release policies are important to minimize risk
impression that the cost of the software product is at @nd estimate total development cost.

V. CONCLUSIONS

© 2011 ACADEMY PUBLISHER

660

We have also presented data analysis to provide a”
comparative summary among the cost models surveyed;

and their usage in terms of determining the best possi-m(T)
ble release policy for different scenarios. The benefits mp(t)

of using such an analysis can prove invaluable for a

project manager, since both cost and reliability curves are™ % t

very readable and easily interpretable, especially for non
experts, facilitating the strategy that has to be followed

for better management of a new software project. Due to pw

the fact that only a few outliners have been considered,

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

Expected execution time of the software release
per field site

Number of field sites

Expected number of software failures by tirie
Expected number of faults detected by time with
explicit debugging

Expected number of faults removed by time with
explicit debugging

The expected time to remove a fault during testing
period

The expected time to remove a fault during war-
ranty periodw

. : : W(T) The total test effort spent i0, 7]
a decision maker beneﬁts greatly from comparing the w(t) Instantaneous testing resource
performance results of different models. Ro Reliability objective

It has been repeatedly stressed that software man-R(z|T)

ufacturers are confronted with serious problems when
trying to report the pre-release level of product relidili
obtained and the expected post-release maintenance cost,

based on the level of reliability and the maintainability
of the resulting product. The applicability of the existing

E

theory is limited, and the exploratory case studies confirm
this to be a problem area. This hampers the determinatiori] N. Ahmad, M. U. Bokhari, S. M. K. Quadri, and M. G. M.
of the zone of cost effectiveness, especially for larger

and more complex software products. This problem area
has been known for decades, but no solution has been

proposed that has found wide acceptance. The traditiona[z

development methods are not able to cope with this,

possibly implying that the release trade-off question will

become more difficult in the near future due to increasing [3]

uncertainty. It might be worthwhile, although ambitious,

to pursue research in the area of totally new development
approaches, eliminating, or at least reducing, this uncer-[4]
tainty level and moving the decision-making process from
complete uncertainty to informed uncertainty.

X (n,t)

Nomenclature

Deterministic cost to remove each fault per unit
time during testing phase

Cost of fixing each fault during operation
Software test cost per unit time

Risk cost per software failure

Average cost of responding to a request for im-
provement

Opportunity loss of a software user

The cost per unit test effort expenditure

The function for penalty cost

Coefficient of gain in reliability if the software
works successfully

The loss due to software failure

The total budget allocated for the software during
the software product life-cycle

Software release time (same as testing time)
The life-cycle length of the software product
Scheduled release time of the software
Warranty period of the software

Scheduled delivery time of the software
Parameters of G-O Exponential model

Model parameters reflecting the dynamic of
change in requirements

Fix costs (documentation, distribution, installa-
tion, customer training etc.)

Parameters of Exponential test effort curve

Failure rate of the software after accounting for
debugging activities

© 2011 ACADEMY PUBLISHER

(5]
(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

Reliability function of software by tim&" for a
mission timex

Economic consequences involved in stopping test
at timeT

REFERENCES

Khan. The Exponentiated Weibull Software Reliability
Growth Model With Various Testing-efforts and Optimal
Release Policy. International Journal of Quality and
Reliability Management, 25(2):211-235, 2008.

] D. S. Bai and W. Y. Yun. Optimum Number of Errors

Corrected before Releasing a Software SystemEEE
Transactions on Reliability, 37(1):41-44, 1988.

E. W. Berghout and M. Nijland. Full Life-cycle Manage-
ment and the IT Management Paradox. In D. Remeny and
A. Brown, editors,Make or Break Issues in IT Manage-
ment, pages 77-107. Butterworth-Heinemann, 2001.

P. J. Boland and H. Singh. Determining the Optimal
Release Time for Software in the Geometric Poisson
Reliability Model. International Journal of Reliability,
Quality and Safety Engineering, 9(3):201-213, 2002.

R. Brettschneider. Is Your Software Ready for Release?
|IEEE Software, pages 100-108, 1989.

S. R. Dalal and C. L. Mallows. When Should One
Stop Testing Software?Journal of American Satistical
Association, 83(403):872—-879, 1988.

W. Ehrlich, B. Prasanna, J. Stampfel, and J. Wu. Deter-
mining the Cost of A Stop-Test DecisiohEEE Software,
10(2):33-42, 1993.

F. Sgarbossa and H. Pham. A Cost Analysis of Systems
Subject to Random Field Environments and Reliability.
IEEE Trasactions on Systems, MAN, and Cybernetics -
Part C: Applications and Review, 40(4):429-437, 2010.

N. E. Fenton and S. L. Pfleege®oftware Metrics: A Rig-
orous & Practical Approach. PWS Publishing Company,
1997.

A. L. Goel and K. Okumoto. Time-Dependent Error
Detection Rate Model for Software Reliability and other
Performance MeasuretEEE Transactions on Reliability,
R-28(3):206-211, 1979.

S. S. Gokhale, M. R. Lyu, and K. S. Trivedi. Incorporating
fault debugging activities into software reliability models:
a simulation approachlEEE Transactions on Reliability,
55(2):281-292, 2006.

R. Hou, S. Kuo, and S. Chang. Optimal Release Times for
Software Systems with Scheduled Delivery Time Based on
the HGDM. |EEE Transactions on Computers, 46(2):216—
221, 1997.

C. Huang. Cost-Reliability-Optimal Release Policy for
Software Reliability Models Incorporating Improvements
in Testing EfficiencyThe Journal of Systems and Software,
77:139-155, 2005.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

[14] C. Huang, S. Kuo, and M. R. Lyu. Optimal Software [34]
Release Policy Based on Cost and Reliability with Testing
Efficiency. International Computer Software and Applica-
tions Conference, (COMPSAC), pages 468-473, 1999. [35]

[15] C. Huang and M. R. Lyu. Optimal Release Time for Soft-
ware Systems Considering Cost, Testing-Effort, and Test
Efficiency. IEEE Transactions on Reliability, 54(4):583— [36]
591, 2005.

[16] Z. Jelinski and P. B. Moranda. Software Reliability
Research. In Statistical Computer Performance Evaluatiofi37]
(Ed.) W. Freiberger, 465-484, 1972.

[17] D. R. Jeske and X. Zhang. Some Successful Approaches
to Software Reliability Modelling in IndustryThe Journal [38]
of Systems and Software, 74:85—99, 2005.

[18] P. C. Jha, D. Gupta, B. Yang and P. K. Kapur. Optimal[39]
testing resource allocation during module testing consider-
ing cost, testing effort and reliabilityournal of Computers
& Industrial Engineering, 57:1122-1130, 2009. [40]

[19] J. Juran and F. Gryna. Quality Control Handbook, 4th
edition. McGraw-Hill, 1988.

[20] P. K. Kapur and R. B. Garg. Cost-reliability Optimum Re- [41]
lease Policies for a Software System Under Penalty Cost.
International Journal of Systems Science, 20(12):2547—
2562, 1989. [42]

[21] P. K. Kapur and R. B. Garg. Optimal Software Release
Policies for Software Growth Model Under Imperfect [43]
Debugging.Researche Operationelle/Operations Research
(RAIRO), 24:295-305, 1990.

[22] P. K. Kapur and R. B. Garg. A Software Reliability [44]
Growth Model for Error Removal Phenomenco®oftware
Engineering Journal, 7:291-294, 1992.

[23] P. K. Kapur, R. B. Garg, and S. KumaiContributions
to Hardware and Software Reliability. World Scientific, [45]
Singapore, 1999.

[24] P. K. Kapur, V. B. Singh, S. Anand, and V. S. S. Yadavalli.
Software Reliability Growth Model With Change-point
and Effort Control Using a Power Function of the Testing [46]
Time. International Journal of Production Research,
46(3):771-787, 2008.

[25] P. K. Kapur, M. Xie, R. B. Garg, and A. K. Jha. A [47]
Discrete Software Reliability Growth Model With Testing
Effort. 1st International Conference on Software Testing,
Reliability and Quality Assurance, 1994.

[26] P. K. Kapur, S. Younes, and S. Agarwala. A General[48]
Discrete Software Reliability Growth Moddinternational
Journal of Modelling and Smulation, 18(1):60-65, 1998.

[27] M. Kimura, T. Toyota, and S. Yamada. Economic Analysis
of Software Release Problems with Warranty Cost and Ref49]
liability Requirement.Reliability Engineering and System
Safety, 66:49-55, 1999.

[28] H. S. Koch and P. Kubat. Optimal Release Time of
Computer SoftwarelEEE Transactions on Software En- [50]
gineering, SE-9:323-327, 1983.

[29] Y. W. Leung. Optimum Software Release Time with A
Given Cost BudgetThe Journal of Systems and Software,
17:233-242, 1992. [51]

[30] K. D. Levin and O. Yadid. Optimal Release Time of
Improved Versions of Software Packagé&sformation and
Software Technology, 32(1):65—-70, 1990.

[31] C. Lin and C. Huang. Enhancing and measuring the
predictive capabilities of testing-effort dependent software
reliability models. The Journal of Systems and Software,
81:1025-1038, 2008.

[32] C.T. LiuandY. C. Chang. A Reliability-constrained Soft-
ware Release Policy Using A Non-Guassian Kalman Filter
Model. Prabability in the Engineering and Informational
Sciences, 21:301-314, 2007.

[33] J. D. Musa, A. lannino and K. Okumoto Software Reliabil-
ity: Measurement, Prediction, Application. McGraw-Hill,

Inc., 1987.

© 2011 ACADEMY PUBLISHER

661

K. Okumoto and A. L. Goel. Optimum Release Time for
Software Systems Based on Reliability and Cost Criteria.
The Journal of Systems and Software, 1:315-318, 1980.

H. Pham and X. Zhang. A Software Cost Model with War-
ranty and Risk CostsIEEE Transactions on Computers,
48(1):71-75, 1999.

H. Pham and X. Zhang. Software Release Policies With
Gain in Reliability Justifying the Costénnals of Software
Engineering, 8:147-166, 1999.

H. Pham and X. Zhang. NHPP Software Reliability and
Cost Models with Testing CoveragBuropean Journal of
Operational Research, 145:443-454, 2003.

J. G. Shanthikumar. Software Reliability Models: A
Review. Microelectronics Reliability, 23:903-949, 1983.

J. G. Shanthikumar and S. Tufekci. Application of A
Software Reliability Model to Decide Software Release
Time. Microelectronics Reliability, 23(1):41-59, 1983.

S. A. Slaughter, E. D. Harter, and M.S. Krishnan. Evalu-
ating the Cost of Software QualitCommunication of the
ACM, 41(8):67—73, 1998.

G. Xia, P. Zeephongsekul, and S. Kumar. Optimal Software
Release Policy With a Learning Factor for Imperfect
Debugging.Microelectronics Reliability, 33:81-86, 1993.

M. Xie. Software Reliability Modelling. World Scientific,
Singapore, 1991.

M. Xie and B. Yang. A Study of the Effect of Imperfect
Debugging on Software Development Co8EEE Trans-
actions on Software Engineering, 29(5):471-473, 2003.

S. Yamada, J. Hishitani, and S. Osaki. Software-Reliability
Growth with a Weibull Test-Effort: A Model & Appli-
cation. |EEE Transactions on Reliability, 42(1):100-1086,
1993.

S. Yamada, H. Narihisa, and S. Osaki. Optimum Release
Policies for A Software System With A Scheduled Soft-
ware Delivery Time. International Journal of Systems
Science, 15(8):905-914, 1984.

S. Yamada and S. Osaki. Discrete Software Reliability
Growth Models. Applied Sochastic Models and Data
Analysis, 1:65-77, 1985.

S. Yamada and S. Osaki. Optimal Software Release Poli-
cies for A Non-Homogeneous Software Error Detection
Rate Model. Microelectronics Reliability, 26(4):691-702,
1986.

S. Yamada and S. Osaki. Optimal Software Release
Policies With Simultaneous Cost and Reliability Require-
ments.European Journal of Operational Research, 31:46—

51, 1987.

B. Yang, H. Hu, and L. Jia. A Study of Uncertainty in
Software Cost and its Impact on Optimal Software Re-
lease Time.lEEE Transactions on Software Engineering,
34(6):813-825, 2008.

M. C. K. Yang and A. Chao. Reliability-estimation and
Stopping-rules for Software Testing, Based on Repeated
Appearance of Bugs. EEE Transactions on Reliability,
44(2):315-321, 1995.

P. Zeephongsekul, C. Xia, and S. Kumar. A Software
Reliability Growth Model Primary Errors Generating Sec-
ondary Errors under Imperfect Debuggin&EE Transac-
tions on Reliability, R-43(3):408-413, 1994.

